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Abstract

In the study of complex genetic diseases, the identification of subgroups of patients sharing similar genetic characteristics
represents a challenging task, for example, to improve treatment decision. One type of genetic lesion, frequently
investigated in such disorders, is the change of the DNA copy number (CN) at specific genomic traits. Non-negative Matrix
Factorization (NMF) is a standard technique to reduce the dimensionality of a data set and to cluster data samples, while
keeping its most relevant information in meaningful components. Thus, it can be used to discover subgroups of patients
from CN profiles. It is however computationally impractical for very high dimensional data, such as CN microarray data.
Deciding the most suitable number of subgroups is also a challenging problem. The aim of this work is to derive a
procedure to compact high dimensional data, in order to improve NMF applicability without compromising the quality of
the clustering. This is particularly important for analyzing high-resolution microarray data. Many commonly used quality
measures, as well as our own measures, are employed to decide the number of subgroups and to assess the quality of the
results. Our measures are based on the idea of identifying robust subgroups, inspired by biologically/clinically relevance
instead of simply aiming at well-separated clusters. We evaluate our procedure using four real independent data sets. In
these data sets, our method was able to find accurate subgroups with individual molecular and clinical features and
outperformed the standard NMF in terms of accuracy in the factorization fitness function. Hence, it can be useful for the
discovery of subgroups of patients with similar CN profiles in the study of heterogeneous diseases.
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Introduction

Discovery of disease subtypes or of subgroups of patients sharing

common characteristics is a challenging task in biomedical

research, especially in the study of complex and heterogeneous

genetic disorders. The purpose of these analyses is, for example, to

allow for a better prediction of the survival time and treatment

decision, to understand the reasons for drug resistance, or to

provide general insights about the biological mechanisms of the

disease for finding diagnostic biomarkers or drug targets that are

specific to a subgroup.

One type of genetic aberration is the change in the DNA copy

number (CN). In human beings, the normal CN is two for the

majority of the genome since, for each chromosome, one inherits a

copy from each of their parents. Thus, CN changes are defined as

lesions in which the number of copies is different from two. We

can classify these CN aberrations into the following four

categories: homozygous deletion (loss of two copies), heterozygous

loss (loss of one copy), gain (number of copies equal to three or

four), amplification (number of copies greater than four), see

Table 1. The identification of these types of lesions is important,

for example, in cancer studies. In fact, the gain or the

amplification of an oncogene would determine the overexpression

of the corresponding protein and thus, for example, to uncon-

trolled cell growth. The loss of a tumor suppressor gene can make,

for instance, the cells resistant to apoptosis. Another type of genetic

lesion can be identified through the values assumed by single-

nucleotide polymorphisms (SNPs). A SNP is a variation of the

DNA sequence at a single base-pair location (there is a pair of

nucleotides at each genomic locus, since normal CN is two). The

two paired nucleotides can assume only two possible alleles (for

simplicity, we call them A and B) among the four basis. If they

assume the same allele, then the value of the SNP is AA or BB and

the SNP is called homozygous, otherwise its value is AB and the

SNP is called heterozygous. The loss of heterozygosity (LOH)

lesion can be displayed as a long stretch of homozygous SNPs.

SNP microarrays are able to measure both the CN and the LOH

at hundred thousands or even millions of SNPs along the genome

[1].

In order to identify subgroups of patients with common patterns

of CN and LOH lesions, non-negative matrix factorization (NMF)

is a well-known approach [2,3]. It has been widely used in a

variety of areas and problems, including many in Computational
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Biology (we refer to [3] for a broad view of its applications). While

NMF has been mostly applied to continuous data such as gene

expression, it can also be used with discrete data such as CN

lesions by optimizing an appropriate divergence function [4].

NMF is particularly suitable for high-dimensional CN and LOH

data because of sparseness and repetitiveness in the matrices

representing these lesions [3,5–9]. Because of that, it is able to

produce clustering results where the most important characteristics

of the data set are emphasized. However, as the dimension of data

increases with new microarray technology, the harder (in both

time and accuracy) becomes to run NMF over the full data matrix

(we refer to the matrix rows as patients/samples and to the matrix

columns as their CN information at different physical genomic

locations). Current computers can perform one run of NMF in

about one day (note that we need to perform hundreds of runs)

with matrices in the order of 104 columns, which represents at least

two orders of magnitude less than what current microarray

technology can output. The most common approach to address

this problem is to restrict the attention to a smaller number of pre-

selected columns, and perform the NMF analysis only with such

columns. These columns are either selected in some ad-hoc

manner (for example, one every few columns, usually because of

their physical proximity), or by applying some procedure which

identifies groups of similar columns (using statistical tests or other

methods with the same aim, such as minimum common regions,

principal component analysis, etc) and keep only one column for

each group. Such ideas make it possible to apply the factorization

to such large matrices of data, otherwise computationally

unfeasible. We analyze this task and propose a way of

‘‘compacting’’ the columns such that the additional error

introduced by such a compaction is minimized. Our so called

Compact-NMF differs from previous uses in an essential way: we

aim at factorizing the data matrix in a way that the divergence to

the whole data matrix is minimized, while a naive approach, not

being able to run NMF over the whole data matrix, would work on

a submatrix of it, and thus would produce a factorization that

minimizes the divergence to that submatrix (we call this idea

Standard-NMF). Using real data, we show that Compact-NMF

produces results that are in line with running NMF over the whole

data matrix, while Standard-NMF has a considerable degraded

accuracy, which we will define as the fitness of the factorization

later on. The implementation of Compact-NMF is available at

http://www.idsia.ch/,cassio/compactnmf/.

Using these techniques, we analyze data sets of patients affected

by diffuse large B-cell lymphoma (DLBCL), by breast cancer with

the HER2 gene amplification, and by medulloblastoma. The first

data set consists of SNP microarray data (Affymetrix GeneChip

Human Mapping 250K NspI) from 166 DLBCL samples [10].

