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Summary

Background Chemokine receptors play an important role in cell migration and wound repair.
In asthma, CCR3 and 7 are expressed by airway smooth muscle (ASM) and CCR7 has been
implicated in the development of ASM hyperplasia. The expression profile of other chemokine
receptors by ASM and their function needs to be further explored.
Objective We sought to investigate ASM chemokine receptor expression and function in asthma.
Methods ASM cells were derived from 17 subjects with asthma and 36 non-asthmatic
controls. ASM chemokine receptor expression was assessed by flow cytometry and
immunofluorescence. The function of chemokine receptors expressed by more than 10% of
ASM cells was investigated by intracellular calcium measurements, chemotaxis, wound
healing, proliferation and survival assays.
Results In addition to CCR3 and 7, CXCR1, 3 and 4 were highly expressed by ASM. These CXC
chemokine receptors were functional with an increase in intracellular calcium following
ligand activation and promotion of wound healing [CXCL10 (100 ng/mL) 34�2 cells/high-
powered field (hpf) vs. control 29�1; P = 0.03; n = 8]. Spontaneous wound healing was
inhibited by CXCR3 neutralizing antibody (mean difference 7�3 cells/hpf; P = 0.03; n = 3).
CXC chemokine receptor activation did not modulate ASM chemotaxis, proliferation or
survival. No differences in chemokine receptor expression or function were observed between
ASM cells derived from asthmatic or non-asthmatic donors.
Conclusions Our findings suggest that the chemokine receptors CXCR1, 3 and 4 modulate
some aspects of ASM function but their importance in asthma is uncertain.
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Introduction

Asthma is characterized by typical symptoms, airway
hyperresponsiveness (AHR) and variable airflow obstruc-
tion, which can become fixed in severe disease. In addi-
tion, there is associated airway inflammation, which is
usually eosinophilic, together with features of tissue
repair known as remodelling [1]. Airway remodelling in
asthma encompasses several structural changes in the
airway wall including reticular lamina and basement
membrane thickening and increased airway smooth mus-
cle (ASM) mass [2, 3]. This latter feature is due to a
combination of both ASM hyperplasia [4] and hypertro-

phy, which increases with disease severity and is asso-
ciated with fixed airflow obstruction [2, 5].

The cause of ASM hyperplasia in asthma is unknown and
is often attributed to increased proliferation. Indeed pro-
liferation is increased in ex vivo asthmatic ASM in some
studies [6, 7] but not others [8, 9], and several reports have
been unable to demonstrate increased ASM proliferation
in vivo [4, 5, 10]. An alternative explanation is that ASM or
its progenitors migrate to the ASM bundle. It is likely that
this recruitment will require a chemotactic signal arising
from the ASM. The C–C and C–X–C chemokines, in
particular, are attractive candidates as ASM chemoattrac-
tants. These ubiquitous, structurally related peptides med-
iate the chemotaxis of many cell types [11, 12]; play a key
role in wound repair [13] and in regulating cell survival and
proliferation [14–17]. In asthma, ASM contributes to the
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secretion of pro-inflammatory mediators and is an impor-
tant source of chemokines [18]. However, in contrast to the
extensive literature on ASM-derived chemokines there is a
paucity of data describing the expression and function of
ASM chemokine receptors. To date only CCR1, 3 and 7, and
CXCR1 and 2 have been reported, but the relative contribu-
tion of these and possibly other chemokine receptors to
ASM function in asthma is uncertain [19–23].

We hypothesized that: (i) ASM cells express a range of
chemokine receptors, (ii) the pattern of expression is
different in subjects with and without asthma, (iii) the
chemokine receptors expressed are functional; promote
ASM migration and repair, and modulate cell survival and
proliferation. To test our hypothesis, we examined che-
mokine receptor expression and function using a variety
of techniques in health and disease.

