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Vesicular transport proteins are related tomany human diseases, and they threaten human
health when they undergo pathological changes. Protein function prediction has been one
of the most in-depth topics in bioinformatics. In this work, we developed a useful tool to
identify vesicular transport proteins. Our strategy is to extract transition probability
composition, autocovariance transformation and other information from the position-
specific scoring matrix as feature vectors. EditedNearesNeighbours (ENN) is used to
address the imbalance of the data set, and the Max-Relevance-Max-Distance (MRMD)
algorithm is adopted to reduce the dimension of the feature vector. We used 5-fold cross-
validation and independent test sets to evaluate our model. On the test set, VTP-Identifier
presented a higher performance compared with GRU. The accuracy, Matthew’s
correlation coefficient (MCC) and area under the ROC curve (AUC) were 83.6%, 0.531
and 0.873, respectively.

Keywords: protein function prediction, vesicular transport proteins, machine learning, XGBoost, position-specific
scoring matrix

1 INTRODUCTION

Researchers have paid more attention to vesicular transport proteins in recent years. Vesicular
transport is that macromolecular substances or granular substances cannot pass through the cell
membrane, but transport across the cell membrane in another special way, that is, substances are
wrapped by the membrane, formed vesicular, fused with the membrane or broken in the process of
transport in and out of the cell. Vesicular transport proteins are contained in the cell membrane,
which can promote the activity of dominant molecules on the vesicle membrane. When
macromolecules and particles cannot cross the cell membrane, vesicular transport proteins take
on the task of transporting them. To date, many studies have confirmed that abnormal vesicular
transport proteins may cause a variety of human diseases (Zhang et al., 2019; Zeng et al., 2020a), such
as Hermansky-Pudlaksyndrome and chylomron retention disease (Cláudio et al., 2001; Suzuki et al.,
2006). As the relationship between vesicular transport proteins and related diseases is gradually
becoming clear, it is particularly important to deepen the study of vesicular transport proteins.

In view of the importance of vesicular transport proteins in eukaryotic cells, researchers in the
area of cell biology have been committed to developing experimental techniques that can identify
vesicular transport proteins and have achieved excellent results, such as morpholino knockdown
(Hager et al., 2010) and dissection (Orci et al., 1989). These techniques can accurately identify
vesicular transport proteins, but these technologies are often not very efficient and are expensive, so it
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is particularly necessary to find a time-saving and high accuracy
method to identify vesicular transport proteins.

In recent years, protein function prediction has been a hot
topic in the field of computational biology (Ding et al., 2020a; Fu
et al., 2020; Guo et al., 2020; Tao et al., 2020; Wang et al., 2020;
Zhai et al., 2020; Cai et al., 2021; Li et al., 2021; Yang, 2021).
With the continuous enrichment of protein data, the technology
of applying machine learning and data mining to protein
function prediction is gradually maturing (Liu et al., 2019;
Ding et al., 2020b; Ding et al., 2020c; Liu et al., 2020; Zhao
et al., 2021). For example, some researchers used machine
learning technology and created high accuracy models by
sequence analysis (Chou, 2009; Cui et al., 2019; Jin et al.,
2021; Shao et al., 2021), position-specific scoring matrix
(PSSM) (Jones, 1999), and to determine various
physicochemical and biochemical properties of amino acids
(Kawashima and Kanehisa, 2000; Zhang et al., 2021; Zulfiqar
et al., 2021). The above studies have shown that the use of
computer technology in protein identification is reliable. Deep
learning has attracted much attention, and researchers have
been trying to create new deep neural networks to solve protein-
related problems, such as the prediction of DNA-binding
proteins (Qu et al., 2017), human protein subcellular
localization (Wei et al., 2018a) and SNARE-CNN (Le and
Nguyen, 2019). An increasing number of models and
algorithms that can accurately identify proteins have been
developed. Therefore, we adopted a machine learning method
to obtain a model that can identify vesicular transport proteins.