Since genomic aberrations can be shared by different lymphoma

subtypes, we enlarge the data set by adding data from patients

affected by other types of B-cell leukemia and lymphomas [11].

The use of a large data set of 533 samples with similar diseases

(which increases the number of rows in the matrix) may improve

the clustering, similarly to what was shown for the definition of

recurrently aberrated regions in [11]. The second data set regards

aCGH data (NimbleGen Human CGH 385K Whole-Genome

Tiling v1.0 Array) from 201 DLBCL patients of [12]. The third

data set consists of 200 breast cancer patients’ data [13] obtained

with BAC microarrays (produced by the SCIBLU Genomics

Center), in three resolution formats (32K, 33K, and 38K). Finally,

the fourth data set is a huge collection of very high-throughput

microarray CN profiles. In fact, it comprises the data of 1087

medulloblastoma patients [14] obtained with the Affymetrix

Genome-Wide Human SNP Array 6.0 platform (about 1.8 million

probes). With the aim of evaluating the quality of the separation,

we show that the subgroups identified by our clustering procedure

are associated with other known clinical information of the

patients (not disclosed to the clustering procedure itself), such as

molecular subtypes of the corresponding diseases. As with most

unsupervised clustering techniques, the choice of the correct number

of subgroups is a problem by itself and has to be analyzed with

attention. We employ a wide selection of well-established quality

measures and discuss some new criteria. All of them are

unsupervised, which reduces the chance of overfitting.

Methods

Non-negative Matrix Factorization [2] is a technique to reduce

the dimensionality of a data set, and can be justified as a clustering

algorithm given its non-negative characteristic (Principal Compo-

nent Analysis, for instance, is much faster but does not have the

same properties because it allows negative values in its decom-

posed matrices and makes the result non-interpretable for

clustering). The goal is to produce a pair of matrices of smaller

rank than the original one which multiplied produce a good

approximation of the latter. Let V(x,y) denote the space of

matrices with dimension x|y, R the real numbers and N the

natural numbers. A matrix A of V(x,y) can be seen as a function

A : N x|N y?R, with N x~fv[N : 1ƒvƒxg. Thus, an ele-

ment in the position (i,j) of A is simply denoted by A(i,j). Let

X̂X : N x|N y?R be defined as follows: X̂X = W?H, that is,

Vi,j : X̂X (i,j)~
Xr

k~1

W (i,k):H(k,j),

where r§2 is a given integer with the desired rank of the

factorization, W and H are decomposed matrices with dimensions

n|r and r|m, respectively. The standard cost/divergence

function used within NMF when it is seen as a maximum

likelihood estimation and data are assumed to be produced by a

Poisson distribution (which is our case, given that we consider the

estimated number of DNA copies at each SNP probe) is:

min
H,W

Xn

i~1

Xm

j~1

X̂X (i,j){X (i,j) log X̂X (i,j)
� �

, ð1Þ

subject to W§0,H§0, where X is the given n|m input matrix

and X̂X~W :H is the estimated matrix. This divergence function

measures the quality of W and H as a decomposition of X , and

can be interpreted as the Kullback-Leibler (KL) divergence

Table 1. Summary of copy number lesions that are
considered.

CN name of the lesion

0 homozygous deletion

1 heterozygous loss

2 normal copy number (no lesion)

3 or 4 gain

.4 amplification

This table shows the definition of the four types of copy number (CN)
aberrations that are considered in this work.
doi:10.1371/journal.pone.0079720.t001
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between distributions represented in the matrices X and X̂X (if one

normalizes these matrices). Hence, the accuracy of NMF can be

defined as the result of Equation (1) that is achieved by the

factorization.

The problem of optimizing the divergence function (that is,

solving NMF) is known to be a computationally hard task (in

computational complexity terms, it is known to be NP-hard for

r§3 [15]). The function is non-convex and there are multiple

local optima. In fact, under the KL divergence, NMF has been

shown to be a similar task as the Expectation–Maximization

technique for learning parameters of multinomial distributions

with latent variables [16]. This justifies the development and use of

efficient local optimization techniques, as well as multiple-start

methods to avoid being trapped in a local minimum of the

divergence function. The starting point for the optimization is the

initial solution that one can choose to fill up the matrices W and

H with values. Moreover, it is known that the problem is not

identifiable, that is, there might be multiple global optimal

solutions [17]. Hence, multiple-start methods can not only avoid

local minima, but should be integrated somehow to produce a

better overall solution for the optimization problem, as finding a

single global minimum solution is not the best one can do [18].

Essentially, when one takes the most accurate run of NMF as the

final result, they would be relying on a single solution, even if there

might be many distinct solutions which achieve equal or only

barely worse accuracy than the best one, and yet these solutions

might be composed of quite different matrices W and H. This

issue can be explained by the aforementioned relation between

NMF and learning parameters of multinomial distributions with

latent variables [16].

NMF as a Clustering Method
NMF can be used for clustering by considering each row i,

1ƒiƒn, of the matrix W as an element to be clustered, and the

row itself as weights by which element i should be assigned to each

cluster j, 1ƒjƒr (r is the number of clusters/groups). The simplest

idea is to assign each element i to the cluster j with largest weight,

that is, the clustering Cr,t for the n elements (rows) of the input is

defined as Cr,t : N n?N r such that Cr,t(i)~argmaxj W (i,j),

where t is just an index to identify results from distinct NMF runs.