Materials and methods

Subjects

Asthmatic subjects and non-asthmatic controls were re-
cruited from Leicester, UK. Subjects with asthma had a
consistent history and objective evidence of asthma, as
indicated by one or more of the following: (1) methacho-
line AHR (PC20FEV1o8 mg/mL); (2) 415% improvement
in FEV1 15 min after administration of 200 mg of inhaled
salbutamol; or (3) 420% of maximum within-day ampli-
tude from twice daily peak expiratory flow measurements
over 14 days. The study was approved by the Leicester-
shire Ethics Committees and all patients gave their written
informed consent.

Airway smooth muscle and mast cell isolation and culture

Pure ASM bundles in bronchial biopsies obtained from
fibreoptic bronchoscopy (n = 21, 17 asthmatic subjects,
four non-asthmatic) and additional airways isolated from
lung resection (n = 32) were dissected free of surrounding
tissue. Primary ASM was cultured and characterized as
previously described [24]. The clinical characteristics of
the ASM donors are as shown in Table 1.

Human lung mast cells (HLMC) were isolated and
cultured from non-asthmatic lung (n = 3) as previously
described [25].

Chemokine receptor protein expression

Flow cytometry. ASM were stained with antibodies to the
following chemokine receptors: mouse mAb CCR1, 2, 3, 4,
5 and 6, CXCR1, 2, 3, 4, 5 and 6 (R&D Systems, Abingdon,
Oxfordshire, UK), and CCR7, 9, and 10 (gift from Millen-
ium, Cambridge, MA, USA); rabbit polyclonal antibodies
CCR8 (AMS Biotechnology, Abingdon, Oxfordshire, UK)

and CX3CR1 (Chemicon, Hampshire, UK). These were
indirectly labelled with fluorescein isothiocyanate (FITC),
and appropriate isotype controls were performed (mouse
mAb IgG1, IgG2a, IgG2b or mAb rabbit IgG, Dako, Stock-
port, UK), then analysed using single colour flow cytome-
try on a FACScan (BD Bioscience, Oxford, UK). Chemokine
receptors with 410% expression were further examined,
excluding CCR3 and 7 as we have previously described the
findings for these receptors [21, 22].

Immunofluorescence. ASM were grown to confluence on
chamber slides and serum deprived for 24 h. The cells were
labelled with the appropriate mAb or isotype control as
used for flow cytometry, and indirectly labelled with FITC.
Cells were counterstained with 40,60-diamidino-2 pheny-
lindole (DAPI, Sigma, Gillingham, Dorset, UK).

Chemokine receptor mRNA expression

ASM chemokine receptor mRNA expression was assessed
in ASM cells from asthmatic (n = 3) and non-asthmatic
donors (n = 3) following incubation with poly(inosinic:cy-
tidylic) acid (poly(I:C), Sigma) vs. poly(deoxyinosinic–
deoxycytidylic) acid (poly(dI:dC), Sigma) control at
2.5 ng/mL for 4 h and following incubation with super-
natants from IgE/anti-IgE activated HLMC (10�106 cells
pooled from three donors) for 6 and 24 h. The proportion
of HLMC : ASM cells was 1 : 4. RNA expression levels of
chemokine receptors extracted from the ASM was exam-
ined using the Human Genome U133A probe array (Gen-
eChip, Affymetrix, Santa Clara, CA, USA). RNA was
prepared and analysed as described [26]. Hybridized
biotinylated cRNA was stained with streptavidin–phy-
coerythrin (Molecular Probes, Eugene, OR, USA), scanned
with a HP Gene Array Scanner (Affymetrix), and data
analysed using the GeneChip Analysis Suite 4.0/Operating
System (Affymetrix) as described Bradding et al. [26].