In the previous study of Nguyen Quoc Khanh Le (Le et al.,
2019), the strategy that includes gated recurrent units and PSSM
was adopted, and the accuracy and Matthew’s correlation
coefficient (MCC) of the final model reached 82.3% and 0.52 in
the cross-validation set and 85.8% and 0.44 in the independent test
data set, which is an excellent result. Deep learning can often
achieve high accuracy, but thismethod will be time-consuming due
to training and has a high requirement for computer equipment.
Taking PSSM as input to the model for training will also increase
the training time, so we hope to find a more efficient and more
accurate method to identify vesicular transport proteins.

The method used in this paper extracts information such as
transition probability composition, autocovariance
transformation and other information from PSSM as a feature
vector. We adopted undersampling, oversampling and combined
sampling methods to reduce the imbalance of the data set. The
Max-Relevance-Max-Distance algorithm (Zou et al., 2016) was
used to sort features and reduce the number of features. In this
work, we selected XGBoost as the classifier and evaluated our
model with 5-fold cross-validation. Finally, we obtained a better
model than a previous study, which had high efficiency and
accurate identification of vesicular transport proteins.

2 MATERIALS AND METHODS

The flowchart of our work is shown in Figure 1, and each section
in the figure is described in detail in the following sections.

FIGURE 1 | Training flow chart of the prediction model of vesicular transport proteins.
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2.1 Benchmark Dataset
In this work, we used the dataset provided in Nguyen Quoc Khanh
Le’s study (Le et al., 2019) as the benchmark dataset. The numbers of
vesicular transport proteins and non-vesicular transport proteins
were 2,533 and 9,086, respectively, and we took vesicular transport
proteins as positive samples and non-vesicular transport proteins as
negative samples. We divided the data set into a training set and a
testing set, and the details are shown in Table 1.

2.2 Unbalanced Datasets Treatment
We used seven methods from an unbalanced-learning library
(Lemaître et al., 2017) to address the imbalance in the dataset. The
methods used for undersampling were RandomUnder,
ClusterCentroids, NearMiss and EditedNearesNeighbours
(ENN). The method used for over-sampling was SMOTE, a
total of 5,300 positive sample data have been generated. We
used default parameters for these methods. For the cleaning
undersampling techniques, ENN adjusted the ratio of positive
and negative samples to 1:2. The other four methods changed the
number of positive and negative samples to equal. The methods
used from the combined methods were SMOTEENN and
SMOTETomek. We adjusted the parameters of these two
methods and adjusted the proportion of positive and negative
samples to 1:1.

As the SMOTE, SMOTEENN and SMOTETomek methods
will generate new samples, the results of 5-fold cross-validation
processed by these methods are not accurate, so special cross-
validation should be performed when using these three methods.
K-fold cross-validation divides the training dataset into k
subdatasets; k-1 subdatasets are used to train the model, and
the rest are used for validation. Our method uses SMOTE and
other unbalanced data processing methods to train the k-1
subdataset and then uses the validation set to evaluate the model.

2.3 Feature Extraction
To date, a strategy that includes deep learning and PSSM profiles
has been frequently adopted to realize the identification of
unknown proteins and has achieved excellent results.
However, the strategy is slightly inefficient, so in this work, we
used other machine learning models and adopted RPSSM (Ding
et al., 2014), CSP-SegPseP-SegACP (Liang et al., 2015), AATP
(Zhang et al., 2012), DWT (Wang et al., 2017; Wang, 2019) and
SOMA (Liang and Zhang, 2017) to extract features from the
PSSM matrix and make a comparison. Among them, AATP and
CSP-SegPseP-SegACP have the highest MCC and AUC, so they
are selected as feature extraction methods.

2.3.1 Position-Specific Scoring Matrix
PSSM can reveal the evolutionary information of proteins (Jones,
1999). PSSM was mainly used to predict protein secondary

structure, now it has been widely used in the field of
bioinformatics. Previous studies have shown that it is reliable
to extract PSSM from protein sequences, and the evolutionary
information in PSSM has more research value than the sequence
itself (Kim and Park, 2004).

According to the definition of PSSM, we described PSSM by
the following formula:

PPSSM � ⎛⎜⎜⎝ P1,1 P1,2

Pi,1 Pi,2

PL,1 PL,2

L P1,j

L Pi,j

L PL,j

L P1,20

L Pi,20

L PL,20

⎞⎟⎟⎠
where Pi,j represents the score of the ith amino acid residue of the
protein sequence that mutates into amino acid type j during
evolution and L shows the length of the sequence. In this work, we
used PSI-BLAST to compare the sequence with NCBI’s
nonredundant (NR) database to obtain PSSM. Now, many
methods of extracting features from PSSM have been derived.
The methods used in this paper are introduced in the following
chapters.

