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Longitudinal saliva omics 
responses to immune perturbation: 
a case study
George I. Mias1,2,3,6*, Vikas Vikram Singh1,2,6, Lavida R. K. Rogers2,3,6, Shuyue Xue2,4, 
Minzhang Zheng1,2, Sergii Domanskyi4, Masamitsu Kanada2,5, Carlo Piermarocchi4 & Jin He1

Saliva omics has immense potential for non-invasive diagnostics, including monitoring very young 
or elderly populations, or individuals in remote locations. In this study, multiple saliva omics from an 
individual were monitored over three periods (100 timepoints) involving: (1) hourly sampling over 24 
h without intervention, (2) hourly sampling over 24 h including immune system activation using the 
standard 23-valent pneumococcal polysaccharide vaccine, (3) daily sampling for 33 days profiling the 
post-vaccination response. At each timepoint total saliva transcriptome and proteome, and small RNA 
from salivary extracellular vesicles were profiled, including mRNA, miRNA, piRNA and bacterial RNA. 
The two 24-h periods were used in a paired analysis to remove daily variation and reveal vaccination 
responses. Over 18,000 omics longitudinal series had statistically significant temporal trends 
compared to a healthy baseline. Various immune response and regulation pathways were activated 
following vaccination, including interferon and cytokine signaling, and MHC antigen presentation. 
Immune response timeframes were concordant with innate and adaptive immunity development, 
and coincided with vaccination and reported fever. Overall, mRNA results appeared more specific and 
sensitive (timewise) to vaccination compared to other omics. The results suggest saliva omics can be 
consistently assessed for non-invasive personalized monitoring and immune response diagnostics.

Precision medicine continues its rapid development toward clinical applications aided by new sequencing tech-
nology and computational capabilities. Major efforts have concentrated on evaluating disease risk from genomic 
information1,2, including direct to consumer platforms, like 23andMe3, as well as pharmacogenomic evaluations4. 
Implementing omics profiling in the clinic will require evaluation of patients over time. The utility of such 
profiling has been evaluated in individual monitoring pioneered in the integrative Personal Omics Profiling 
(iPOP) study5, and expanded recently to include profiling using electronic health devices6. The Pioneer study7 
also incorporated behavioral coaching to improve clinical biomarkers based on participants’ individual data. 
Additional developments have included utilizing host–microbiome data in insulin resistant individuals in a 
study of weight gain8 and in prediabetics9, investigating biological age10,11 as well as monitoring of astronauts in 
the recent NASA twin study12.

In this investigation we are extending integrative omics to evaluate the utility of such monitoring using saliva. 
There has been long-standing interest in saliva for non-invasive diagnostics and health monitoring, and saliva 
omics is an emerging field, with broad profiling that includes total saliva RNA and proteomes, as well as cell-free 
RNA identification, extracellular vesicle (EV) profiling, miRNAs as biomarkers, and salivary microbiomes13–25. 
Utilizing saliva for non-invasive monitoring is important in evaluating vulnerable populations, including infants, 
children, older adults and immunocompromised individuals. Additionally, saliva is important in evaluation 
of health in remote or underserved locations, when limited resources are available, where processing of blood 
samples might not be feasible, or a physician may not even be available. Such monitoring is also of particular 
interest for evaluating active personnel, including astronauts in deep space missions. The recent twin astronaut 
study evaluated multi-omics utility but also highlighted the logistic issues of using blood samples when these 
cannot be processed on-site12. The COVID-19 pandemic has additionally ignited interest in the use of saliva for 
rapid diagnostics, towards a rapid and minimally invasive diagnostic that can be used without risk to personnel 
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(possibly as a home-use kit), including profiling viral loads (from posterior oropharyngeal samples)26, and cur-
rent work continues to evaluate the sensitivity of saliva for practical implementations27–31.

We are carrying out a clinical trial monitoring individualized response to pneumococcal vaccination, and in 
a proof-of-principle case-study, we monitored individualized response to the standard 23-valent pneumococcal 
polysaccharide vaccination (PPSV23), in a generally healthy individual (Caucasian male, 38, has reported chronic 
sinusitis), and carried out integrative profiling on saliva pre- and post-vaccination with pneumococcal PPSV23 
vaccine. This is to our knowledge the most extensive saliva-focused omics dataset on an individual, covering 
104 timepoints over one year. The period covers a healthy period as well as monitoring of innate and adaptive 
immune responses following vaccination. Protein and RNA from saliva were produced over 100 timepoints 
over the course of 1 year, and comprehensive untargeted proteomics and RNA-sequencing were carried out for 
all samples. The saliva sampled timepoints included three periods of particular reference in this manuscript: 
(1) 24 h hourly sampling without intervention to assess a healthy hourly baseline, (2) 24 h hourly sampling that 
included vaccination with pneumococcal vaccine (PPSV23) to assess response to the vaccine, (3) daily sampling 
following the vaccination to assess potential innate and adaptive immune responses reflected in the molecular 
saliva components.

Our study reveals multiple changes in response to pneumococcal vaccination that are observable in saliva. 
The microscopic collective behavior of multiple omics reflects physiological changes associated with immune 
response, including fever, innate and adaptive responses profiled over multiple scales. This case study provides 
a resource for future saliva studies, towards more effective non-invasive diagnostics.

Results
Samples and assays.  We followed a single individual (m, 38, Caucasian), in general good health (has 
reported chronic sinusitis) over the span of a year. To observe whether the effects of perturbation can be profiled 
in saliva we carried out the profiling over 3 time frames. In the first 24 h time frame (TFH1) we established a 
baseline, obtaining a saliva sample from the subject hourly without perturbation over his standard routine. In 
the second 24 h time frame (TFH2), the subject was vaccinated with pneumococcal polysaccharide vaccine 
(PPSV23) within 3.5 h of waking up (at 10.30 am), while otherwise maintaining a similar routine as in the first 
period (including food intake and meal timing), and again saliva samples were taken hourly. We should note 
here that the subject reported fever ∼ 7.5 h post the vaccination (between timepoints at 5 and 6 pm), lasting for 
about 4 h (10 pm). The two time periods, TFH1 and TFH2, were treated as paired and combined in the analy-
sis below ( TF� ) to identify changes induced by the vaccination, by effectively removing daily normal routine 
effects for this individual. Additionally, in the third time frame (TFD) we monitored the subject daily for over 
a month, pre- and post-vaccination to identify potential immune changes over both innate and adaptive time 
frames (Fig. 1).

The daily samples were all taken at 8 am, to limit variability. Unstimulated saliva was collected both for 
downstream total RNA profiling, mass spectrometry proteomics, as well as for extraction of extracellular vesi-
cles which were profiled for various small RNA molecular species (both host and non-host)—see “Methods” for 
further sample details.