Functional assessment of airway smooth muscle
chemokine receptors

Calcium imaging. Changes in cytosolic Ca21 concentra-
tion ([Ca21]i) in ASM cells in response to appropriate

Table 1. Clinical characteristics [mean (SEM)]

Asthma Controls

Number 17 36
Gender (M/F) 8/9 25/11
Age (years) 53 (4) 65 (3)
FEV1 (L) 2.3 (0.2) 2.1 (0.1)
FEV1% predicted 77 (6) 81 (5)
FEV1/FVC (%) 67 (3) 74 (3)

FEV1, forced expiratory volume in 1 s.
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ligands (100 ng/mL) and bradykinin (1 ng/mL) as a posi-
tive control were measured by ratiometric imaging on
FURA-2-loaded cells using Openlab software (Improvi-
sion, Coventry, UK). This was converted to [Ca21]i using a
calibration kit (Invitrogen Molecular Probes, Paisley,
Scotland, UK). Cells were considered to have responded
to a ligand if the increase in [Ca21]i exceeded the mean12
standard deviations of the baseline.

Wound-healing assay. ASM cells were seeded onto eight
rectangular well plates coated with 10 mg/mL fibronectin
at a density of 0.25�106 cells/well, allowed to adhere
overnight, then serum deprived in insulin/transferrin/
sodium selenite (ITS) (ITSx3; Sigma) media for 24 h
before experimentation. Wounds were introduced using
a sterile 10 mL pipette tip. The number of cells that
moved into the wound in the presence of chemokines
(25–300 ng/mL) or ITS control media in the presence
or absence of the appropriate neutralizing antibody or
isotype control (R&D) over 6 h were counted by a blinded
observer [22].

Chemotaxis assay. We used a validated chemotaxis assay
[22]. In brief, ASM cells were seeded as per the wound-
healing assay. Cells were removed by scraping between
the top of the well and a line predrawn across the width of
the well, on the underside of the plate, 22 mm from the
bottom of the well. Cell debris was removed by washing
with ITS media. Blotting paper (25 mm�6 mm; Sigma)
was then placed along the upper edge of the well, secured
in place using silicon grease. Chemokines (12.5–200 ng;
R&D) or ITS control media was impregnated onto blotting
paper from which it diffused into the media. The number
of cells that moved towards the resultant chemokine
concentration gradient were enumerated after 6 h by a
blinded observer.

Cell metabolic activity. ASM cell metabolic activity was
assessed using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-car-
boxymethoxyphenyl)-2-(4-sulfophenyl)-2H tetrazolium
inner salt (MTS) assay, according to the manufacturer’s
instructions (Promega, Southampton, UK), following in-
cubation with chemokines in 10% fetal bovine serum
(FBS) media (12.5–100 ng/mL) or ITS media (100 ng/mL)
or in the presence of appropriate neutralizing antibodies
and isotype controls (R&D) for 24 and 96 h.

Proliferation and survival. ASM proliferation was as-
sessed using the CellTrace CFSE Cell Proliferation Kit
according to the manufacturer’s instructions (Invitrogen
Molecular Probes). Cells treated with 50 mg/mL mitomycin
C (Sigma) for 3 h to mitotically arrest cells at the parent
population, before re-addition of 10% FBS media, were
cultured in parallel to cells exposed to 10% FBS med-
ia�100 ng/mL of chemokines for 96 h.

The percentage of apoptotic ASM cells exposed to 10%
FBS media�100 ng/mL of chemokines was identified by
DAPI staining of cell nuclei after 24 and 96 h, and by
staining with FITC-conjugated Annexin V (1 mL/200 mL
binding buffer, BD Bioscience)�propidium iodide (PI, 0.5
mg/mL, BD Bioscience) after 96 h, before analysis on a
FACScan (BD Bioscience).

Statistical analysis

Statistical analysis was performed using GraphPad Prism
4 (GraphPad software, San Diego, CA, USA). Data are
presented as mean�SEM. Data was analysed by ANOVA

across groups and t-tests between groups. Differences
were considered significant when Po0.05.

Results

Chemokine receptor expression by airway smooth muscle

We examined the expression of chemokine receptors by
ASM using flow cytometry. ASM expression was statisti-
cally significant compared with isotype control for CCR1,
3, 4, 6, 7, CXCR1, 3, 4 and 6, and was also 410% for CCR3,
7, CXCR1, 3 and 4 (Fig. 1a). We have previously reported
expression of CCR3 and 7 by ASM [21, 22]. Example flow
cytometry histograms for CXCR1, 3 and 4 are as shown in
Fig. 1b. The proportion of primary cultured ASM cells that
expressed cell surface CXCR1, 3 and 4 was not different
between those subjects with or without asthma (Fig. 1c).
Expression of these chemokine receptors was also con-
firmed by immunofluorescence (Fig. 1d).