2.3.2 AATP
AATP can be extracted from PSSM, which consists of two feature
vectors: amino acid composition (AAC) and transition
probability composition (TPC). AAC can be described by the
following:

AAC � (x1,x1, . . . , x20)T
xj � (1

L
)∑L

i�1
Pi,j, j � 1, 2, 3, . . . , 20

where xj represents the probability that the amino acid residues
change into J-type amino acids during evolution.

TPC is a feature vector of 400 dimensions that is extracted
from the transition probability matrix (TPM) by:

TPC � (X1,1, . . . , X1,20, . . . , Xi,1, . . .Xi,20, . . . , X20,1, . . . , X20,20)
where

X � ⎛⎝∑L−1
k�1

Pk,i × Pk+1,j⎞⎠/⎛⎝∑20
j�1

∑L−1
k�1

Pk+1,j × Pk,i
⎞⎠, 1≤ i, j≤ 20

The new feature vector AATP can be obtained by integrating
AAC and TPC, and each protein sequence can extract 20 + 400 �
420 features.

2.3.3 CSP-SegPseP-SegACP
CSP-SegPseP-SegACP consists of the following three parts:
Pseudo-position-specific scoring matrix (PsePSSM),
Autocovariance Transformation and Consensus Sequence
Based on PSSM.

2.3.3.1 PsePSSM
In this step, PSSM is processed twice. For the first time, PSSMwas
divided into two equal length segments L1, L2 by using a similar
procedure in (Yang and Chen, 2011). Then, two segments were
used to calculate segments. The equations are as follows:

TABLE 1 | Statistics of the dataset in this work.

Total Train Test

Vesicular 2,533 2,214 319
Non-vesicular 9,086 7,573 1,513
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αλj �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
L1

∑L1
i�1

Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L1 − λ

∑L1−λ
i�1

(Pi,j − Pi+λ,j)2, j � 1, 2, . . . , 20, λ � 1, 2, 3, 4,

βλj �

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
L − L1

∑L
i�L1+1

Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L − L1 − λ

∑L−λ
i�L1+1

(Pi,j − Pi+λ,j)2, j � 1, 2, . . . , 20, λ � 1, 2, 3, 4,

where αλj and βλj represent the correlation between amino acids
and λ is the contiguous distance of αλj and βλj along the protein
sequence of each fragment. The value range of λ is affected by
the number of PSSM segments and the length of the shortest
series, so λ can be taken to be 0, 1, 2, 3 and 4. Through the
above calculation, we can obtain a 200-dimensional feature
vector.

Next, the PSSM is divided into three segments L1, L2 and
L3; here, λ can be token to 0, 1 and 2. The equations are as
follows:

θλj �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
L1

∑L1
i�1

Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L1 − λ

∑L1−λ
i�1

∑L1−λ
i�1

(Pi,j − Pi+λ,j)2, j � 1, 2, . . . , 20, λ � 1, 2

μλj �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
L1

∑2L1
i�L1+1

Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L1 − λ

∑2L1−λ
i�L1+1

(Pi,j − Pi+λ,j)2, j � 1, 2, . . . , 20, λ � 1, 2

]λj �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
L − 2L1

∑L1
i�L1+1

Pi,j, j � 1, 2, . . . , 20, λ � 0,

1
L − 2L1 − λ

∑L−λ
i�2L1+1

(Pi,j − Pi+λ,j)2, j � 1, 2, . . . , 20, λ � 1, 2

This time, 180-dimensional feature vectors are
obtained. Combined with the results of the previous stage,
a 380-dimensional feature vector can be extracted
from PSSM.