Figure 1.   Study overview. The study followed an individual over the span of a year, collecting 100+ saliva 
samples. In this manuscript we discuss three time frames of interest for saliva sampling: (1) TFH1, where 24 
hourly samples were taken, (2) TFH2, where 24 hourly samples were taken but the subject was also vaccinated 
with PPSV23 during this time frame, (3) TFD, where daily samples were taken. At each timepoint unstimulated 
saliva was collected (at a rate ∼ 500µ l/min ). 3 ml of saliva were stored directly and subsequently used to 
extract extracellular vesicle RNA, and proteins for mass spectrometry proteome profiling. Furthermore, 2 ml 
saliva was collected with Oragene (DNAGenotek) kits, which contain a stabilizer, and used to profile total 
saliva transcriptomics using RNA-sequencing; see “Methods” for further collection and processing details. The 
data were used to generated time series with MathIOmica, which revealed multiple trends corresponding to 
response to immunization with PPSV23.
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Analysis of total saliva and time series constructions.  Total saliva transcriptomics.  We profiled the 
transcriptome from total saliva at all timepoints using RNA-sequencing (RNA-seq) on extracted mRNA (150 
bp paired-end reads, stranded). We mapped the RNA-seq data using Kallisto32,33, and adjusted the values 
across timepoints using sleuth34(DESeq35 adjustment of Transcripts per Million[aTPM]), resulting in 67,319 
GENCODE36 annotation transcripts showing non-zero values for at least 3 timepoints (81,098 observed in at 
least 1 timepoint). We carried out downstream analysis in MathIOmica37, and selected the different timepoints 
for each of the three time frames. We tagged 0 aTPM values as Missing, filtered for noise (aTPM < 1), removed 
transcripts with more than 1/4 timepoints missing (i.e. reported as zero), and transcripts with constant values 
across all timepoints, to finally obtain 15,621, 7493, and 8155 transcript time series of aTPM values for TFH1, 
TFH2, and TFD respectively. All values were normalized to a reference—using the first timepoint for TFH1 and 
TFH2 and the pre-vaccination timepoint for TFD. We then calculated the TF� values by calculating the differ-
ences per transcript between TFH1 and TFH2 to obtain 7311 TF� time series (after removal of transcripts not 
overlapping across TFH1 and TFH2).

Total saliva proteomics.  We profiled the total saliva proteome, using isobaric tandem mass tags (TMT) for 
quantitation using LC-MS/MS (liquid chromatography followed by mass spectrometry). We identified 12,473 
proteins overall, with 4141 proteins (UniProt identifiers38) based on 2 unique peptides per protein, (11,005 pro-
teins based on 1 unique peptide per protein) overall across all 95 samples where proteomics was carried out. 
Relative protein intensities were computed against a common pooled sample comprising of multiple healthy 
(pre-vaccination) weekly samples that was used across all TMT sample pools. The data were thus combined, and 
normalized using a Box-Cox39 transformation to obtain normal distributions. To construct the time series, the 
data were filtered again for 2 unique peptides, having less than 1/4 missing values, and no constant time series to 
obtain 724, 956, 759, and 662 proteomics time series for TFH1, TFH2, TF� and TFD respectively. All timepoint 
intensities were defined with respect to the first timepoint intensity for the hourly series for each respective pro-
tein, and to the vaccination day for TFD.

Analysis of saliva extracellular vesicles.  In addition to considering total saliva, we also implemented 
consistent extraction of EVs from 1 ml saliva, using ExoQuick-TC (SBI) and an overnight precipitation to obtain 
EV pellets, from which we extracted RNA. We carried out nanoparticle tracking analysis (ZetaView, Particle 
Metrix) and recorded median concentrations of 6.2× 1010 particles/ml with EV peak of 114.5± 4 nm (Fig. 2).

The extracted EV RNA was sequenced (small RNA-sequencing) and the results were mapped to multiple 
databases using the exceRpt40 through http://genbo​ree.org41. These included GENCODE transcripts, PIWI 
interacting RNA (piRNA), micro RNA (miRNA), and exogenous genomes and exogenous ribosomal RNA 
(rRNA) genomes, and multiple other biotypes (Fig. 3). The various biotypes detected have different variabilities 
(Fig. 3a). The majority of detected reads are from exogenous genomes ( ∼ 106 ) and protein coding (GENCODE 
transcripts, ∼ 106 as well). The different biotypes per sample (Fig. 3b), for the TFH1, TFH2 and TFD time frames 
are indicative of a change in the relative distributions of the biotypes for the daily samples following the vacci-
nation (increase of exogenous genomes content). This may be partly attributed to sampling as all TFD samples 
were taken at 8 am, and the corresponding early samples for TFH1 and TFH2 are also similar in biotype relative 
abundances, but differ in later samples during each day.

In terms of the exogenous genomes, taxonomy trees were constructed per sample, and also for the aggregate 
samples using Genboree42 (Fig. 4a). The majority of abundances were assigned to bacteria (89.5%), and to Eukar-
yota (6.4%), where in terms of majority assignments at the next level, Bacteroidetes/Chlorobi group (28.5%), 

Figure 2.   Extracellular vesicle profiles. (a) The EV size was profiled using ZetaView (Particle Metrix) with 
median concentrations of 6.2× 1010 particles/ml with EV peak of 114.5± 4 nm . (b) EVs were imaged using 
transmission electron microscopy.

http://genboree.org
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27.2% were assigned to Proteobacteria and 17.1% to Firmicutes. Clustering of the overall top taxa by normalized 
read count was indicative of consistency across samples, with no significant sub-grouping at this level (Fig. 4b).

We again carried out downstream analysis in MathIOmica37, to create EV time series for mapped data for 
each of the three time frames (TFH1, TFH2, TFD), and the paired difference ( TF� ) for GENCODE mapped 
entities, host piRNA, host miRNA and exogenous rRNA and exogenous taxa. Time series were constructed for 
entities where 0 count values were tagged as Missing, counts < 1 were considered equivalent noise, transcripts 
with more than 1/4 timepoints missing were removed, and transcripts with constant values across all timepoints 
were also removed.

Temporal trends identified in saliva.  Time series classification.  The time series for all omics discussed 
below were classified into temporal trends using MathIOmica’s37 spectral methods that classify signals based 
on their autocorrelations, i.e. correlating a time signal with a delayed version of itself, where the delay is charac-
terized as a time lag (e.g. lag 1 corresponds to a delay of 1 time interval unit). The method uses a Lomb–Scargle 
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transformation43–45 to generate periodograms whose inverse Fourier transform can then produce a set of auto-
correlations at different lags for a given time series. Our classification successively identifies time series from the 
dataset that have statistically significant autocorrelations at particular time lags. In summary (see “Methods”), 
MathIOmica’s classification generates three sets of classes, strictly based on temporal behavior: (1) significant 
autocorrelations at various lags, (2) no autocorrelations, but with positive spikes (abnormally high signals above 
baselines present at single timepoints), (3) no autocorrelations, but negative spikes present (abnormally low sig-
nals below baseline at single timepoints). Within each class a two-tier classification into groups and subgroups 
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is carried out: this approach first separates within-class autocorrelation groups by clustering on autocorrela-
tion lags: signals that may have statistically significant autocorrelation for the class lag, but may still exhibit 
underlying different structure at other lags. Additionally, the second level clustering into subgroups is based on 
intensities, and allows us to separate signals that may have different phase (directionality/sense), which cannot 
be obtained from the periodograms.

The analysis was carried out for each of the omics individually and thousands of individual component trends 
were identified in the different classes and subgroupings therein. A brief summary is provided in Table 1. The 
entirety of visualizations and classification memberships are available in the online data files (ODFs), including 
heatmaps per omic per individual time frame trends, as well as all the code to generate these. We also combined 
all the classified information to obtain an integrated view of the various omics. Below we showcase parts of the 
mRNA analysis, as well the results of all the omics combined.