Using NMF for clustering leads to the permutation problem, if one

wants to put together the results of many runs of NMF from

multiple distinct starting points. This problem regards the fact that

different runs of NMF can lead to distinct assignments of clusters

that differ only by a permutation of the columns of W (respectively

rows of H ), while achieving the same value of the divergence

function. Moreover, it is not trivial to combine different runs of

NMF, for example, by combining the corresponding positions of

the matrices W and H of the runs, as each run might regard a

distinct permutation of the matrices. In order to address the

permutation problem, we follow the standard post-NMF approach

of combining clustering results by building up an overall similarity

matrix, which contains the number of times the elements were

clustered in the same cluster. As this approach performs

calculations that are separate for each run of a multiple-start

NMF, the result is coherent. More formally, let Cr,t, for 1ƒtƒT ,

denote the clustering result of the NMF procedure in run t. The

similarity matrix Sr with dimension n|n is defined as

Sr(i,j)~
1

T

XT

t~1

I (Cr,t(i)~Cr,t(j)),

where I is the indicator function. Now, the similarity matrix Sr

can be used as input of another clustering technique, such as

hierarchical clustering [19] or partition around medoids [20], in

order to produce a final clustering result. Note that any clustering

technique that is able to produce a clustering out of a similarity

matrix might be employed here. In fact, there is no significant

difference between the methods we just mentioned, since the

matrix Sr produced by many runs of NMF is already a robust

measurement of the similarity of the elements to be clustered, and

thus the effect of using distinct clustering methods over Sr is

greatly reduced. We denote by Cr : N n?N r the final result of the

clustering over Sr, associating each row of the initial matrix to a

cluster number between 1 and r. In this work, we employ

hierarchical clustering for this purpose.

Another important issue with NMF is its scalability to large

matrices. Obviously this depends intrinsically on the method to

optimize the divergence function. The most traditional method to

optimize it is the iterative procedure of [4] (W0 and H0 are given

as the starting point to the algorithm):

Vk,j : Hq(k,j)/Hq{1(k,j):

P
i

Wq{1(i,k):X (i,j)

(Wq{1Hq{1)(i,j)P
i

Wq{1(i,k)
,

Vi,k : Wq(i,k)/Wq{1(i,k):

P
j

Hq(k,j):X (i,j)

(Wq{1Hq)(i,j)P
j

Hq(k,j)
,

for q~1, . . . ,q’ until convergence (or until a maximum number of

steps is reached). Finally, W/Wq’ and H/Hq’. This method is

proved to converge to a stationary point (usually a local optimum)

of the minimization problem. Note that the most expensive

operation executed by the algorithm while updating Hq is the

multiplication of matrices Wq{1
:Hq{1 (respectively Wq{1

:Hq in

the computation of Wq). Even with an optimized implementation,

each step takes approximately cubic time in the matrix dimen-

sions. We provide an optimized C++ implementation of this

algorithm, which also works as a library package for the R

language (see http://www.idsia.ch/,cassio/compactnmf/). The

implementation is fast and can be directly invoked as a stand-alone

application, which is desirable when running it on a grid or

parallel computer environment (given the need of running the

optimization several times with distinct starting points to obtain a

robust similarity matrix).

Compact-NMF
Even if we use a fast implementation and a computer grid to

parallelize the runs of the algorithm, the maximum matrix

dimension that current computers can handle is quite limited,

because of the intrinsic complexity of the problem. Hence, we

propose to reduce the dimension of the matrix X by compacting

the information of some of its columns (that is, SNP probes in the

case of dealing with CN data) even before applying NMF. The

idea is that we are given computational resources that are able to

solve an NMF instance up to matrices Y of dimension n|p, but

we still want to approximate the (eventually much larger) n|m
matrix X . This situation occurs often, since current computers

have severe limitations in both memory and time when the

dimension is too large. For instance, a few thousands of columns

are feasible for running NMF, but hundreds of thousands are not.

In such cases, the most widely used preprocessing ideas that are

applied before running NMF discard part of the columns, using

Discovering Subgroups of Patients with Compact-NMF
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either a systematic method (for example, choosing one every 50

probes, or performing feature selection, etc) or a statistical

approach until the number of remaining columns becomes

computationally solvable. However, when one applies NMF after

any procedure that discards columns without a proper procedure

to keep some guarantees, they are in fact approximating the

reduced matrix in a non-optimal way, instead of approximating

the original larger matrix. We propose here a formulation called

Compact-NMF that directly approximates the original matrix X ,

still by solving the smaller NMF over Y . A detailed explanation of

the reasoning behind the method is given in the Supporting File

S1. The Compact-NMF method solves the problem:

argmin
W

ŶY
,H

ŶY

Xn

i~1

Xp

j~1

ŶY (i,j){Y (i,j) log ŶY (i,j)
� �

, ð2Þ

where ŶY~WŶY
:HŶY is being optimized, Y~XD, and

XD(i,j’)~
Xm

k~1

I (D(k)~j’)X (i,k), ð3Þ

with 1ƒj’ƒp and D : N m?N p being a partition of the m

columns of X into p bins. In words, it means that we sum columns

that are put together in the same bin j’, defined by the partition D.

Expression (3) is justified in more details in the Supporting File S1.

We define the partition D using the hamming distance between

columns, that is, D(j1)~D(j2) whenever X (:,j1):aX (:,j2), with

the operation :a (for a given non-negative integer a) defined as

the condition that the Hamming distance between the columns is

not superior to a:

V:aUZ
Xn

i~1

I (V (i)~U(i))ƒa,

with V ,U generic columns (each containing n values). Then we

Figure 1. Size of matrices to run NMF according to the Hamming distance to consider equivalent columns. The matrix produced by
using the DLBCL samples of Data set 1 as rows and their DNA copy number profiles as columns was subjected to the compaction procedure,
according to the similarity between columns based on Hamming distance. As higher the maximum allowed Hamming distance used to merge
columns as lower the number of resulting columns. Later, matrices of those dimensions are used as input for the NMF.
doi:10.1371/journal.pone.0079720.g001
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choose a that yields matrices of reasonable size according to our

computational resources. When dealing with categorical or

discrete features, for example, the presence or the absence of an

aberration, or the number of copies of DNA (which can only

assume a few distinct numbers), hamming distance is a natural

choice to measure the similarity between columns. Finally, even

a~0 would (possibly) produce great speed up, as equal columns

would be merged together, and the NMF over XD would solve the

very same problem as the original NMF over X (see the

Supporting File S1 for details). We call this particular version

Full-NMF, as it minimizes the divergence of the whole matrix, but

still runs NMF over the smallest possible lossless matrix. In our

experiments with real data sets, we perform a slightly more

aggressive reduction than lossless by allowing columns to differ in

at most 1% from each other in order to consider them equivalent.