There was no difference in ASM chemokine receptor
mRNA expression between subjects with and without
asthma, in unstimulated ASM cells or following incuba-
tion with poly(I:C) or HLMC supernatants (data not shown).

Airway smooth muscle CXCR1, 3 and 4 function

Calcium imaging. A transient mean increase in [Ca21]i
was seen following activation of ASM with recombinant
CXCL8, 9, 10, 11 or 12 (100 ng/mL) and bradykinin (1 ng/
mL) (see Table 2). An example trace following activation
with CXCL10 is as shown in Fig. 2a.

Wound healing. Recombinant CXCL8, 10 and 12 all
promoted wound healing in a concentration-dependent
manner. The chemokine-mediated wound healing was
significant for CXCL8 at 50 ng/mL (34.6�2.7 cells/high-
powered field (hpf) vs. 27.6�2.0 in control; P = 0.04;
n = 4), for CXCL10 at 100 ng/mL and 200 ng/mL
(33.8�1.7 and 35.0�2.2 cells/hpf vs. 29.3�1.2 in control;
Po0.05; n = 8), and for CXCL12 at 200 ng/mL
(40.6�2.5 cells/hpf vs. 34.3�1.6 in control; P = 0.03;
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n = 6). Data for the response to CXCL10 only is shown as
the response to other chemokines was similar (Fig. 2b).
The wound-healing response in the presence of ITS media

alone was significantly reduced in the presence
of a CXCR3 neutralizing antibody (mean difference
6.6�2.9 cells/hpf; P = 0.03; n = 3; Fig. 2b), but not CXCR1
or 4 neutralizing antibodies (data not shown). Platelet-
derived growth factor (PDGF) was included as a positive
control. PDGF-mediated wound healing was significantly
increased compared with control. For all experiments,
combined PDGF-mediated wound healing was 38.9�1.4
vs. control 32.8�1.4 cells/hpf (11 donors, mean difference
6.1�2.0 cells/hpf; P = 0.002).

Chemotaxis. Recombinant CXCL8, 10 or 12 (12.5–200 ng)
did not mediate dose-dependent ASM chemotaxis (n = 4,
P40.05). Data for CXCL12 only is shown as the response
to other chemokines was similar (Fig. 2c). As per the
wound-healing assays, PDGF was included as a positive
control for all chemotaxis assays and migration towards
PDGF was significantly increased compared with the
control [for all experiments combined PDGF-mediated
migration (22.2�1.1 cells/hpf [SEM]) vs. control
(19.1�0.8 cells/hpf [SEM]) (11 donors, mean difference
3.1�1.3 cells/hpf; P = 0.02)].

Metabolic activity. The absorbance by formazan seen at
490 nm in the MTS assay was increased in ASM after 96 h
in both 10% FBS media and ITS media compared to ASM
at 0 h. Recombinant CXCL8, 9, 10, 11 and 12 (12.5–100 ng/
mL) had no effect on the MTS assay in the presence of FBS
media (n = 6, P40.05), with no difference observed be-
tween ASM cells derived from non-asthmatic vs. asth-
matic donors. Data for CXCL11 only is shown as the
response to other chemokines was similar (Fig. 3a). In the
presence of ITS media, recombinant CXCL8, 9, 10, 11 and
12 (100 ng/mL, n = 4, P40.05) had no effect on the
absorbance measured at 490 nm (data not shown). Incu-
bation with neutralizing antibodies to CXCR1, 3 and 4 had
no effect on the MTS assay in the presence of FBS media
compared with appropriate isotype controls (n = 4,
P40.05, Fig. 3b).