Saliva mRNA data analysis.  The trends shown in Fig. 5 correspond to the mRNA time series showing statisti-
cally significant time series trends (p value < 0.01 based on bootstrap simulations, n = 100,000) for each of the 
time frames, for Lag 1 classes.

Hourly results (TFH1, TFH2 and TF�).  The saliva mRNA showed variation across the day in the untreated 
TFH1 period. Overall 5781 time series of mRNA isoforms were found to have statistically significant trends, with 
1085 Lag 1, 6 Spike Max, 3597 Spike Min and 1093 other Lag class memberships. The Lag 1 group is shown in 
Fig. 5a, where the 1085 time series are further assigned into groups and subgroups based on clustering, accord-
ing to their different temporal behaviors as described above. In the Lag 1 classification in Fig. 5a there are two 
groups (G1 and G2). G1 has 3 subgroups (S), S1, S2 and S3 with 187, 522 and 373 time series in each respectively. 
G2 has 2 subgroups S1, S2 with two and one time series respectively. The groupings show substantial variation 
in these isoforms’ intensities during the day, with G1S1 showing gradual decreases, G1S2 peaking after morning 
until the evening, and G1S3 showing peaks later in the evening and night (the first timepoint is at 7 am).

In the analysis of the 24 h period spanning vaccination, TFH2, we should note that the subject reported fever 
∼ 7 h post vaccination, lasting for about 4.5 h. The classification identified 2707 isoform time series, with 481 in 
Lag 1, 2 in Spike Max, 1685 in Spike Min, and 539 in other Lag ( ≥ 2 ) classes. The clustering results for Lag 1 are 
also shown in Fig. 5b. The changes are indicative of the activation response due to the vaccination.

Table 1.   Time series counts and classifications across saliva omics for the various time frames.

Time frames mRNA protein EV GENCODE EV piRNA EV miRNA EV taxa EV rRNA taxa Total

A. TFH1

Total series 15,621 724 55,971 589 258 353 1015 74,531

Total classed 5781 671 27,684 434 113 409 280 35,372

Lag 1 1085 664 5328 145 84 224 125 7655

Spike Max 6 6 7767 72 7 0 1 7859

Spike Min 3597 0 11,328 23 14 148 18 15,128

Other lags 1093 1 3261 194 8 37 136 4730

B. TFH2

Total series 7493 956 55,499 312 142 218 711 65,331

Total classed 2707 252 21,981 224 63 328 184 25,739

Lag 1 481 164 8638 104 29 232 126 9774

Spike Max 2 1 5762 31 2 0 0 5798

Spike Min 1685 2 4926 19 24 69 10 6735

Other lags 539 85 2655 70 8 27 48 3432

C.TF�

Total series 7311 759 58,596 275 140 212 682 67,975

Total classed 1200 441 16,517 191 60 227 179 18,815

Lag 1 369 433 6490 91 56 169 95 7703

Spike Max 3 1 2947 6 0 0 0 2957

Spike Min 2 4 2427 0 0 2 0 2435

Other lags 826 3 4653 94 4 56 84 5720

D. TFD

Total series 8155 662 58,863 354 218 307 841 69,400

Total classed 3762 169 22,146 296 30 418 273 27,094

Lag 1 439 38 5567 92 1 180 126 6443

Spike Max 2 3 5271 18 0 0 0 5294

Spike Min 2248 1 5953 7 11 165 11 8396

Other lags 1073 127 5355 179 18 73 136 6961
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Given the variation observed in TFH1, we constructed the TFH� time series, using paired differences of 
intensities at each timepoint. The approach aimed to remove non-vaccination daily variation, and resulted in 
1200 time series with statistically significant trends. These included 369 Lag 1, 3 Spike Max, 2 Spike Min, and 
826 other Lags memberships. The Lag 1 results are shown in Fig. 5c. The subgroupings of 273 G1S1 isoform 
time series, show punctuated trends following vaccination and also coincidental with the reported fever, lasting 
about 4 h (timepoints). Furthermore, the G1S2 subgroup of 94 time series is indicative of up-regulation follow-
ing the vaccination. Additionally a distinct up-regulation of a subset of genes is observed to coincide with the 
reported fever (Fig. 5c).

We carried out Gene Ontology (GO)47 and Reactome Pathway enrichment analysis46,48 and identified mul-
tiple involved pathways. Results for TF� with False Discovery Rate, FDR < 3× 10−3 are shown in Table 2, and 
full results available in the ODFs. For the set of TF� genes showing immediate response post vaccination and 
response during the fever period (Class Lag 1, G1S1 Fig. 5c), results include (Table 2A (i)) endosomal/vacuolar 
pathway, antigen presentation (class 1 MHC) and processing, interferon gamma and alpha/beta signaling, neu-
trophil degranulation and ER-Phagosome pathways indicative of the immune activation. Furthermore, a set of 
genes that show continued up-regulation following the vaccination (Class Lag 1, G1S2 Fig. 5c) had enrichment 
of various immunological pathways including TCR signaling-related pathways, PD-1 signaling, also Interferon 
gamma signaling, Costimulation by the CD28 family, MHC class II antigen presentation, Cytokine Signaling in 
Immune system, and also Neutrophil degranulation pathways and general Immune System pathways.

Daily results (TFD).  We also monitored the daily changes post vaccination for 1 month. For the mRNA analy-
sis, 3762 time series had statistically significant trends. These included 439 Lag 1, 2 Spike Max, 2248 Spike Min, 
and 1073 other Lag memberships. The Lag 1 TFD results are shown in Fig. 5d. As shown in the figure, in the 
G1S1 subgroup 219 isoform time series show up-regulation, for about 11 days post vaccination, followed by 
a return to lower expression levels. The 218 time series in the G1S2 subgroup also show a later up-regulation 
response, after 11 days compared to G1S1, again following the vaccination, and lasting for the remainder of the 
daily observation period.

Reactome pathway and GO enrichment analysis also identified multiple pathways corresponding to each 
trend. Reactome results for TFD Lag 1 are shown in Table 2B(i)–(ii) for Lag 1 G1S1 and G1S2 subgroups (full 
results, including GO terms available in the ODFs). In the TFD Lag 1 G1S1 group, over-representation included 
Endosomal/Vacuolar pathway (16 genes) Interferon Signaling (29 genes), Cytokine Signaling in Immune sys-
tem (59 genes), Antigen Presentation (MHC I related, 14 genes) and inteleukin 4 and 13 signaling pathways 
(18 genes), and Immune System (97 genes). These are indicative of an early response within the first days after 

Figure 5.   Total saliva mRNA time series trends. The Lag 1 classification results from MathIOmica are 
shown for the different time frames. (a) During TFH1 the subject followed their normal routine. (b) During 
TFH2, the subject was vaccinated with PPSV23. For both TFH1 and TFH2 the first timepoint corresponds 
to 7 am. Vaccination took place at 10.30 am. The subject reported fever from 5.30 to 10 pm. (c) The TF� 
results correspond to paired differences between TFH2 and TF1 hourly points, to remove intra-day variation 
so as to focus on the perturbation vaccination responses. The plot is indicative of a response to the vaccine 
and a response that coincides with the reported fever. (d) For the daily data, TFD, the corresponding vaccine 
timepoint is Day 3. There is a direct response the days following the vaccination, and a different response in a 
subset of genes approximately a week following the vaccination, corresponding to immune system activation.
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Table 2.   Statistically significant reactome46 pathways identified ( FDR < 3× 10
−3 results shown).

