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A coherent quantum annealer with Rydberg atoms
A.W. Glaetzle1,2,3,4,*, R.M.W. van Bijnen1,2,*, P. Zoller1,2 & W. Lechner1,2

There is a significant ongoing effort in realizing quantum annealing with different

physical platforms. The challenge is to achieve a fully programmable quantum device

featuring coherent adiabatic quantum dynamics. Here we show that combining the

well-developed quantum simulation toolbox for Rydberg atoms with the recently proposed

Lechner–Hauke–Zoller (LHZ) architecture allows one to build a prototype for a coherent

adiabatic quantum computer with all-to-all Ising interactions and, therefore, a platform for

quantum annealing. In LHZ an infinite-range spin-glass is mapped onto the low energy

subspace of a spin-1/2 lattice gauge model with quasi-local four-body parity constraints.

This spin model can be emulated in a natural way with Rubidium and Caesium atoms in a

bipartite optical lattice involving laser-dressed Rydberg–Rydberg interactions, which

are several orders of magnitude larger than the relevant decoherence rates. This makes

the exploration of coherent quantum enhanced optimization protocols accessible with

state-of-the-art atomic physics experiments.
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Q
uantum annealing is a quantum computing paradigm
with the aim to solve generic optimization problems1–4,
where the cost function corresponds to the energy of an

infinite-range Ising spin glass5. Finding the optimal solution of
the problem is thus equivalent to determining the ground state of
the spin glass. In quantum annealing, this task is accomplished by
adiabatic passage of a system of N spins in the instantaneous
ground state of a Hamiltonian (denoted logical spin model) of the
form

~Ht ¼ ~At

XN

n¼1

~an~sðnÞx þ ~Bt

XN

n¼1

~hn~sðnÞz þ
XN

nom

~Jmn~sðnÞz ~sðmÞz

" #
: ð1Þ

Here ~sfx;y;zg are Pauli spin operators, and time-dependent
scheduling functions ~At and ~Bt deform ~Ht from a trivial initial
Hamiltonian with ð~A0; ~B0Þ ¼ ð1; 0Þ and transverse local fields ~an,
into the spin glass Hamiltonian with ð~A1; ~B1Þ ¼ ð0; 1Þ, where
the optimization problem is encoded in local fields ~hn and
infinite–range interactions ~Jnm5.

Current quantum annealing implementations6 focus on the
adiabatic preparation of classical states with thermally assisted
adiabatic quantum protocols. Here, we propose a setup for
coherent annealing with the aim to open an experimental route to
adiabatic and non-adiabatic protocols. For example,
non-adiabatic and fully coherent sweeps allow for
counter-diabatic protocols7 with the potential to improve
scaling laws in quantum annealing considerably, as well as the
recently introduced hybrid annealing method8. While thermally
assisted annealing is suitable to prepare classical ground states or
mixtures, a fully coherent annealer can also be used to prepare
quantum superpositions from Hamiltonians with degenerate
ground states9. A coherent protocol with non-stoquastic10 driver
terms opens a promising route to highly efficient protocols for
optimization problems11.

A major challenge in implementing equation (1) is posed by
the required individually programmable long–range interactions
~Jmn, which is in contradiction to polynomially decaying interac-
tions in cold atoms and molecule setups. Adopting the LHZ
architecture12, the infinite-range spin glass is translated to a
lattice spin model, where new physical spins ŝðiÞz represent the

relative orientation of two logical spins ~sðnÞz ~sðmÞz of equation (1). If
two logical spins are aligned in parallel, that is, ""j i or ##j i, then
the corresponding physical spin is in state þj i, while if the
logical spins are aligned anti-parallel, that is, "#j i or #"j i, then
the physical spin is in state �j i. The major advantage of this
approach is that the interaction energy of a pair of logical spins
can now be implemented with a local field acting on a single
physical spin.