Proliferation. Using the CellTrace CFSE Cell Proliferation
assay, cell proliferation was seen after 96 h in the presence
of 10% FBS media compared with MMC-treated cells
(mean decrease in fluorescence intensity 38.2�5.9,
Po0.01, n = 6, Figs 3c and d). This was unaffected by
incubation with CXCL8–12 (100 ng/mL) (n = 6; Fig. 3d),
with no difference observed between ASM cells derived

Fig. 1. Chemokine receptor expression by primary cultured airway
smooth muscle (ASM) cells. (a) Chemokine receptor expression by ASM
cells assessed by flow cytometry (n = 6–21, �Po0.05 compared with
appropriate isotype control). (b) CXCR1, 3 and 4 expression by ASM cells.
Fluorescent histograms (black lines), plotted with corresponding isotype
controls (grey line). (c) Percentage expression in asthmatic (n = 10) and
non-asthmatic (n = 11) ASM cells. (d) Immunofluorescence (nuclei
stained blue, chemokine receptor stained green; inset: isotype control).

Table 2. ASM intracellular calcium response to activation by CXCR1, 3 and 4 ligands (100 ng/mL)

CXCL8 CXCL9 CXCL10 CXCL11 CXCL12 Bradykinin

Cells (n) 25 19 26 23 26 51
Cells responding (%) 84 11 92 70 89 90
D[Ca21]i (nM) in responding cells 228�44 98�162 169�64 136�61 168�79 255�16

ASM, airway smooth muscle.
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from non-asthmatic vs. asthmatic donors (data not
shown).

Survival. Following DAPI staining of ASM nuclei under
control conditions, a low percentage of cells (6.8�3.3%)
showed nuclear condensation and fragmentation

Fig. 2. Chemokine receptor-mediated airway smooth muscle (ASM)
wound healing and chemotaxis. (a) Representative trace illustrating the
[Ca21]i elevation in ASM cells following addition of 100 ng/mL of
CXCL10 (indicated by arrow). Similar responses were observed for CXCL8
and 12. (b) Increased wound healing was observed for CXCL8, 10 and 12.
The ASM wound-healing response in the presence and absence of
CXCL10 and a CXCR3 neutralizing antibody (anti, 15 mg/mL) or isotype
control (IC) is shown (n = 3–8, �Po0.05 compared with ITS). (c) CXCL8,
10 and 12 did not promote chemotaxis. Example of ASM chemotaxis
towards CXCL12 is as shown with PDGF (10 ng) as a positive control
(n = 6, comparisons made to ITS alone). Data are presented as mean
SEM. ITS, insulin/transferrin/sodium selenite; PDGF, platelet-derived
growth factor.

Fig. 3. Activation of CXCR1, 3 or 4 has no effect on airway smooth
muscle (ASM) cell metabolic activity or proliferation. Cell metabolic
activity in the presence of (a) fetal bovine serum (FBS) media�CXCL11
(n = 6, data are presented as mean�SEM) and (b) CXCR1, 3 and 4
neutralizing antibodies and appropriate isotype controls (n = 4, data are
presented as mean�SEM), for 96 h. (c) A representative histogram
illustrating CFSE fluorescence in ASM cells incubated with 50mg/mL
MMC (black line) or FBS media�100 ng/mL CXCL9 for 96 h (dark grey
and light grey lines, respectively). (d) ASM cell proliferation was
observed after 96 h, but was unaffected by incubation with CXCL8–12
(100 ng/mL) (n = 6, data are presented as geometric mean�SEM).
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characteristic of apoptosis. The percentage of apoptotic
cells was unaffected by incubation with CXCL8–12
(100 ng/mL) for 24 or 96 h (P40.05, n = 6). In marked
contrast in the presence of staurosporine (STS, 1 mM, 20 h),

a positive control, 99.7�0.2% of ASM cells showed
nuclear morphology characteristic of cells undergoing
apoptosis (Po0.01; n = 6) (Figs 4a and b).