Reactome pathway Matched IDs p value FDR

A. Total saliva mRNA: TF�

(i) Class: Lag 1, G1S1

 Endosomal/vacuolar pathway 15 1.6× 10
−9

1.6× 10
−6

 Antigen presentation: folding, assembly and peptide loading of class I MHC 16 4.0× 10
−9

2.0× 10
−6

 Interferon gamma signaling 22 1.8× 10
−7

5.9× 10
−5

 ER-Phagosome pathway 17 5.0× 10
−7

1.1× 10
−4

 Interferon alpha/beta signaling 18 5.7× 10
−7

1.1× 10
−4

 Antigen processing-cross presentation 17 2.7× 10
−6

4.4× 10
−4

 Insulin-like growth factor-2 mRNA binding proteins (IGF2BPs/IMPs/VICKZs) bind RNA 5 1.6× 10
−5

2.2× 10
−3

 Attenuation phase 8 1.8× 10
−5

2.2× 10
−3

 Interferon signaling 24 2.5× 10
−5

2.8× 10
−3

 Neutrophil degranulation 27 2.8× 10
−5

2.8× 10
−3

(ii) Class: Lag 1, G1S2

 Translocation of ZAP-70 to Immunological synapse 14 1.1× 10
−16

2.2× 10
−14

 Phosphorylation of CD3 and TCR zeta chains 14 1.1× 10
−16

2.2× 10
−14

 Generation of second messenger molecules 15 1.1× 10
−16

2.2× 10
−14

 PD-1 signaling 14 1.1× 10
−16

2.2× 10
−14

 Interferon gamma signaling 22 1.8× 10
−15

2.8× 10
−13

 Costimulation by the CD28 family 15 2.4× 10
−14

3.1× 10
−12

 TCR signaling 17 4.2× 10
−14

4.7× 10
−12

 Downstream TCR signaling 16 4.8× 10
−14

4.7× 10
−12

 Interferon signaling 23 1.7× 10
−12

1.5× 10
−10

 MHC class II antigen presentation 14 1.1× 10
−10

8.8× 10
−9

 Cytokine signaling in immune system 33 5.5× 10
−8

3.9× 10
−6

 Insulin-like growth factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 5 1.6× 10
−7

1.0× 10
−5

 Immune system 50 1.1× 10
−6 6.4× 10

−5

 Neutrophil degranulation 16 8.2× 10
−6

4.6× 10
−4

 Adaptive immune system 23 3.3× 10
−5

1.7× 10
−3

B. Total saliva mRNA: TFD

(i) Class: Lag 1, G1S1

 Endosomal/vacuolar pathway 16 4.1× 10
−11

3.6× 10
−8

 Interferon alpha/beta signaling 22 1.3× 10
−10

5.7× 10
−8

 Interferon signaling 29 8.9× 10
−9

2.6× 10
−6

 Cytokine signaling in immune system 59 2.8× 10
−9

4.6× 10
−6

 Interferon gamma signaling 22 3.1× 10
−8

5.3× 10
−6

 Antigen presentation: folding, assembly and peptide loading of class I MHC 14 5.4× 10
−8

7.8× 10
−6

 Insulin-like growth factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 6 4.3× 10
−7

4.8× 10
−5

 Immune system 97 4.4× 10
−7

4.8× 10
−5

 Antigen processing-cross presentation 17 6.7× 10
−7

6.5× 10
−5

 Interleukin-4 and interleukin-13 signaling 18 7.8× 10
−7

6.7× 10
−5

 ER-phagosome pathway 14 1.4× 10
−5

1.1× 10
−3

(ii) Class: Lag 1, G1S2

 Response of EIF2AK4 (GCN2) to amino acid deficiency 13 3.6× 10
−7

1.5× 10
−4

 Cytokine signaling in immune system 51 4.1× 10
−7

1.5× 10
−4

 Immune system 88 4.9× 10
−7

1.5× 10
−4

 ATF4 activates genes in response to endoplasmic reticulum stress 7 4.4× 10
−6

9.8× 10
−4

 Innate immune system 48 7.1× 10
−6

1.3× 10
−3

 PERK regulates gene expression 7 1.7× 10
−5

2.0× 10
−3

 CLEC7A/inflammasome pathway 4 1.8× 10
−5

2.0× 10
−3

 Interleukin-1 processing 4 1.8× 10
−5

2.0× 10
−3
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vaccination. For TFD Lag 1 G1S2 the results included general Immune System activation (88 genes), and also 
Cytokine Signaling in Immune System (51 genes) as pathways with statically significant over-representation and 
having the most genes identified.

Other omics.  In addition to the mRNA, each other set of omics was individualized analyzed to identify 
temporal trends, using the same classification method in MathIOmica as described above. This identified 
statistically significant trends for time series for different omics in the different time frames are shown in Table 1.

The different classes for the omics datasets were joined within each respective time frame, and data within 
each combined class were clustered together. The breakdown of identified trends included overall 35,372 time 
series for TFH1, 25,739 for TFH2, 18,815 for TF� , and 27,094 for TFD. In reference to the corresponding omics, 
the EV GENCODE identifiers accounted for more that 78% of the time series across all time frames. The results 
from Lag 1 are again shown in Fig. 6. In terms of temporal behavior, we notice again similar responses in the 
various time frames. In TFH1, we again see large temporal variation, with sets of time series being up-regulated 
during awake time and a subset during night time as shown in Fig. 6a. In TFH2 (Fig. 6b), the effects of the vac-
cination become apparent with up-regulated responses following the vaccination.

In the paired comparison TF� for Lag 1 in Fig. 6c, there is a major subgroup (G1S1) with 7700 time series. 
A subset of the omics show increases in intensity about 2–3 h post vaccination for a few hours, and addition-
ally again increase in intensity about 14 h post vaccination (after the fever time span). We note here that the 
response/time pattern appear lagging compared to the corresponding mRNA results in Fig. 5c, by approximately 
3 h, both following the immediate vaccine response, and also for the reported fever time span. The mRNA 
over-representation analysis was discussed above. Proteomics displayed similar trends to the mRNA. For Lag 
1 the Reactome analysis for the aggregate group/subgroup proteins resulted in multiple statistically significant 
pathways ( FDR < 0.01 ), where the top pathways (FDR < 5.9× 10−13 ) included Neutrophil degranulation (96 
entities identified), Innate Immune System (135 entities), Immune System (with 158 entities identified), and 
more (the top 20 ranked by smallest FDR are shown in Table 3A, FDR < 2.6× 10−7).