The choice of 1% was taken empirically in order to obtain

matrices of about 104 columns, which is the size that computation

could be performed in a reasonable amount of time (about one day

for one NMF run over all ranks). In other words, we compact the

original matrix into a new (much smaller) matrix that represents

almost the same information. In the worst case, this corresponds to

losing the information of about 1% of the original data. Some loss

of data is inevitable if it is to run the method in feasible time, as this

is a very demanding computational task. Yet, this procedure loses

less information than other ideas mentioned in the beginning of

this section. In order to select which columns to put together, we

use a straightforward greedy algorithm that goes through the

columns and looks for those that have a small Hamming distance

among each other, but any other idea would equally suffice.

Mainly, the benefit of the proposed compaction is that it is optimal

towards minimizing the divergence function, so theoretically

preferred to other preprocessing ideas that reduce the matrix

dimension before running NMF. Its main limitation regards the

amount of similarity between columns of the original matrix: if all

columns are very different from each other, then the only way to

compact the matrix is to combine columns that are not necessarily

similar, which might decrease accuracy. This is not a particular

issue of this compaction but of any preprocessing idea to reduce

the matrix dimension. We empirically demonstrate the accuracy of

such ideas later on by comparing the different versions of NMF.

Choosing the Number of Clusters
An important problem in clustering is the choice of the number

of clusters r (also called rank in the case of NMF). Many criteria

have been proposed in the literature, such as the cophenetic

correlation coefficient (if one is using hierarchical clustering to put

NMF runs together) [19], the elbow of the Mean Squared Error

(MSE) and of the Area Under the Curve (AUC) [21], the Davies-

Bouldin index [22], the Gamma statistic [23], the Hubert-Levin

test [24], the intra-cluster scatter [25], Silhouette plots and

averages [26], among others. These criteria do not necessarily

agree with each other. One might simply pick the criterion of their

preference, but this is an arbitrary choice. Even if the criteria

agree, they are not designed to discriminate a cluster that might be

strongly different from the others in a given clustering of rank r,

but only to score the separation quality of the rank as a whole (that

is, all clusters against each other). In other words, if there is a single

cluster that considerably differs from the others, while the

remaining clusters are not well-separated, these criteria will

probably fail to identify it. Nevertheless, identifying a single well-

separated cluster within a rank is in general an important task,

sometimes more important than choosing the best rank itself.

Fortunately, most of these criteria are decomposable, that is, they

define an overall quality measure of a clustering result based on

the quality of each of its clusters, so they can be adapted to account

for such strong clusters. We propose the following criterion, which

is based on an intra-cluster similarity [26]:

Qr~
1

r

Xr

k~1

P
i,j:i=j I (Cr(i)~k ^ Cr(j)~k)Sr(i,j)P

i,j:i=j I (Cr(i)~k ^ Cr(j)~k)

 !
:

In words, for each cluster k in the rank r, the average similarity

between the elements of cluster k is computed (this is the internal

ratio in the formula), and finally we take the mean of these

averaged similarities. When using this criterion with NMF, the

value Sr(i,j) from the similarity matrices can be seen as the

probability of rows i and j to be grouped together, so the average

value within each cluster corresponds to the mean probability of

two elements (patients in our case) to be together. This measure is

permutation invariant. Moreover, Qr can easily be adapted to use,

instead of the mean, the median or the maximum values over the

clusters. For the purpose of identifying robust subgroups (even

when the overall rank is not robustly separated), we are especially

interested in the maximum value obtained by a subgroup, as this

particular subgroup might represent some important characteris-

tics of the population. We refer to this idea as maximum intra-cluster

similarity. It is a relevant criterion when one wants to compare the

performance of a given subgroup (in a given rank) against the

others (of the same rank). However, we emphasize that it does not

consider the inter-cluster similarity in its formula, thus it tends to

value subgroups that have very similar samples, regardless of other

samples (not in the same subgroup) that might be also similar to

them. All in all, we do not intend to propose Qr as a solution to the

selection of the number of clusters, but as another relevant

measure that may be suitable depending on what the analysis is

aiming at. So far, we believe that the most general way to address

the problem is to consider many measures that evaluate different

aspects (in the sense of what they measure) and choose the number

of clusters that best agrees with them altogether, including the just

defined intra-cluster similarities.

Assessing the Quality of the Factorization
In order to assess the quality of the factorization and the overall

results, we perform two verifications: (i) the number of NMF runs

with random initial guesses is checked to show that the fitting has

reached a stable good solution; (ii) the subgroups generated by

NMF are analyzed against two distinct features, namely disease

subtypes and survival outcome of patients. As described before,

many NMF runs are used to build the similarity matrix.

Obviously, the more runs the more precise is the similarity

matrix, because each run is expected to produce a good

factorization of the initial matrix. Given a certain number t of

runs and their outputs, one might check the amount of change in

the similarity matrix by running NMF once more, that is,

increasing t by one. To assess the need of additional runs, we take

subsets of the t runs and compute the mean squared error between

their similarity matrices and the one created by t runs. If the

difference is small, then the similarity matrix probably will not

change considerably if more NMF runs were included, meaning

that we have already reached a sufficient number of runs.

With the aim of checking the meaningfulness of the clustering

produced by NMF from genomic data, we verify whether it

correlates with some clinical or biological characteristics. When

these characteristics are categorical, such as disease types and

subtypes, we perform a Fisher exact test on the contingency table.