A general optimization problem in the LHZ architecture
becomes

Ĥt ¼ At

XK

i

aiŝðiÞx þBt

XK

i

JiŝðiÞz þCt

X
&

Ĥ&; ð2Þ

with new schedule functions At, Bt and Ct, and transverse fields ai.
Physical spins are arranged on a square lattice (see blue spheres in
Fig. 1), where the index i labels the entries of the matrix ~Jmn. The
number of physical spins K equals the number of connections in
the original model, which is quadratically larger than in the
original problem, for example, K¼N(N� 1)/2 for all-to-all
connected graphs. This enlarged state space contains states,
where collections of physical spins encode conflicting relative
orientations of the logical spins. These states can be locally
identified and energetically penalized by four-body constraints
H& at each plaquette & of the square lattice, such that at the end
of the sweep plaquettes either contain all an even12, or all an

odd13 number of spins in the �j i state, thus realising an even or
odd parity representation of equation (2). This ensures that the
final ground state of the LHZ Hamiltonian (2) corresponds
to the final ground state of the logical Hamiltonian (1), and thus
to the optimal solution of the optimization problem. Importantly,
the optimization problem is now encoded in local fields ~Jmn ! Ji,
corresponding to single-particle energy shifts. We show that
the above model for a programmable quantum annealer can be
emulated in an atomic Rydberg setup, which builds on the
remarkable recent advances towards realizing complex spin
models with cold atoms in lattices interacting via designed
Rydberg–Rydberg interactions14–18.

Results
Four-body parity constraints. The key challenge of implement-
ing Ĥ& is resolved with Rydberg atoms by combining the
odd parity representation13 of equation (2) with enhanced
Rydberg–Rydberg dressing19 schemes in a two-species
mixture20,21. In the odd parity representation, the sum of
the four spins at each plaquette is either 2 or � 2. We
introduce a single ancilla qubit t0:5 at each plaquette, which can
compensate the two associated energies and make odd parity
plaquette states degenerate ground states of the constraint
Hamiltonian Ĥ& ¼ ðD&=4ÞŜ2

&, with stabilizer operators Ŝ& ¼P
i2& ŝðiÞz þ 2t̂&z , and energy gap D&. This allows to implement

the four-body gauge constraints via appropriately designed two-
body Ising interactions between physical and ancilla qubits.

Here we consider a more general and robust form of Ĥ0:5,
consisting of all combinations of two-body interactions along the
edges and diagonals of the plaquette, as well as with the ancilla
spin (see Fig. 2(a)), of the form

Ĥ&

ðD&=2Þ ¼
X

i;j2edges

ŝðiÞz ŝðjÞz þb
X

i;j2diag:

ŝðiÞz ŝðjÞz þ at̂&z
X
i2&

ŝðiÞz ;

ð3Þ
where a and b are relative interaction strengths compared to spin
interactions along the plaquette edge. The energy spectrum E& of
a single plaquette Hamiltonian is shown in Fig. 2(b), as a function
of the parameters a and b. Importantly, there exists a parameter
regime 0o2�boao2þ b with 0obo1, where the odd parity
states are degenerate and have a lower energy than the even parity
states. As the precise value of the gap in Fig. 2 is not relevant, as
long as it exceeds all other energy scales, Ĥ& is quite robust
against small variations in interaction strengths, and the
parameters a, b need not be fine-tuned.

Interaction design. In the Rydberg quantum annealer illustrated
in Fig. 1, qubits are encoded in two long-lived hyperfine ground
states þ sj i, � sj i of 87Rb and � aj i, þ aj i of 133Cs, representing
physical and ancilla spins, respectively. These states are trapped in
a deep optical or magnetic square lattice with unity filling and
frozen motion22,23. Consecutive loading schemes of rubidium and
caesium have been successfully demonstrated21, which could be
combined with the recent remarkable progress in trapping atoms
in almost arbitrary 2D geometries using optical tweezers22,23.
Alternatively, it was suggested20 that rubidium and caesium
atoms are trapped in the same optical lattice created by counter-
propagating laser beams with wavelength lLE820 nm. This
particular wavelength is blue detuned for Cs atoms, which will be
trapped at the intensity minima, but red detuned for Rb atoms,
which will be trapped at the intensity maxima. Thus the atoms are
trapped in an alternating pattern, as illustrated in Fig. 1.