The above data were confirmed using annexin V/PI
staining of ASM cells. The percentage of annexin V1/PI�

(early apoptotic [27]) ASM cells was unaffected following
incubation with CXCL8–12 (100 ng/mL) for 96 h (P40.05,
n = 6), the same was seen for annexin V1/PI1 (late
apoptotic/necrotic [27]) ASM cells (P40.05, n = 6) (Figs
4c and d).

Using both DAPI and annexin V/PI staining, no differ-
ences were seen in chemokine receptor function between
cells derived from asthmatic subjects compared with non-
asthmatic controls (data not shown).

Discussion

We report here for the first time a comprehensive study of
chemokine receptor expression by ASM. CCR3, 7, CXCR1,
3 and 4 were highly expressed, but expression was not
different between asthmatics and controls. CXCR1, 3 and
4 were functional as evidenced by increased calcium
response to ligand activation and promotion of wound
healing. However, the effect of recombinant chemokines
on wound healing was small and only inhibited by CXCR3
blockade. We have reported previously the ASM expres-
sion and function of CCR3 and 7 [21, 22]. In contrast to
our earlier findings for CCR3 and 7, activation of CXCR1,
3 and 4 did not mediate ASM migration, but consistent
with the CC chemokine receptors, stimulation of the CXC
chemokine receptors did not affect ASM proliferation or
survival.

Our findings confirm that ASM express CCR1 [19], 3
[20, 21], 7 [22] and CXCR1 [23]. We now extend this panel
to include CCR4 and 6, CXCR3, 4 and 6. The chemokine
receptors that were highly expressed were CCR3, 7,
CXCR1, 3 and 4. Two previous studies have reported that
ASM express CCR3, and CCL11 a ligand of CCR3, has the
capacity to mediate ASM migration [20, 21]. ASM-derived
CCL19, a CCR7 ligand, also mediates ASM migration [22].
We report here for the first time that the CXC chemokine
receptors may play a role, albeit minor, in tissue repair in
response to injury as assessed by the wound-healing
assay. This effect was most marked for CXCR3 as inhibi-
tion of this receptor inhibited wound healing in the
presence and absence of exogenous chemokines, the latter
indicating the involvement of ASM-derived chemokines.
Interestingly, we have previously reported that CXCL10
was expressed preferentially by asthmatic ASM in bron-
chial biopsies and ex vivo cells compared with those from
healthy control subjects [24]. This supports the view that
the CXCL10/CXCR3 axis may play a role in wound repair
and maintaining the ASM-bundle integrity. During air-
way inflammation ASM injury could occur due to the
release of various mediators from inflammatory cells and

Fig. 4. Activation of CXCR1, 3 or 4 has no effect on airway smooth
muscle (ASM) cell survival. (a) Representative photographs showing
DAPI staining of nuclear morphology in the presence of fetal bovine
serum (FBS) media or 100 ng/mL CXCL8 for 96 h, or STS as a positive
control. (b) Percentage of apoptotic ASM cells following culture with
CXCL8–12 (100 ng/mL) or STS (1 mM). (c) Dot blots illustrating percen-
tage of annexin V1/PI� (lower right) and annexin V1/PI1 (upper right)
ASM cells using two-colour flow cytometry in the presence of FBS media
or 100 ng/mL CXCL8 after 96 h. (d) Percentage of annexin V1/PI� and
annexin V1/PI1 cells following culture with CXCL8–12 (100 ng/mL)
(n = 6, data are presented as mean�SEM).
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injured epithelial cells, which could result in the expres-
sion of various proteins, including chemokines, by ASM
[11, 28–30]. Use of the wound-healing assay to mimic the
ASM injury, which can occur during inflammation, is
validated by the fact that disruption of the ASM mono-
layer results in the release/expression of a number of
cytokines/chemokines that are also released/induced by
inflammatory cells [22, 24, 31, 32].