GO analysis for the EV GENCODE results for TF� Lag 1 were generic and included multiple cellular pro-
cesses. The results appear as non-specific to immune response, particularly as no over-representation in Reactome 
pathways was found to be statistically significant based on FDR. For EV miRNA the TF� Lag 1 showed statisti-
cally significant over-representation in GTP binding (p value < 4.6× 10−14 ), perinuclear region of cytoplasm (p 
value < 9.3× 10−14 ), nerve growth factor receptor signaling pathway (p alue < 1.5× 10−13 ), MAPK cascade (p 

Figure 6.   Combined saliva omics time series trends. The Lag 1 classification results from MathIOmica are 
shown for the different time frames. (a) During TFH1 the subject followed their normal routine. (b) During 
TFH2, the subject was vaccinated with PPSV23. For both TFH1 and TFH2 the first timepoint corresponds to 
7 am. Vaccination took place at 10.30 am. The subject reported fever from 5.30 to 10 pm. (c) The TF� results 
correspond to paired differences between TFH2 and TFH1 hourly points, to remove intra-day variation so as 
to focus on the perturbation vaccination responses. The plot is indicative of a phased response to the vaccine 
compared to the mRNA responses and a response that is again shifted compared to the reported fever (cf. 
Fig. 5c). (d) For the daily data, TFD, the corresponding vaccine timepoint is Day 3. There is a direct response the 
days following the vaccination. The EV omics dominate the information in this plot, compared to the mRNA in 
total saliva response (cf. Fig. 5d).
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value < 1.7× 10−13 ), MYD88 dependent toll-like receptor signaling pathway (p value < 1.7× 10−13 ), toll-like 
receptor signaling pathway (p value < 3.4× 10−13 ) and others.

Furthermore, in the TFD combined omics results, there are three main trends (Fig. 5d), with: (1) G1S1 
showing 1080 series showing a relative increase in intensity in the days after immunization, and decrease to 
pre-immunization levels after about 12 day. (2) G1S2 with 2071 series showing a decrease in intensity, with some 
return to pre-immunization levels after about one month. (3) G1S3 with 2974 components showing a set of time 
series that decrease in intensity, including some that return to post vaccination levels and some that remain 

Table 3.   Reactome pathway enrichment analysis results for protein Lag 1 aggregate results for TF� and TFD 
(top 20 pathways based on FDR for each time frame shown).

Reactome pathway Matched IDs p value FDR

A. Total saliva protein: TF�

Neutrophil degranulation 96 1.1× 10
−16

6.8× 10
−14

Innate immune system 135 1.1× 10
−16

6.8× 10
−14

Immune system 158 1.4× 10
−15

5.9× 10
−13

Signaling by ROBO receptors 34 1.2× 10
−13

3.8× 10
−11

Regulation of expression of SLITs and ROBOs 29 9.5× 10
−13

2.3× 10
−10

Eukaryotic translation elongation 22 1.7× 10
−12

3.5× 10
−10

Cellular responses to stress 58 3.3× 10
−12

5.7× 10
−10

Cellular responses to external stimuli 58 9.0× 10
−12

1.4× 10
−9

Peptide chain elongation 20 3.8× 10
−11

5.2× 10
−9

Nonsense-mediated decay (NMD) 22 6.8× 10
−11

7.5× 10
−9

Nonsense mediated decay (NMD) enhanced by the Exon Junction Complex (EJC) 22 6.8× 10
−11

7.5× 10
−9

Nonsense mediated decay (NMD) independent of the exon junction complex (EJC) 20 7.7× 10
−11

7.8× 10
−9

Eukaryotic translation termination 20 1.8× 10
−10

1.7× 10
−8

SRP-dependent cotranslational protein targeting to membrane 21 2.0× 10
−10

1.8× 10
−8

Viral mRNA translation 20 6.1× 10
−10

4.9× 10
−8

Formation of a pool of free 40S subunits 19 1.2× 10
−9

8.8× 10
−8

Platelet degranulation 21 2.4× 10
−9 1.7× 10

−7

Selenocysteine synthesis 19 3.2× 10
−9 2.2× 10

−7

Regulation of insulin-like growth factor (IGF) transport and uptake by insulin-like growth 
factor binding proteins (IGFBPs) 20 3.7× 10

−9 2.4× 10
−7

Response of EIF2AK4 (GCN2) to amino acid deficiency 19 4.3× 10
−9 2.6× 10

−7

B. Total saliva protein: TFD

Eukaryotic translation elongation 6 3.5× 10
−7

1.6× 10
−4

Nonsense-mediated decay (NMD) 6 1.1× 10
−6

1.6× 10
−4

Nonsense mediated decay (NMD) enhanced by the exon junction complex (EJC) 6 1.1× 10
−6

1.6× 10
−4

Signaling by ROBO receptors 7 3.2× 10
−6

2.9× 10
−4

Translation 8 3.2× 10
−6

2.9× 10
−4

Peptide chain elongation 5 6.9× 10
−6

4.7× 10
−4

Nonsense mediated decay (NMD) independent of the exon junction complex (EJC) 5 8.3× 10
−6

4.7× 10
−4

Regulation of expression of SLITs and ROBOs 6 1.0× 10
−5

4.7× 10
−4

Formation of a pool of free 40S subunits 5 1.1× 10
−5

4.7× 10
−4

Eukaryotic translation termination 5 1.1× 10
−5

4.7× 10
−4

Selenocysteine synthesis 5 1.4× 10
−5

4.9× 10
−4

Viral mRNA translation 5 1.5× 10
−5

4.9× 10
−4

Interleukin-6 signaling 3 1.5× 10
−5

4.9× 10
−4

Response of EIF2AK4 (GCN2) to amino acid deficiency 5 1.6× 10
−5

4.9× 10
−4

SRP-dependent cotranslational protein targeting to membrane 5 1.8× 10
−5

4.9× 10
−4

GTP hydrolysis and joining of the 60S ribosomal subunit 5 1.9× 10
−5

4.9× 10
−4

L13a-mediated translational silencing of ceruloplasmin expression 5 1.9× 10
−5

4.9× 10
−4

Eukaryotic translation initiation 5 2.8× 10
−5

6.4× 10
−4

Cap-dependent translation initiation 5 2.8× 10
−5

6.4× 10
−4

Interleukin 6-family signaling 3 8.0× 10
−5

1.8× 10
−3
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at lower levels, and a set that remains constant in intensity for the duration of the month’s measurements and 
increases towards the end of the monthly period. The mRNA TFD pathway analysis results were discussed above 
(Table 2B). Proteomics time series on the other hand displayed fewer pathway enrichment results as shown in 
Table 3B, including various Nonsense-Mediated Decay pathways, Translation related pathways, ROBO recep-
tor signaling and others. GO analysis for the EV GENCODE results for TFD Lag 1 included generic molecular 
functions such as protein binding and ATP binding and biological processes relating to protein phosphorylation 
(105 IDs, adjusted p value < 4.7× 10−5 ). Full enrichment analysis results for all classifications and omics are 
available in the ODFs on Zenodo.

To identify a set of time series omics that showed statistically significant temporal trends (adjusted p value 
< 0.01 ) in multiple time frames, we intersected the results for Lag 1 for the various omics for Lag 1 TF� and 
TFD time frames. The overlaps for the omics considered included 43 mRNA, 16 protein, 658 EV GENCODE, 
30 EV piRNA, 41 EV exogenous taxa, and 45 EV rRNA taxa time series (mRNA, protein, piRNA and exogenous 
taxa memberships are shown in Table 4). We carried out Reactome pathway analysis on the overlaps directly. For 
mRNA we observed over-representation in Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/
IMPs/VICKZs) bind RNA (FDR < 1.6× 10−6 ), CLEC7A/inflammasome pathway (FDR < 1.3× 10−3 ), Inter-
leukin-4 and Interleukin-13 signaling (FDR < 0.043)—the genes involved include CD44 and IL1B, that are 
associated with monocyte aggregation, and FCGR2B and SAMSN1 that are involved in negative regulation of 
B-cell proliferation. Other omics overlaps did not show statistically significant over-representations. We note that 
the most represented pathway for the protein overlaps is Immune System, with 7 entities (RAB27A, ATP6V1B2, 
PPP2R1A, VASP, B4GALT1, TLN1, VCL; p value < 0.024 , FDR < 0.072).