2.3.3.2 Autocovariance Transformation
In this step, the information contained in the sequence is further
extracted by calculating the autocovariance transformation.
Similar to the previous step, the PSSM is divided into two
segments and three segments, and then the ACT-PSSM feature
vector is obtained by the following equations when divided into
two segments:

AC1lgj � 1
L1 − lg

∑L1−lg
i�1

(Pi,j − α0
j)(Pi+lg,j − α0

j), j � 1, 2, . . . , 20, lg

� 1, 2, 3, 4

AC2lgj � 1
L − L1 − lg

∑L−lg
i�L1+1

(Pi,j − β0j)(Pi+lg,j − β0j), j � 1, 2, . . . , 20, lg

� 1, 2, 3, 4

AC1lgj � 1
L1 − lg

∑L1−lg
i�1

(Pi,j − θ0j)(Pi+lg,j − θ0j), j � 1, 2, . . . , 20, lg

� 1, 2

AC2lgj � 1
L1 − lg

∑2L1−lg
i�L1+1

(Pi,j − μ0j)(Pi+lg,j − μ0j), j � 1, 2, . . . , 20, lg

� 1, 2

FIGURE 2 | The values of the different unbalanced data processing methods on the training set.
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AC3lgj � 1
L − 2L1 − lg

∑L−lg
i�2L1+1

(Pi,j − ]0j)(Pi+lg,j − ]0j), j
� 1, 2, . . . , 20, lg � 1, 2

where lg represents the differences between amino acid residues.
Finally, the 280-dimensional ACT-PSSM feature vector can be
obtained by the above equations.

2.3.3.3 Consensus Sequence Based on PSSM
This step adopts the method in (Patthy, 1987) and generates a
consensus sequence as follows:

X(i) � argmax{Pi,j: 1≤ j≤ 20}, 1≤ i≤ L
Next, we compute CSAAC, which shows 20 amino acid

composition features of the consensus sequence, and CSCM,
which represents 20 composition moment features for CS.
Through the combination of the above two feature vectors, we
obtain a 40-dimensional feature vector based on CS.

The 700-dimensional CSP-SegPseP-SegACP feature vector is
obtained by fusing the features obtained from the above
three steps.

2.4 Feature Selection
In this section, we adopted Max-Relevance-Max-Distance
algorithm (MRMD) (Zou et al., 2016) to reduce the dimension

of the feature vector, MRMD uses the Pearson correlation
coefficient to balance the correlation between the subfeature
set and the target class and uses various distance functions to
obtain the redundancy of each subfeature set. The subfeature set
selected by MRMD has low redundancy and strong correlation
with the target class.

2.5 Classification
We compared the performance of four different popular
classification methods which are the RF, SVM, KNN and
XGBoost to identified VTP. Due to six performance
evaluations on the training set, we chose XGBoost as our
classification method.

XGBoost (Chen and Guestrin, 2016) is a machine learning
method with an excellent classification effect and high efficiency
that has been widely used in recent years(Long et al., 2021; Yang
et al., 2021). It stands out frommany of the challenges of machine
learning and data mining. In this paper, XGBoost performed very
well, and it still obtained good results under the premise of high
training efficiency.

3 RESULTS

3.1 Assessment of Predictive Ability
In this work, our goal was to obtain a model to predict
whether the unknown type of protein sequence belongs to
vesicular transport proteins, so we took vesicular transport
proteins in the data set as positive samples and non-
vehicular transport proteins as negative samples. In each
section of our work, to evaluate our model, we used 5-fold
cross-validation several times and calculated the average
value as the final result. After obtaining the results of

TABLE 2 | Evaluation of model performance after processing unbalanced data
by ENN.

Acc Sens Spec Precision MCC AUC

ENN 0.85 0.701 0.919 0.811 0.659 0.908

FIGURE 3 | (A) Comparison of single feature extraction methods. (B) Comparison of combining feature extraction methods.
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cross-validation, we used a test data set to test our model and
make adjustments.

To evaluate our model comprehensively, we used several
methods, including accuracy (ACC), sensitivity (Sens),
specificity (Spec), precision, Matthew’s correlation
coefficient (MCC) and area under the ROC curve
(AUC) (Jiang et al., 2013; Wei et al., 2014; Wei et al.,
2017; Wei et al., 2018b; Su et al., 2019; Zeng et al., 2020b;
Hong et al., 2020; Su et al., 2020; Tang et al., 2020; Dao, 2021;
Shao and Liu, 2021; Wang, 2021). These methods are defined
as follows:

ACC � TP + TN

TP + FN + FP + TN

Sens � TP

TP + FN

Spec � TN

FP + TN

Precision � TP

TP + FP

MCC � TP × TN − FP × FN�������������������������������������(TP + FP)(TP + FN)(TN + FP)(TN + FN)√
AUC � 1

2
( TP

TP + FN
+ TN

TN + FP
)

where TP, FP, TN and FN represent true positives, false positives,
true negatives, and false negatives, respectively.