In particular, we choose the F ¼ 1;mF ¼ 1j i and
F ¼ 2;mF ¼ 2j i hyperfine states of the 52S1/2 ground state
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manifold of 87Rb and the F ¼ 4;mF ¼ 4j i and F ¼ 3;mF ¼ 3j i
hyperfine states of the 62S1/2 ground state manifold of 133Cs. The
first term of equation (2) can be realized with a coherent driving
field of amplitude ai coupling the þj i and �j i states for both
physical and ancilla atoms, written in a rotating frame. The
second term is obtained using single-particle AC-Stark shifts
from off-resonant laser coupling of the � sj i spin state to
low-lying ej i ¼ 52Pj i states using a digital micro-mirror device24.
The strenght of these fields can be easily varied as a function of
time, thus implementing the sweep coefficients At and Bt in
equation (2).

To implement the two-body interactions of equation (3) we
turn to the technique of Rydberg dressing25–28, where
off-resonant laser light weakly admixes some Rydberg character
into the ground state levels þ sj i; þ aj i, leading to an effective
interaction between them. For large laser detunings, the Rydberg
dressing acts as a perturbation and the dressed levels
predominantly retain their ground state character and remain
trapped29. Interactions between two spins i and j arise, as spatially

dependent light shifts U ðsÞþþ and U ðaÞþþ of the dressed pair states
þ sþ sj i and þ sþ aj i, respectively. These pair states are coupled

via two photon excitations to doubly excited Rydberg states.
Because of multipole–multipole interactions, the energies of the
doubly excited Rydberg states vary strongly as a function of the
relative position Rij of the atoms, and can exceed typical laser
detunings and coupling strengths even at micrometre distances.
This strongly affects the light shifts of the dressed pair ground
states, thus endowing them with an effective interaction.

Here, we propose to couple the þ sj i and þ aj i states of Rb
and Cs using single photon transitions to the mJ¼ � 1/2
magnetic sublevels of Rydberg P states16,17,30–34, with laser light
that is linearly polarized along the z axis and thus retains the
symmetry of the lattice geometry. Figure 3 shows the Rydberg

pair energies in the presence of multipole interactions, in the
vicinity of (a) the 2� 39P3=2

�� �
and (b) the 2� 45P3=2

�� �
Rydberg

states of 87Rb and (c) the mixed Cs : 31P1=2;Rb : 45P3=2

�� �
Rydberg states. The pair potentials are obtained from an exact
diagonalization calculation (Supplementary Note 2), including
interactions up to quadrupole–quadrupole and dipole–octupole
couplings. In the regime of strong interactions, the Rydberg states
are mixed by the multipole couplings, and each energy level
corresponds to a superposition of Rydberg states with a variety of
quantum numbers. The blue colouring in Fig. 3 represents the
overlap with the laser targeted mJ¼ � 1/2 states, and is therefore
indicative of the effective coupling strength to the pair ground
states. Although there are many energy levels in the regime of
interest, we see that at distances 40.5 mm only a handful of
potential curves is significantly coupled by the dressing laser,
while the vast majority of states (grey curves) is only coupled with
negligible strengths.

The particular Rydberg P pair states shown in Fig. 3(a–c)
feature pronounced potential wells which enable an enhanced
Rydberg dressing scheme19. For this purpose, we tune the
(two-photon) detuning of the dressing laser such that, in the
rotating frame, the energy of the ground pair states (green line in
Fig. 3(a,b) for U ðsÞþþ , and yellow line in panel (c)) is close to a
potential minimum. This gives rise to pronounced light shifts of
the pair ground states at the point of closest approach, as shown
in Fig. 3(d), while at the same time producing negligible light
shifts elsewhere. The particular Rydberg states in Fig. 3(a–c)
are chosen such that the dressed ground state potentials U ðsÞþþ
and U ðaÞþþ plotted in Fig. 3(d) show peaks at distances aL=

ffiffiffi
2
p

, aL

and
ffiffiffi
2
p

aL, commensurate with a square lattice geometry with
aL¼ 0.89 mm. Accidental crossings of the doubly excited Rydberg
levels with the pair ground state energy give rise to resonances in
the dressed state level shifts, but these either occur at distances
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Figure 1 | Quantum Annealing with Rydberg atoms. (a) The cost function of a general optimization problem in the form of a spin glass with infinite-range