Table 4.   Overlaps of responding components between time frames TF� and TFD. * Official Gene Names: 
ADGRG3 adhesion G protein-coupled receptor G3, AIF1 allograft inflammatory factor 1, ARF4 ADP 
ribosylation factor 4, ATP6V1B2 ATPase H+ transporting V1 subunit B2, B2M beta-2-microglobulin, 
B4GALT1 beta-1,4-galactosyltransferase 1, CD44 CD44 molecule, CIR1 corepressor interacting with RBPJ, 
1, EDEM1 ER degradation enhancing alpha-mannosidase like protein 1, EEF1B2 eukaryotic translation 
elongation factor 1 beta 2, ETS2 ETS proto-oncogene 2, transcription factor, FBP1 fructose-bisphosphatase 1, 
FCGR2B Fc fragment of IgG receptor IIb, FOSL2 FOS like 2, AP-1 transcription factor subunit, GBP1 guanylate 
binding protein 1, GLUL glutamate-ammonia ligase, GRB2 growth factor receptor bound protein 2, H2AFY 
H2A histone family member Y, H3F3A H3 histone family member 3A, IL1B interleukin 1 beta, INHBA inhibin 
beta A subunit, ITGAM integrin subunit alpha M, KIF1C kinesin family member 1C, LAMC2 laminin subunit 
gamma 2, MLLT6 MLLT6, PHD finger domain containing, MMP12 matrix metallopeptidase 12, MYL12B 
myosin light chain 12B, NACA​ nascent polypeptide-associated complex alpha subunit, OLA1 Obg like ATPase 
1, PGS1 phosphatidylglycerophosphate synthase 1, PLEK pleckstrin, PLEKHM1P Pleckstrin Homology 
And RUN Domain Containing M1 Pseudogene 1 2 3 5, PPL periplakin, PPP2R1A protein phosphatase 2 
scaffold subunit Aalpha, PREX1 phosphatidylinositol-3,4,5-trisphosphate dependent Rac exchange factor 
1, PTPRC protein tyrosine phosphatase, receptor type C, RAB27A RAB27A, member RAS oncogene family, 
RGS2 regulator of G-protein signaling 2, RP11-463O12.5 to be experimentally confirmed, RP11-482G13.1 
novel transcript similar to family member with sequence similarity 157, RPL26 ribosomal protein L26, RPL6 
ribosomal protein L6, RTN3 reticulon 3, S100A8 S100 calcium binding protein A8, SAA2–SAA4 SAA2–SAA4 
readthrough, SAMSN1 SAM domain, SH3 domain and nuclear localization signals 1, SCARF1 scavenger 
receptor class F member 1, SERINC5 serine incorporator 5, SLC25A37 solute carrier family 25 member 37, 
TAGAP T-cell activation RhoGTPase activating protein, TLN1 talin 1, TMEM41A transmembrane protein 
41A, TMSB10 thymosin beta 10, TMSB4X thymosin beta 4, X-linked, TTN titin, VASP vasodilator-stimulated 
phosphoprotein, VCAN versican, VCL vinculin.

Omics component TF�∩TFD Lag 1 time series

mRNA total saliva*
ADGRG3, AIF1, B2M, CD44, CIR1, EDEM1, ETS2, FBP1, FCGR2B, FOSL2, GBP1, GLUL, GRB2, H3F3A, 
IL1B, INHBA, ITGAM, KIAA0226L, KIF1C, LAMC2, MLLT6, MMP12, MYL12B, PGS1, PLEK, PLEKHM1P, 
PPL, PREX1, PTPRC, RGS2, RP11-463O12.5, RP11-482G13.1, RPL26, S100A8, SAMSN1, SCARF1, SERINC5, 
SLC25A37, TAGAP, TMEM41A, TMSB10, TMSB4X, VCAN

Proteomics total saliva* ARF4, ATP6V1B2, B4GALT1, EEF1B2, H2AFY, NACA, OLA1, PPP2R1A, RAB27A, RPL6, RTN3, SAA2-SAA4, 
TLN1, TTN, VASP, VCL

EV piRNA

hsa_piR_000421, hsa_piR_000999, hsa_piR_001790, hsa_piR_003329, hsa_piR_004220, hsa_piR_004341, 
hsa_piR_004413, hsa_piR_006415, hsa_piR_007567, hsa_piR_007776, hsa_piR_008631, hsa_piR_009273, 
hsa_piR_009330, hsa_piR_009903, hsa_piR_010461, hsa_piR_010687, hsa_piR_011519, hsa_piR_012576, 
hsa_piR_012637, hsa_piR_013314, hsa_piR_014751, hsa_piR_016236, hsa_piR_016960, hsa_piR_017791, hsa_
piR_017961, hsa_piR_019030, hsa_piR_019478, hsa_piR_020493, hsa_piR_020727, hsa_piR_021487

EV exogenous taxa

Acyrthosiphon pisum, Aerococcaceae, Aggregatibacter actinomycetemcomitans, Aggregatibacter aphrophilus F0387, 
Aggregatibacter segnis ATCC 33393, Aggregatibacter sp. oral taxon 458 str. W10330, Atopobium, Ecdysozoa, Hae-
mophilus pittmaniae HK 85, Ixodes scapularis, Lachnospiraceae bacterium oral taxon 082 str. F0431, Leptotrichi-
aceae, Onchocerca volvulus, Phytophthora infestans, Porphyromonas sp. oral taxon 278 str. W7784, Prevotella mel-
aninogenica, Prevotella melaninogenica ATCC 25845, Prevotella oris C735, Prevotella oulorum F0390, Prevotella 
sp. oral taxon 472 str. F0295, Prevotella veroralis F0319, Rhizobium, Streptococcaceae, Streptococcus gordonii str. 
Challis substr. CH1, Streptococcus mitis 17/34, Streptococcus mitis 18/56, Streptococcus mitis 29/42, Streptococcus 
mitis ATCC 6249, Streptococcus mitis SK321, Streptococcus mitis SK564, Streptococcus mitis SK569, Streptococcus 
mitis SK575, Streptococcus pneumoniae, Streptococcus pneumoniae GA47179, Streptococcus pseudopneumoniae, 
Streptococcus sp. M334, Strigamia maritima, Triticeae, unclassified Lachnospiraceae, Veillonella sp. 3_1_44, Veil-
lonella sp. oral taxon 158 str. F0412
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Finally, for each class of the combined classified data, we constructed putative interaction networks based 
on the Euclidean distance between the class members. Here, we assumed that the omics showing similar trends 
over time within each class are likely to be associated to each other (even though interactions may be indirect). 
The group/subgroup annotations within each class were also included. The constructed networks are available 
as a resource in the ODFs, including .json files, and may be used to explore and validate possible interactions in 
saliva data (see online Methods).