3.2 Comparison of the Different Unbalanced
Data Processing Methods
In the previous section, we selected CSP-SegPseP-SegACP and
AATP as the feature extraction methods. Next, we compared the
effects of different unbalanced processing methods on the model.

When the samples are in an unbalanced state, the model
trained by machine learning tends to be more inclined to a large
number of samples. (Fdez-Glez et al., 2018).

We used seven methods from an unbalanced-learning library
to address the imbalance in the data set. The methods are

RandomUnder, ClusterCentroids, NearMiss,
EditedNearesNeighbours (ENN), SMOTE, SMOTEENN and
SMOTETomek. The RandomUnder, ClusterCentroids and
NearMiss adjusted the number of positive and negative
samples to 2214:2214. The ENN adjusted the number of
positive and negative samples to 2214:4707. The SMOTE
adjusted the number of positive and negative samples to 7573:
7573. The SMOTEENN and SMOTETomek adjusted the number
of positive and negative samples to 5000:5000.

In this part of our work, we set the XGBoost parameter
scale_pos_weight � default to avoid XGBoost training being
more biased towards positive samples. Other parameters of
XGBoost are set as follows: learning_rate � 0.1, n_estimators
� 1,000, max_depth � 8, min_child_weight � 1, gamma � 0,
subsample � 0.8, colsample_bytree � 0.8, objective � “binary:
logistic”, nthread � 20. We found that the ENN method is the
best, and its ACC, MCC, AUC and so on are significantly higher
than those of the other methods. Therefore, ENN was selected as
the final unbalanced data processing method. The result on the
training set after using different imbalance processing algorithms
is shown in Figure 2.

When dealing with unbalanced data, we cannot precisely
control the proportion of positive and negative samples when
using ENN. The dataset was still slightly unbalanced, so we
continued to adjust the parameter scale_pos_weight of
XGBoost, which makes the classifier tend to have small
samples in the training process. Finally, we set
scale_pos_weight � 0.6. The performance of the model is
shown in Table 2.

3.3 Comparison of the Different Feature
Extraction Methods
In previous studies, the training model using PSSM as input can
effectively predict vesicular transport proteins, which indicates that
PSSM has important information to identify vesicular transport
proteins. In this paper, the methods of extracting features from
PSSM were used to further extract the key information in PSSM
and to improve the efficiency of the training model.

In this section, RPSSM, AATP, CSP-SegPseP-SegACP,
SOMA, and DWT were used to extract features from PSSM.
In addition to different feature extraction methods, other
experimental conditions are completely consistent. We
adopted XGBoost as the classifier, set the scale_pos_weight �
0.1 for the temporary method for dealing with unbalanced data
sets, and used cross validation to evaluate our model. The result
is shown in Figure 3A. By comparison, we found that RPSSM,
CSP-SegPseP-SegACP and AATP performed better.

TABLE 3 | The results of using different sorting methods in MRMD on the training set.

Dimension Acc Sens Spec Precision MCC AUC

Hits_a 681 0.852 0.711 0.919 0.805 0.653 0.907
TrustRank 992 0.857 0.709 0.927 0.818 0.658 0.907
PageRank 898 0.855 0.712 0.922 0.81 0.658 0.907
LeadeRank 738 0.854 0.712 0.921 0.809 0.656 0.908
Hits_h 791 0.855 0.713 0.921 0.813 0.66 0.908

TABLE 4 | Comparison of six performance evaluations on the training set.

Acc Sens Spec Precision MCC AUC

RF 0.823 0.582 0.936 0.81 0.574 0.886
SVM 0.843 0.72 0.9 0.773 0.633 0.896
KNN 0.822 0.732 0.865 0.72 0.595 0.879
XGBoost 0.855 0.713 0.921 0.813 0.66 0.908
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Next, we combined these three methods in pairs for comparison.
We found that the combination of CSP-SegPseP-SegACP and
AATP was the best method, through these two methods, we
extracted 1,120 dimension feature vectors. The result after using
the combination methods on the training set is shown in Figure 3B.