interactions ~Jmn is encoded in the Lechner–Hauke–Zoller (LHZ) architecture in local fields Ji. (b) Rubidium (blue) and Caesium (red) atoms are trapped in a

square lattice geometry representing physical and ancilla spins, respectively, where the spin degree of freedom is encoded in two long-lived hyperfine

states þj i and �j i, illustrated in insets (c,d). The programmable local fields Ji are induced by AC stark shifts from laser coupling the � sj i state to

low-lying 5P states using a digital mirror device (DMD). The four-body gauge constraints at each plaquette (for example, the black dotted square) are

engineered using off-resonant laser coupling of the þ sj i; þ aj i states to Rydberg P-states j r1i, j r2i or j rCi and require only uniform illumination of the

system with ultraviolet laser light. G1, G2 and GC are the decay rates from the excited states.
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which are not present in the lattice geometry, or they are of
negligible width on behalf of a vanishing laser coupling strength
to the crossing states.

Rydberg annealer. The final spin–spin interactions, following
from the light shifts described in the previous Section, are given
by

Ĥint ¼
1
4

X
i;j

U ðsÞþþ ðRijÞŝðiÞz ŝðjÞz þU ðaÞþþ ðRijÞŝðiÞz t̂ðjÞz

h i
; ð4Þ

apart from additional single-particle corrections to the local fields.

The height of the two peaks of U ðsÞþþ at aL and
ffiffiffi
2
p

aL for Rb-Rb

(green line in Fig. 3(d)) and of U ðaÞþþ at aL=
ffiffiffi
2
p

for Rb–Cs (yellow
line in Fig. 3(d)) can be tuned by varying the Rabi frequencies and
detunings of the dressing laser. In particular, we choose
Rabi frequencies O1¼O2¼ 2p� 35 MHz, OC¼ 2p� 30 MHz
and detunings D1¼ � 2p� 618 MHz, D2¼ � 2p� 373 MHz and

DC¼ 2p� 175 MHz which leads to light-shifts of U ðsÞþþ ðaLÞ ¼
U ðsÞþþ ð

ffiffiffi
2
p

aLÞ ¼ � 2p�40 kHz for Rb–Rb and U ðaÞþþ ðaL=
ffiffiffi
2
p
Þ ¼

� 2p�80 kHz ¼ 2U ðsÞþþ ðaLÞ for Rb–Cs (Supplementary Note 2).
We note that an external magnetic field and small vertical offset
of the Cs atoms are used to obtain the final interaction strengths
and precisely align the potential extrema with plaquette distances
(Supplementary Note 2).

All interactions between atoms (spins and ancillas) that are not
part of a common plaquette are at least two orders of magnitude
smaller than the interactions within a plaquette. This allows us to

restrict the sum in equation (4) to pairs of atoms belonging to the
same plaquette, thus realizing Ĥ& of equation (3) for the optimal
parameters a¼ 2 and b¼ 1. For the above system parameters, we
obtain a final energy gap D&¼ � 2p� 20 kHz. Note that the
energy gap is negative, which can be easily accounted for by a sign
change of all local fields and making the annealer adiabatically
follow the maximum energy state, instead of the minimum.
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Figure 2 | Parity plaquette constraints. (a) Four-body interactions

between physical spins (blue) of the same plaquette are constructed from

two-body interactions between physical spins of strength 1 along the edge

of the plaquette (left), interactions of strength b along the diagonal

(middle) and additional interactions of strength a between an ancilla qubit

(red) located at the centre of each plaquette and the surrounding physical

qubits (right). (b) Eigenenergies E& of the Hamiltonian of equation (3), as a

function of the physical spin-ancilla interaction strength a for a particular

bt1. Odd parity eigenstates with the right (lower left inset) or wrong

(upper right inset) ancilla orientation have an energy ±2a. The maximally

polarized states with all four physical spins up or down (upper left inset)

have energy 4þ 2b � 4a, while the spin-ice states are independent of the

ancilla interaction a and have constant energies � 2b and �4þ 2b. The

thick blue line indicates the window of interest where the odd parity states

are the ground states of the plaquette Hamiltonian.
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Figure 3 | Enhanced Rydberg dressing. Rydberg-Rydberg interaction

energies E around the (a) 39P3=2; 39P3=2

�� �
and (b) 45P3=2;45P3=2

�� �
states

of 87Rb and c the mixed 31P1=2;45P3=2

�� �
Rydberg state of 133Cs and 87Rb, in

a magnetic field of Bz¼ 26 G along the z axis. The intensity of the blue

colouring indicates the overlap with the laser-targeted Rydberg states.