When correlating right-censored survival outcome, we estimate

Discovering Subgroups of Patients with Compact-NMF
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survival curves using the Kaplan-Meier estimator and perform log-

rank test and Peto & Peto’s generalization of the Wilcoxon test to

assess the differences among curves. Because no clinical informa-

tion is used during the factorization (NMF is applied as an

unsupervised method), there is no overfitting regarding this

information, and the tests show how strong is the association

between the NMF clustering of genomic data and the biological/

clinical data.

Results and Discussion

We show the performance of our procedure in the analysis of

two data sets of patients with diffuse large B-cell lymphoma

(DLBCL), one with breast cancer and one with medulloblastoma.

In the first data set (called Data set 1), the data of 166 DLBCL

cases[10] were analyzed together with additional 367 B-cell

neoplasia in order to achieve a more reliable clustering [11]. For

each sample, the CN and LOH data (approximately 250,000

probes, each interrogating a single SNP) were obtained with

Affymetrix GeneChip Human Mapping 250K NspI array, and

then preprocessed with CNAT 4.01 [11]. After that, the CN

profiles have been estimated with the modified Bayesian Piecewise

Regression (mBPCR) method [27]. Finally, the CN aberrations

were divided into two major categories corresponding to a

decrease or increase of number of copies, that is, CN ƒ1 and

CN §3. As a consequence, for each probe, the CN information

was separated into two different features (defined as columns in the

NMF formulation), each corresponding to one of the two major

categories. In the features representing CN ƒ1 (respectively CN

§3), we encoded the aberrations in the following way: normal is 0,

heterozygous loss (respectively gain) is 1, homozygous deletion

(respectively amplification) is 2. The choice of these numbers was

motivated by their clear counting interpretation in terms of

severity of aberrations, which fits with the use of the NMF under

the assumption that data are generated from a Poisson distribu-

tion. Moreover, the separation of the aberrations into two features

was necessary because the Poisson distribution is not symmetric, so

keeping all of them together in one feature (with the natural

encoding from 0 (homozygous deletion) to 4 (amplification)),

would imply a preference towards lesions of the type CN ƒ1,

Figure 2. Comparison of Compact-NMF and Full-NMF over the DLBCL data of Data set 1. The matrix produced by using the DLBCL
samples of Data set 1 as rows and their DNA copy number profiles as columns was used to test the distinct manners of running NMF. Full-NMF stands
for the procedure which runs over all data, while Compact-NMF stands for our procedure that merge similar columns. The graphs show the ratio
between the divergence (the objective function we minimize) of the Compact-NMF over the divergence of the Full-NMF, so higher values mean
greater error. Results are shown for different factorization ranks.
doi:10.1371/journal.pone.0079720.g002
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which we obviously do not want. The LOH profiles were

estimated with dChip [28] and copy-neutral LOH lesions (that

is, regions with LOH but normal CN) were denoted by 0.5 in the

feature representing CN ƒ1, due to the biological effect of this

type of lesion.

Regarding the 201 DLBCL patients of [12] (named Data set 2),

we obtained the aCGH data from the Progenetix database ([29];

www.progenetix.org). The data were already preprocessed,

segmented and discretized in normal CN, increased CN (CN §

3) and decreased CN (CN ƒ 1). Furthermore, the profiles of 200

HER2-amplified (HER2+) breast cancer patients [13] (Data set 3)

were obtained from the ArrayExpress database (E-GEOD-21259,

www.ebi.ac.uk/arrayexpress). The data were only already prepro-

cessed, thus, we segmented and discretized them in normal,

increased and decreased CN, by following the methods described

in [13]. Finally, the copy number SNP microarray data of 1087

patients affected by medulloblastoma [14] were obtained again

from the Progenetix database. The data were already prepro-

cessed, segmented and discretized as for Data set 2. In all of these

cases (Data sets 2, 3 and 4), and similarly to the analysis of Data set

1, for each probe, we separated the CN data into two features

corresponding to the two major categories of aberrations (CN § 3

and CN ƒ 1). For each feature, we encoded the normal state as 0

and the presence of the aberration as 1 (in this case, we did not

have information to distinguish between gain and amplification,

and between loss and homozygous deletion).

Compact-NMF versus Standard-NMF
In order to assess the relevance of Compact-NMF, we have

analyzed the divergence value (from Equation (1)) that Compact-

NMF and Standard-NMF achieved in comparison to Full-NMF

(the lossless NMF procedure representing the accuracy obtained

by running NMF without discarding any information). We have

worked with Data Set 1 for this purpose, as it is a large data set

(both in number of patients and probes) but still manageable in

order to perform many rounds of tests. Figure 1 shows the number

of columns (probes) that are obtained from Data set 1 when

applying the merging procedure for Compact-NMF, using the

similarity function with Hamming distances as defined in the

Section Methods. Notice that, for a fair comparison, the number

of remaining columns is the same for both Compact-NMF and

Standard-NMF (so Figure 1 shows a single curve), because we

employ the same similarity function to both cases in order to

decide the merging (or discarding in the case of Standard-NMF),

even though Compact-NMF and Standard-NMF handle differ-

ently how to treat them.