Discussion
We have presented here our findings from a case study of the utility of saliva towards personalized health moni-
toring. Following vaccination of a subject with pneumococcal vaccine (PPSV23) we were able to detect distinct 
signatures in various saliva omics. We were able to profile more than 65,000 components in various time frames 
over time, and identify 18,000+ time series that had statistically significant temporal trends. The time series 
trends observed were indicative of immune response, which coincided in timing with the vaccination, and fever 
reported by our subject. The time frames of immune responses observed are concordant with our expectations 
of innate and adaptive immunity development, as seen both in the immediate hourly as well as the short- and 
long-term daily responses observed. Various pathways were activated, involved in immune response and regula-
tion, including interferon signaling and MHC antigen presentation. The immune activation spanned an initial 
response within hours, as well as long term response extending for over a month.

Our results suggest that saliva omics can be consistently assessed for personalized monitoring. While multiple 
omics provide responses post-vaccination as discussed for the TF� and TFD time frames, mRNA results appear 
more specific and sensitive (timewise) to the vaccination. EV response, particularly transcript-level (GENCODE), 
though very sensitive and responsive does not yield as specific results as the mRNA from total saliva in a non-
targeted approach. In fact many EV mRNAs show statistically significant temporal responses, which is likely due 
to increased EV release from various cells, but not specific in terms of reflecting the functional responses in the 
cells of origin. EV results also suggest a lagged response by a few hours compared to the mRNA observations, 
which also suggests that the mRNA measurements can potentially provide more timely data for practical health 
monitoring. Additional omics showed responses concordant with the mRNA responses, including miRNA, 
piRNA and exogenous taxa quantitations, however these need further validation, particularly as our knowl-
edgebase of pathway implications and functional important of such omics is still under development. Some of 
the omics time series are found in responses across hourly and daily samplings (Table 4), and such sets of omics 
can be targeted for non-invasive health monitoring. The processing of samples for mRNA involved the use of 
standardized kits that can be used by subjects remotely, and can facilitate storage of samples for about a month 
without refrigeration. Additionally, the mRNA sequencing preparation and result analysis are considerably faster 
than the other omics processing, so our recommendation based on our findings is to utilize similar approaches 
for mRNA broad profiling, while using targeted protein/EV-content assays. These omics must be coupled with 
standard physiological and molecular measures already utilized in the clinic for a complete assessment of health 
status. While our results are based on PPSV23 activation, we anticipate that they can be extended to additional 
vaccine and immune disease profiling, particularly with the goal of discovering immune-specific signatures for 
each affliction and/or intervention.

Previous work on saliva omics has focused on the evaluation of omics as biomarkers, with less emphasis on 
temporal changes, including proteomic and transcriptomic evaluations, EV characterization, miRNA profiling 
and microbiome mapping13–21,23–25,49,50. With respect to the saliva proteome, Denny et al. first identified 1116 
proteins51 using multidimensional separation. Yan et al. identified 1939 proteins from whole and ductal saliva 
compiled from multiple MS studies, in a comparison of saliva and plasma52. The coupling of hexapeptide librar-
ies for dynamic range compression (DRC) with three-dimensional (3D) peptide fractionation by Bandhakavi 
et al., resulted in further protein identifications (2340 proteins)53. Such efforts were substantially improved by 
Grassl et al. who used deep profiling by mass spectrometry to identify more than 3700 human proteins54. Their 
study also assessed intra-day changes for waking and postprandial collection times, identifying enrichment of 
proteins associated with ‘antibiotic’ keywords in waking versus postprandial collection times. Our study sig-
nificantly extends the temporal profiling aspect to hourly 24 h period monitoring (for 4141 proteins—UniProt 
IDs, with > 2 unique peptides used per identification), in addition to daily data for a month. We also observed 
substantial variability during the course of a day. To account for this daily variation, we used a paired two 24 
h period comparison to elucidate changes particular to the vaccination (essentially subtracting normal hourly 
variation effects), and also limited collection to a single morning timepoint in our daily collection. Other studies 
of the saliva proteome have included the integration of transcriptomics with antibody-based proteomics55–57 to 
assess the salivary gland content (Human Protein Atlas), suggesting up to 15,218 proteins are expressed in the 
gland itself, though these studies did not dynamically profile secreted saliva.

Salivary proteomics (at various scales) has been used in prospective clinical applications ranging from peri-
odontitis, oral and other cancers, diabetes, Sjogren’s syndrome, and to assess viral proteins in Zika virus, Dengue 
virus, HBV and HCV (review by Katsani and Sakellari58). Saliva immunoglobulins levels in COVID-19 were also 
evaluated by Isho et al.59. With respect to pneumonia, Klein Kremer et al. measured overall increases in aggregate 
salivary protein levels in children diagnosed with Lobar pneumonia60. Recently Tsai et al. reported immunoassay 
results on 9 cytokines and C-reactive protein (CRP), and detected higher levels of CRP and IL-6 in children with 
pneumonia61. In our MS-based study we did not detect CRP/IL-6 changes directly, but we identified multiple 
proteins associated with immune pathways (Table 3), including innate immune responses (158 matched IDs), 
and overall 441 proteins in hourly samples and 169 proteins in daily samples showing temporal changes post 
vaccination. Though the potential for longitudinal monitoring of vaccine response using inflammatory saliva 
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markers has been reviewed62, MS-based proteomics evaluation of longitudinal saliva responses in pneumonia 
and PPSV23 vaccination have not been carried out prior to our study, to the best of our knowledge.

In addition to the coupled transcriptome–proteome evaluations (Human Protein Atlas, see above), focused 
saliva transcriptomics have also been previously evaluated, including through expression microarray analysis15, 
and high throughput sequencing by Spielman et al. who detected the expression of > 4000 coding and noncod-
ing genes17. In our RNA-seq results we detected 67,319 GENCODE annotation transcripts showing non-zero 
values for at least 3 timepoints (81,098 observed in at least 1 timepoint), with more than 7493 transcripts detected 
consistently over 3/4 of the hourly observations, and 8155 over 3/4 of the daily observations.

We have also profiled the RNA of salivary EVs. There has been expansive interest in the diverse RNA con-
tent of EVs63, including by the Extracellular RNA Communication (ERC) program64, for applications in liquid 
biopsies, as markers in disease states and for cell-free precision medicine diagnostics. EVs are being evaluated as 
mediators of intercellular communication through molecular transport, offer stable containment of RNA, and 
can easily be collected for potential diagnostics63. EVs have been detected and may move across biofluids, with 
RNAs from bacteria, fungi, and other species having been reported in human plasma and saliva65–68. Ogawa et al. 
evaluated saliva EV transcriptomes by sequencing69, identifying 304 miRNA sequences and 186 non-redundant 
piRNA sequences across two exosome fractions. Bahn et al. evaluated small RNA in cell free saliva70, reporting 
127–418 miRNAs, and 32–109 piRNAs with more than 1 RPM detected, and showed overlaps of their miRNA 
findings in exosomes. Human salivary EVs were also characterized by sequencing by Li et al.71, who reported 
5649–6813 genes, 482–696 miRNAs, and 190–214 other small RNAs in various library constructions (at at least 1 
Read Per Kilobase of transcript, per Million mapped reads, RPKM). Yeri et al. characterized multiple EV profiles 
in biofluids, including saliva72, which are available with multiple samples as part of the exRNA Atlas68, processing 
an average 16 ×106 reads and mapping across various biotypes [with ∼ 34% mapping to hg19, 0.02% to piRNA, 
1.65% to mature miRNA, including the identification of 336 miRNAs (detected in at least one out of 46 samples, 
with > 10 counts; 149 miRNAs in at least 50% of the study samples), and a large amount of reads not mapping 
to human transcriptome]. Godoy et al. compared EV RNA contents across multiple biofluids, including parotid 
saliva and submandibular and sublingual saliva67, and also detected low mapping to human transcriptome (as 
expected given the microbiome content in saliva), and observed 395+ miRNA ( ≥ 10 reads per million)and < 
0.01% piRNA in their saliva samples, while also detecting multiple maps to GENCODE annotations, and other 
small RNA subtypes. In our mapping, we adopted the same mapping strategy as the exRNA Atlas, implemented 
by Rozowsky et al.40, with similar multi-biotype mapping results, including to non-human exogenous taxa, and 
our time series included 140–258 miRNAs, 275–589 piRNAs, and 55,499–58,863 GENCODE transcripts that 
could consistently be evaluated over time (3/4 of the samples in each time frame).