The most strongly coupled pair potentials feature distinct local minima,

which can be exploited in an enhanced Rydberg dressing scheme by

detuning the Rydberg dressing laser such that, in the rotating frame, the

pair ground state energies (green line for the þ sþ sj i state in a,b, and

yellow line for the þ sþ aj i state in (c) approach the minima of the

potential wells. This configuration leads to relatively large and strongly

peaked level shifts of the dressed ground states, as can be seen in d which

shows the resulting interaction potential Uþþ between two Rydberg-

dressed Rb–Cs (yellow) and Rb–Rb (green) ground state atoms. Drastically

enhanced peaked-like interactions appear at aL=
ffiffiffi
2
p

, aL and
ffiffiffi
2
p

aL, thereby

realizing the required plaquette interaction of equation (3) for a¼ 2 and

b¼ 1. Vertical dashed lines connect the extrema in the ground state level

shifts to the corresponding Rydberg potential minima in the excited state

manifold. Various resonances due to accidental degeneracies of the ground

states with weakly coupled excited states are visible as well, but these are

of negligible width and occur away from lattice sites.
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Because of the finite lifetime of the Rydberg states, the dressed
ground state interactions come at a cost of an effective
decoherence rate 1/t0 for each qubit. However, as there is only
a small Rydberg component admixed, the effective decay rate is
also only a correspondingly small fraction of the bare Rydberg
decay rate. Ultimately, the figure of merit for fully coherent
operation of the quantum annealer is the ratio of the attained
interaction strength versus the effective decay rate. In the
enhanced dressing scheme this ratio becomes particularly
favourable and is of the order of D&j jt0 � 103 for the system
parameters above (Supplementary Note 2).

Using the above potentials we demonstrate numerically the
feasibility of the Rydberg annealer for the minimal instance
(Fig. 1) with eight qubits and three ancillas. Figure 4 depicts the
time dependent spectrum in reduced units for an instance of
Hamiltonian equation (2) for random Ji=D&j jo1. The sweep
functions At, Bt and Ct are simple linear functions. Note, that the
efficiency can be considerably increased by adopting non-linear
sweep functions. In Fig. 4 all energies are given relative to the
ground state energy. The pronounced minimal gap is an order of
magnitude smaller than the gap in the final state. Figure 4(b)
shows the histogram of the success probability
P0 ¼ jhcðtÞjcgsij

2, defined as the overlap of the final state c
with the ground state cgs, averaged over Nr¼ 40 random
instances for different sweep times far below the decoherence
times tot0/K. For the fastest switching time D&j jt ¼ 50 the
average success probability is 75% and approaches unity for
slower sweeps.

Discussion
The proposed implementation of a quantum annealer with
ultracold Rydberg atoms in optical lattices provides a platform for
adiabatic quantum computing, featuring a highly controllable
environment to explore the many-body adiabatic passage, the role
of entanglement and effects of decoherence during the annealing
sweep. The large lifetimes of Rydberg dressed atoms enable
coherent quantum annealing as an alternative to the current
paradigm of quantum enhanced thermal annealing35. We
anticipate that due to the coherent evolution the number of
spins in future experiments can readily be extended well beyond
the minimal example presented here, by using shorter annealing
cycles with many repetitions36, or by employing counter-diabatic
driving schemes that could greatly increase the attained fidelities7.
Finally, our proposal allows to realize atomic quantum simulators
of arbitrary infinite-range Ising spin glass models (see, for
example, references in ref. 37), and the combination of multi-

color Rydberg-dressed interactions with two-species mixtures has
applications in realizing Z2 lattice gauge theories beyond the
present example38.

Data availability. Data that support the findings of this study are
available from the authors on reasonable request.
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