From a total of more than 500 thousand columns (twice 250

thousand probes because CN data have been separated into two

features as described previously), a lossless compaction (that is,

Figure 3. Comparison of Standard-NMF and Full-NMF over the DLBCL data of Data set 1. The matrix produced by using the DLBCL
samples of Data set 1 as rows and their DNA copy number profiles as columns was used to test the distinct manners of running NMF. Full-NMF stands
for the procedure which runs over all data, while Standard-NMF stands for the procedure that keeps only one of each group of similar columns. The
graphs show the ratio between the divergence (the objective function we minimize) of the Standard-NMF over the divergence of the Full-NMF, so
higher values mean greater error of Standard-NMF. Results are shown for different factorization ranks.
doi:10.1371/journal.pone.0079720.g003
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using a~0 with Compact-NMF) generated a matrix with around

33 thousand columns, as shown in the first point of the curve (the

same number of columns is achieved by Standard-NMF, but it is

not lossless). The figure shows the curve representing the number

of columns for different values of a, the maximum Hamming

distance for which columns are merged. The curve rapidly

decreases with the increase of the maximum allowed Hamming

distance, as expected. Merging columns with Hamming distance

at most 5 already produces a matrix with less than six thousand

columns (two orders of magnitude less than the original matrix),

which indicates the high amount of similar features/redundancies

in the data.

Using matrices according to these compactions, we have run

Compact-NMF and Standard-NMF. Figure 2 shows the accuracy

of Compact-NMF over Full-NMF, while Figure 3 shows the

accuracy of Standard-NMF over Full-NMF, in terms of the

achieved divergence with respect to the whole original matrix. The

curves represent the ratios between the divergence achieved by the

corresponding NMF and the divergence achieved by Full-NMF,

on matrices generated from Data set 1 by applying the different

maximum Hamming distances. To have a more accurate analysis,

these ratios are in fact averaged over one hundred multiple-start

runs, for each analyzed Hamming distance (variance has not been

plotted because it was negligible). We see that the accuracy of

Figure 4. Frequency plots of CN aberrations of DLBCL patients of Data set 1, according to the clustering results. The DLBCL samples of
Data set 1 were divided into three subgroups, according to the clustering results of rank 3. Clusters 1, 2 and 3 have 86, 54 and 26 cases, respectively.
The frequency of samples with gain in copy number is given in red, while the frequency of losses is in blue (the scale into negative numbers is just for
plotting purposes).
doi:10.1371/journal.pone.0079720.g004
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Compact-NMF was essentially the same as Full-NMF for ranks

between 2 and 12 and Hamming distances from 0 to 10. As a

worth note, Figure 2 seems to show that Compact-NMF can even

be slightly better than Full-NMF (see for instance rank 8 and

Hamming distance 8, where the curve is slightly below 1). This is

only possible because the internal optimization of NMF is in

essence local, so the compaction of some columns kept the same

quality of Full-NMF and even showed some slightly better

accuracy. Such case would be obviously impossible if the internal

optimization of NMF could be run to a global optimal solution

(which however cannot be guaranteed).

On the other hand, Standard-NMF has much worse divergence

in all cases. For example, the rank 3 curve starts with around 7%

worse accuracy than Full-NMF, even for Hamming distance zero

(remind that, in this case, Compact-NMF is lossless), and increases

to more than 12% for Hamming distance 10. Compact-NMF and

Standard-NMF have spent roughly the same amount of resources

in each corresponding test case, because they basically differ in the

way the matrices are built, but not in their dimensions. Finally,

Full-NMF has not been run over the whole original matrix but by

using Compact-NMF with Hamming distance zero (implying a

lossless compaction), otherwise Full-NMF would be impractical

(even with 33 thousand columns, which is the size for Compact-

NMF with zero Hamming distance, it is already a quite slow and

memory consuming procedure – it took around one day and

10GB of RAM in a modern desktop to perform a single

factorization).

NMF Runs and Rank Selection
As discussed in the previous section, Compact-NMF provides an

accurate way to run NMF over large matrices. In order to perform

cluster analysis over the four data sets, we employed the Compact-

NMF method to determine the similarity matrices of patients

within each data set, and subgroups were later obtained with

hierarchical clustering, as described in the Section Methods. We

selected Hamming distances that corresponded to approximately

1% of the information in a column, as this amount provided a

good compromise of accuracy and computational time. For

example, in Data Set 1, this amounts to merging probes with a

maximum Hamming distance a~5. Besides that, we only grouped

together probes that were not more than 500 probes distant from

each other, so as to keep all the genomic profile well represented.

For example, in Data set 1, the approximately 500 thousand

columns were reduced to around 6 thousand columns, so as to run

the experiment in a feasible time (less than half a day per

factorization; total time of less than one day to run all analyses

using a grid of computers) and available memory (4GB of RAM

per execution). In Data set 4, the approximately 3.6 million

Table 2. Association between the clusters and the molecular subtypes in the DLBCL data sets.

Cluster # N. samples N. samples with known subtype ABC GCB PMBCL

Data set 1

1 86 28 47% 53% –

2 54 21 33.3% 66.7% –

3 26 8 87.5% 12.5% –

Data set 2

1 86 80 68.8% 25% 6.2%

2 115 95 20% 53.7% 26.3%

This table shows the distribution of the DLBCL samples in each cluster (of rank 3 and 2, for Data set 1 and 2, respectively), with respect to the classification in molecular
subtypes.
doi:10.1371/journal.pone.0079720.t002

Figure 5. Prognostic significance of NMF-identified clusters among R-CHOP-21 treated DLBCL. Subfigures A and B show Kaplan-Meier
estimates of OS (left panel, log-rank test p-value = 0.063) and PFS (right panel, log-rank test p-value = 0.034) in R-CHOP-21 treated DLBCL patients
from Data set 1.
doi:10.1371/journal.pone.0079720.g005
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columns were reduced to about 12 thousand columns. The total

number of executions to achieve a good result was decided by

analyzing the stability curve of the resulting similarity matrix with

respect to the number of NMF executions, defined as the root

mean-squared difference between resulting matrices of two

consecutive number of executions (this was performed for each

possible rank). Starting from 200 NMF executions, there was no

significant difference in the resulting similarity matrix. We stopped

at 300 executions, with the mean-squared difference around 0:001
and standard deviation of 0:0007. The same procedure was

applied to the other data sets.