3.4 Feature Selection
After dealing with the imbalance of the data set, our model has
made significant progress. In this section, we reduced the
dimension of the feature vector by feature selection.

In the process of machine learning, the high dimensionality of
the input feature vector will have a huge impact on the model,
which will make the model too complex and reduce the
generalization. Therefore, when the dimension of the feature
vector is high, dimensionality reduction can improve the
learning ability of the machine learning model and reduce the
time required to train the model.

In this work, we adopted Max-Relevance-Max-Distance
algorithm (MRMD). By using AATP and CSP-SegPseP-SegACP

to extract features, and then combined the features and normalized
them by Z-score standardization. The dimension of the feature
vector is 1,120. In this work, we used the latest version ofMRMD to
improve our model. MRMD has five feature ranking methods:
Hits_a, Hits_h, TrustRank, PageRank and LeaderRank. TrustRank
and PageRank were originally used in web search system, MRMD
modified them and applied them to feature selection. LeaderRank
is derived from the basic PageRank algorithm. It adds a
background node to make two-way connection with all nodes.
Hits is similar to PageRank and is also applied to web search, the
difference is that the number of web pages processed by hits is
small, and it is related to queries. We used all five methods, and
then we chose Hits_h by comparing the results of cross-validation.
The results are shown in Table 3. Finally, through MRMD, we
changed the 1120-dimensional feature vector to 791 dimensions,
and the accuracy was also improved.

3.5 Performance on Different Methods
Through the above processing, we obtained a good
performance model. In this model, the parameters of
XGBoost are: learning_rate � 0.1, n_estimators � 1,000,
max_depth � 8, min_child_weight � 1, gamma � 0,
subsample � 0.8, colsample_bytree � 0.8, objective �
“binary:logistic”, nthread � 20, scale_pos_weight � 0.6.
Next, we compared the effect of our cross-validation set on
different methods. In this section, we applied the data

FIGURE 4 | ROC curve of vesicle transporters identified by different methods.

TABLE 5 | Performance comparison between our model and GRU.

Acc Sens Spec Precision MCC AUC

GRU 0.809 0.708 0.829 0.515 0.459 0.850
VTP-Identifier 0.836 0.757 0.852 0.517 0.531 0.873
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processed by the same feature extraction method, imbalance
processing method and feature selection method to different
machine learning models.

We used Random Forest, KNN and SVM for comparison. We
optimized the parameters of each classifier and set n_estimators �
100 in random forest, k � 10 in KNN, gamma � 0.5 and cost � 8 in
SVM. The results are shown in Table 4. We drew the ROC and
calculated the AUC, which are shown in Figure 4. Obviously,
XGBoost is the best choice. Compared with other methods,
XGBoost was also very efficient in the process of training the model.

Then, we used independent test sets to test themodel performance.
NguyenQuocKhanhLe usedGru neural network for deep learning in
his research, we used themodel provided byNguyenQuocKhanhLe’s
research result to classify vesicular transport proteins, and then
compared with our model. The results are shown in Table 5. The
PR curves of the two models are shown in Figure 5. Obviously, the
performance of our model is better.

4 DISCUSSION

In this paper, we provide a method to identify vesicular transport
proteins based on feature extraction from PSSM. In our dataset,

the number of vesicular transport proteins and non-vesicular
transport proteins are 2,533 and 9,086, and the number of
training sets are 2,214 and 7,573. We used ENN to address
the imbalance of the training data set, reduced the number of
non-vesicular transport proteins from 7,573 to 4,707. We used
AATP and CSP-SegPseP-SegACP to extract features from PSSM
and then obtained 1,120 dimensional feature vector. Next we used
MRMD to reduce the dimension of the feature vector and the
dimension is reduced to 791. Finally, we sent the processed data
to XGBoost and got a model to accurately identify vesicular
transport proteins. The experimental comparison shows that our
model is better than the previous research result. The accuracy of
our model on the test set is 83.6%, which exceeds the previous
research results obtained by Nguyen Quoc Khanh Le through
deep learning.
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