We were unable to demonstrate a chemotactic response
of ASM to the chemokines CXCL8–12, suggesting that
ASM CXC chemokine receptor expression does not con-
tribute significantly to ASM recruitment. One previous
report showed that CXCL8, a ligand for CXCR1, was
chemotactic for ASM [23]. It is possible that the discre-
pancy between our findings and this earlier work and the
chemotaxis vs. the wound-healing assays may reflect the
relative sensitivity of the assays. However, we have con-
sistently demonstrated that our chemotaxis assay identi-
fies a clear response to PDGF, CCL11 and CCL19, so if our
assay is too insensitive to detect a chemotactic response to
the CXC chemokines this effect is likely to be very small
and therefore of questionable biological importance.
Whether the chemokine receptors that were not highly
expressed by ASM play a role in ASM migration and
wound healing remains unknown and warrants further
investigation.

Chemokine receptors, including CXCR1, 3 and 4, have
been implicated in the regulation, both positive and
negative, of proliferation and survival in a number of cell
types [14, 16, 17]. Consequently they can play important
roles in processes such as haematopoeisis [15], inflamma-
tory disorders [17, 33] and the progression of cancer [14],
and provide potential therapeutic targets [34–36].
Whether chemokine receptors exert an effect on ASM
survival or proliferation is uncertain. To date we are only
aware of a single report examining this question [21] and
in this report CCR3 activation did not affect survival or
proliferation. We have extended this observation and
using a combination of techniques we have been unable
to find a role for CXCL8–12 in either up- or down-
regulating ASM proliferation or survival.

Increased ASM mass is a characteristic feature of
asthma. The predominant mechanisms driving this ASM
hyperplasia are unclear but will be due to increased
proliferation, recruitment or prolonged survival of ASM
cells either alone or in combination. Our current findings
do not support a role for CXCR1, 3 or 4 in ASM migration,
proliferation or survival. Earlier work has implicated
CCR3 in ASM migration [20, 21]. However, recombinant
and ASM-derived CCL11 was inactivated by b-tryptase
and co-culture with mast cells [21, 37] and as mast cells
are located within the ASM bundle in asthma [24, 38, 39]
this questions the importance of ASM CCR3 activation
in disease. In contrast to the other chemokine receptors,
we have reported that the CCR7/CCL19 axis is important

for the migration of ASM cells towards mast cells and
the ASM bundle [22]. Importantly, recent evidence also
suggests a potential role for ASM progenitor recruitment;
ASM progenitors (fibrocytes) are increased in number
in the ASM bundle in severe asthma and migration is in
part mediated by ASM-derived PDGF [40]. Therefore,
although ASM does express a wide panel of chemokine
receptors, their potential function in modulating ASM
hyperplasia appears to be limited, with CXCR3 and
CCR7 mediating wound repair and CCR7 promoting ASM
migration.

One potential criticism of our study is that we may have
underestimated the importance of chemokine receptor
function in ASM as we have not examined the effects
following priming with pro-inflammatory cytokines,
which play a role in disease, or the combined effects of
several chemokines. However, we have shown that ASM
chemokine receptor mRNA expression is not different
between ASM from asthmatic and non-asthmatic subjects
and is unaffected following incubation with poly(I:C)
or HLMC lysates which mimic viral infection and the
inflammatory milieu, respectively. Additionally, we have
previously examined the effect of mast cell–ASM interac-
tions on ASM migration and this has highlighted the
importance of the CCL19/CCR7 axis only [22]. We are
therefore confident that it is unlikely that we have over-
looked any biologically important effects of the other
chemokine receptors expressed by ASM in the pathogen-
esis of asthma.

In conclusion, we have described the panel of chemo-
kine receptors expressed by ASM from subjects with and
without asthma. CCR3, 7, CXCR1, 3 and 4 were the most
highly expressed receptors. Expression was not different
between health and disease. Further study of the function
of CXC chemokine receptors revealed that they are func-
tional and mediate wound repair but not migration,
proliferation or survival. This suggests that these chemo-
kine receptors may modulate some aspects of ASM func-
tion, but does not support a key role for CXCR1, 3 or 4 in
the development of ASM hyperplasia in asthma.
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