In order to select the appropriate clustering rank in each data

set, the two measures that are detailed in the Section Methods

have been used. For Data sets 1 and 4, they have selected rank 3,

while for Data sets 2 and 3 they have chosen rank 2. These choices

agree with most well-known quality measures in the literature

(results are shown in Table S1 of the File S1) [19–26]. As

illustration, Figure 4 shows the frequencies of CN aberrations of

the three subgroups in DLBCL patients of Data set 1 (for

simplicity, in the figure we considered CN ƒ1 as loss and CN §3
as gain). For each of the four analyzed data sets, the clustering

performance measures discussed earlier have clearly indicated the

rank to be used in further analyses (Table S1 in the File S1).

Association with Molecular Subtypes and Survival
Outcome

In order to show the reliability of the clustering results, we

decided to evaluate their correlation with clinical and biological

information of the patients. For the DLBCL data sets (Data sets 1

and 2), we considered the molecular subtypes by the cell of origin,

obtained by gene expression profiling (as described in [10,11]).

Indeed, seminal gene expression profiling studies have identified at

least two main subtypes of DLBCL: germinal center B-cell like

(GCB) and activated B-cell like (ABC), and demonstrated that

primary mediastinal B-cell lymphoma (PMBCL) is a separate

disease entity [30]. Importantly, the three groups have differences

in their clinical outcome and response to treatment [30]. The

correlation of the clustered subgroups with cell-of-origin subtypes

was tested using a Fisher exact test, according to the contingency

table in Table 2. In the Data set 1, the subtype information

(annotated only as ABC or GCB) was available for 57 out of 166

DLBCL cases. Even if reducing the sample size for the analysis,

the smaller number of samples with subtype information does not

constitute a problem, because the missingness was non-informa-

tive. We obtained p-value 0.031, indicating the existence of an

association between the clustering and the cell-of-origin subtypes.

From Table 2, we see that cluster 2 is particularly enriched in

GCB, while cluster 3 is enriched with the ABC subtype. One can

also note that cluster 1 has no predominant subtypes, which can be

explained by the fact that it contains many profiles with small

amount of aberrations (these samples might not even be true

DLBCLs, but we prefer to refrain ourselves about such discussion,

which would deviate from the goal of this paper). In the Data set 2,

the data about cell-of-origin subtypes were available for 175 out of

201 patients (again, missingness is non-informative) and we

obtained p-value 1:59:10{10 when testing the association between

the two clusters and the three cell-of-origin subtypes, and p-value

5:79:10{11 when testing the association of the two clusters with

ABC vs non-ABC. In fact, we can see in Table 2 that cluster 1 is

highly enriched by ABC patients. In order to better understand the

division of the patients obtained with the clustering, we evaluated

with the Fisher exact test the possible association between the

clusters and several CN lesions known to be correlated with

DLBCL cell-of-origin subtypes [12,30]. Due to the heterogeneity

of this disease, many of these aberrations are not present in the

majority of the cases of any subtype. Thus, depending on the

particular set of patients under examination, the subsets of lesions

selected to define the clusters may differ. Regarding the DLBCL

samples of Data set 1, cluster 3 (mostly enriched by ABC cases)

was characterized by a significant higher frequency of gains of

genes FOXP1 (p-value = 0.009) and BCL2 (p-value = 4:75:10{6),

which are associated with the ABC subtype. Instead, cluster 2

(mostly enriched by GCB cases) differed from the other clusters

specially in a higher presence of gains of genes REL (p-

value = 8:98:10{5), MDM2 (p-value = 7:55:10{6) and 9p24 (p-

value = 0.008), which are more associated with GCB and PMBCL

subtypes. Similar patterns were observed for Data set 2. Cluster 1

(mostly enriched by ABC cases) was significantly characterized by

a higher frequency of gains of genes FOXP1 (p-value = 4:04:10{7),

BCL2 (p-value = 2:74:10{12) and SPIB (p-value = 2:58:10{6), and

of deletions of gene PRDM1 (p-value = 0.003), which are all lesions

correlated with the ABC subtype. Instead, cluster 2 had a

significant higher proportion of gains of gene MDM2 (p-

value = 0.0006). Cluster 1 presented also a significant higher

frequency (16.3% vs. 7%) of deletions of gene PTEN (p-

value = 0.042), which is instead more associated with the GCB

subtype.

Table 3. Association between the clusters and the molecular
subtypes in the breast cancer data set.

Cluster # N. samples
N. samples with
known subtype ER+ ER2

1 117 116 45% 55%

2 83 82 29% 71%

This table shows the distribution of the breast cancer patients (Data set 3) in
each cluster of rank 2, with respect to the classification in molecular subtypes in
estrogen receptor positive (ER+) and negative (ER2).
doi:10.1371/journal.pone.0079720.t003

Table 4. Association between the clusters and the molecular subtypes in the medulloblastoma data set.

Cluster # N. samples N. samples with known subtype WNT SHH Group 3 Group 4

1 376 305 8.5% 49% 14% 28.5%

2 324 225 21.3% 42.2% 24.5% 12%

3 387 296 0.7% 7.1% 24% 68.2%

This table shows the distribution of the medulloblastoma patients (Data set 4) in each cluster of rank 3, with respect to the classification in the following molecular
subtypes: WNT, SHH, Group 3 and Group 4.
doi:10.1371/journal.pone.0079720.t004
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Since GCB and ABC subtypes respond differently to conven-

tional treatments and the ABC patients have a poorer outcome

[30], we also tested the association of the clustered subgroups with

the survival outcome. For the evaluation, we considered the subset

of Data set 1 with 124 DLBCL patients of [10], all treated with R-

CHOP-21 (rituximab, cyclophosphamide, doxorubicin, vincristine

and prednisone repeated every 21 days) in which both progression-

free survival (that is, time to first progression or death, PFS) and

overall survival (that is, time to death, OS) were available. The

Kaplan-Meier estimates of the survival functions showed a similar

survival behavior for clusters 1 and 2, while cluster 3, which is

associated with ABC DLBCL, had a poorer outcome (for both

PFS and OS). The curves are shown in Figure 5. Therefore, we

applied both log-rank test and the Peto & Peto’s generalization of

the Wilcoxon test to compare the differences between the survival

functions defined by cluster 3 and clusters 1 and 2 altogether. The

tests for PFS obtained p-values 0.034 and 0.029, respectively,

which suggest that patients in cluster 3 have a significant poorer

PFS outcome than the others. Similar result, but not anymore

significant, was achieved for OS, with p-values 0.063 and 0.051,

respectively. In Data set 2, the cluster significantly presenting a

profile compatible with ABC DLBCL showed a poorer overall

outcome too (even if not statistically significant at level 0.05).

Of clinical relevance, the identification of cases with ABC-like

and GCB-like profiles with related effects on the clinical outcome

suggests that genomic DNA profiling could be evaluated in

combination with immunohistochemistry, as a surrogate to predict

the DLBCL subtype by cell of origin, since gene expression

profiling is technically more demanding (also due to the higher

stability of DNA versus RNA) and immunohistochemistry

algorithms alone have not been so far fully satisfactory [31].

We also analogously analyzed the clustering results obtained

with Data set 3. In this case, we tested the association between the

clustering of the patients into the two groups and the status of the

estrogen receptor (ER), which was available in 198 out of 200

patients. We obtained p-value 0.0375 with the Fisher exact test

and, in fact, we can see in Table 3 that cluster 2 is enriched of ER-

negative patients. We also tested the association between the

clusters and the presence of some CN aberrations usually related

to the ER-positive status [32]. Cluster 2, mostly consisting of ER-

negative patients, was in fact characterized by a lower frequency of

the 6q22 loss (4.8% in cluster 2 vs. 24.8% in cluster 1, with p-

value = 1:6:10{4). As expected, the gains of the 17q21 and 17q23

regions were equally presented in the two groups, since all patients

had the amplification of gene HER2 (situated at cytoband 17q12).

Finally, we have applied Compact-NMF to patients of Data set

4, whose copy number data were obtained in [14] by the

Affymetrix Genome-Wide Human SNP Array 6.0 platform, thus

consisting of about 1.8 million probes each. Medulloblastoma is a

heterogeneous disease, and using gene expression it is possible to

identify four main molecular subtypes: WNT, Sonic hedgehog

(SHH), Group 3 and Group 4. This subtype information was

available in 826 out of 1087 patients (non-informative missing-

ness). The three clusters identified by Compact-NMF were

significantly associated with the four subtypes (p-value v 0.0001

by Fisher exact test, see Table 4). In particular, cluster 3 was highly

enriched with Group 4 patients, while clusters 1 and 2 were mainly

composed of SHH patients and a varying percentage of patients of

the other subtypes. For this particular disease, differences between

the subtypes in terms of patterns of CN aberrations are still a

matter of study, and some of the few established lesions are

common to more than one subtype [14,33]. For instance, gain of

chromosomes 7, 17q and 18q may characterize both Group 3 and

Group 4, and the presence of these lesions has been significantly

associated with our clustering subdivision (p-value v 0.0001 for all

of them), showing a higher frequency in cluster 3 (the one

consisting mainly of these two subtypes). Also, the gain of CDK6 is

usually associated with the Group 4 subtype and is more frequent

in cluster 3 (p-value v 0.0001). Instead, cluster 2 is enriched of

cases with gain of GLI2, 1q, MYC and loss of 5q (p-value v 0.0001

for all of them). These aberrations are all associated with the

Group 3 subtype, apart from the first of them, which has been

associated with the SHH subtype.

Conclusions

In this work we presented the Compact-NMF procedure, which

specially targets the factorization of high-dimensional data sets,

providing greater quality of clustering results when compared to

the direct application of NMF. Using real data, we showed that

Compact-NMF delivers results that are very similar to the full

application of NMF over the whole data set, which cannot be done

directly because of the impractical computational demand.

Compact-NMF can be used to discover subgroups of patients

with similar CN aberrations, which is an important task in the

study of some complex and heterogeneous diseases. Our

derivations were performed to work with discrete data, such as

CN data, but they might extend to continuous data. For instance,

if data are assumed to be generated from a Gaussian distribution,

the divergence function shall be appropriately changed and

Compact-NMF should be slightly modified, but the overall results

would probably continue to hold.

A vast number of quality measures exist to decide the number of

subgroups in an unsupervised clustering analysis. We have

introduced a new quality measure to decide the appropriate

number of subgroups based on the existence of robust subgroups,

rather than only looking to the overall measurement obtained for

each rank of the factorization (that is, for each number of

subgroups). This concept is particularly suitable when we want to

find biologically and/or clinically relevant subgroups that are

embedded within a clustering of low quality over all subgroups,

but high quality for a specific subgroup. We suggested that using

many distinct quality measures that target different aspects of the

clustering is the most appropriate way to choose the number of

subgroups.

Four data sets of real cases were analyzed and we have obtained

meaningful clustering results for all of them. In the two DLBCL

data sets, the identified subgroups were associated with the cell-of-

origin molecular subtypes, which have different clinical and

prognostic characteristics. The subgroups identified in the breast

cancer data set appeared to reflect the status of the estrogen

receptor, which is a helpful biomarker for treatment decision.

Finally, the subgroups found in the medulloblastoma data set were

associated with the four main molecular subtypes, whose possible

different targeted therapies are still under investigation. These

results indicate that Compact-NMF is able to produce biological

meaningful clusters in distinct scenarios.

Supporting Information

File S1 This file contains a detailed explanation of the
reasoning behind the Compact-NMF method, including
the mathematical justification for the expressions used
by it. The file also contains Table S1 with the results of well-

known clustering quality measures for the data sets studied in this

work.

(PDF)
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