While the content of saliva EVs has been explored, their longitudinal changes, and in particular in response 
to pneumococcal vaccination (or pneucoccal disease) had not been investigated prior to our study. Additionally, 
the microbiome EV content is an area of new study, that has not been fully evaluated for its effects in pneumono-
coccal disease, and there is considerable interest in bacterial EVs (BEVs), for example in the context of cancer73. 
Our goal in this study was to focus on the host, so we did not evaluate the oral microbiome, beyond EV con-
tent, though this has been extensively studied, particularly with 16S ribosomal RNA profiling74,75, as previously 
reviewed76,77. Recent studies have included longitudinal monitoring of the oral microbiome in the context of 
oral health: Dzidic et al. investigated the long term effects of colonization during development as associated with 
tooth decay, associated carries with temporally divergent microbial constitution78. Kennedy et al. investigated 
oral microbiota composition using sequencing in children sampled at 6, 12 and 24 months of age79. Kahharov 
et al. longitudinally profiled the oral microbiome maturation of the Oral Microbiome in caries-free children80. 
Lif Holgerson et al. recently studied the longitudinal development of salivary microbiome in adolescents81. In 
future investigations it will be interesting to study further the interplay between host transcriptome/proteome 
and oral microbiome in infectious disease, and monitor these in parallel, as we do expect the microbiome to 
directly affect EV content, and partake in multi-omic interactions potentially modulating immune responses.

In terms of the longitudinal monitoring of individuals over time, profiling multiple omics, such approaches 
were pioneered with the iPOP study5, that measured up to 20 timepoints of multiple blood-based omics in an 
individual, over a timeframe that included coincidental viral infections, and the onset of type 2 diabetes. David 
et al.82 monitored the daily microbiome in gut and saliva of two individuals, with 274 saliva samples profiled 
for 16S ribosomal RNA, with their findings indicating that travel and enteric infections affecting community 
structure. The Pioneer study7 which incorporated behavioral coaching to improve clinical biomarkers based 
on 108 participants’ individual data, including bood-based multiomics profiling, also measured saliva cortisol 
and dehydroepiandrosterone (dhea) levels for stress assessment every three months. Additional longitudinal 
studies have focused on host–microbiome characterization of multiple insulin resistant individuals and study-
ing weight gain8 and in prediabetics9, investigating biological age10,11 as well as monitoring of astronauts in the 
recent NASA twin study12. Our study extends these approaches, not only by longitudinally monitoring saliva 
host transcriptome, proteome and EV content simultaneously, but also in providing dense profiling with hourly 
sampling. Our study, in conjunction with the previous individual monitoring efforts provide the first steps in 
personalized wellness monitoring, not only in demonstrating the feasibility of utilizing state-of-the art multiom-
ics technologies, but also providing extensive datasets for modeling temporal processes in direct applications to 
health, including in our case non-invasive monitoring of immune responses, such as vaccination.

Our study also has limitations: even though we attempted to pair time responses for the hourly data, this is still 
a single subject case-study (n = 1), and our results will need to be validated. Furthermore, due to limited samples 
and resources, we did not carry out immune profiling, such as cytokine assays or functional assays to assess the 
immune acquisition to the different components in the PPSV23 vaccine. We were also unable to obtain blood 
samples across all the time points, as our focus was a first evaluation of saliva omics. Additionally, our study did 
not specifically target the salivary microbiome, and the meta-analysis of EV RNA content indicated substantial 
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variability in overall taxa, the composition of which is expected to vary across individuals. In the next stage of 
our long-term project we have already collected samples from multiple subjects being vaccinated at the same time 
points with PPSV23 and monitored over multiple timepoints. Given further resources, our goal is to utilize these 
samples to both validate and extend our findings to also include monitoring of blood components. By compar-
ing the responses in blood and saliva we will be able to assess to what extend saliva may be used as a proxy for 
blood monitoring, identifying common and different responses in different tissues. Finally, in monitoring total 
saliva omics in bulk, we are ignoring the multi-cellular composition of saliva. With the availability of single-cell 
RNA-seq methodology, we anticipate that we will be able to also assess the cell-type-specific response in saliva.

In summary, saliva provides a promising venue for non-invasive diagnostics of immune response. This is 
particularly important for enhancing our diagnostic capabilities for multiple viral or bacterial responses, particu-
larly in cases where blood may not be easily available, due to technical issues, remote locations (e.g. monitoring 
active personnel), lack of specialized equipment and healthcare availability (e.g. due to socio-economic factors), 
patient vulnerability (immuno-compromised, children, and elderly populations). Given the current pandemic 
(COVID-19), enhancing our diagnostic capabilities has become a high priority. While the utility of saliva for 
differentiating between different afflictions still needs to be evaluated, our study provides the first steps towards 
a no-pain no-blood diagnostic process that can greatly enhance our capabilities for universal individualized 
health care and diagnostics.

Methods
Data and protocol availability.  Sequencing data reported here are available on Gene Expression Omni-
bus under accessions GSE108664 (Saliva mRNA-sequencing) and GSE108666 (EV small RNA). Proteomics data 
are available on MassIVE as part of accession MSV000081869. All scripts and data analysis code utilized in the 
integrative analysis are available on Zenodo (DOI:10.5281/zenodo.3987587) as online data files (ODFs), in addi-
tion to results and methods as referred to in the manuscript.

Sample collection.  Samples were taken in the three time frames hourly for TFH1 and TFH2, and daily 
for TFD. In TFH2, the PPSV23 pneumococcal vaccine was administered at approximately 10.30 am (between 
sample collections at 10 and 11 am). Following the vaccination, and after the 24 h monitoring, daily samples 
were taken for about a month. At each timepoint 5 ml saliva were collected always in the same order: 2 ml in an 
Oragene (DNAGenotek) tube for RNA sequencing, and 3 ml in a conical tube for EV characterization and mass 
spectrometry proteomics, as described below. The collected samples were from unstimulated saliva (passive 
drooling), where the subject was instructed to let saliva collect in the front of their mouth and spit as saliva accu-
mulated over time. The collection took approximately 10 min total per timepoint, for an estimated 500 µ l/min 
unstimulated salivary flow rate for the subject. Conical tube samples were immediately stored in a −20 ◦C non-
commercial freezer, prior to transfer to the laboratory on ice where they were immediately stored at −80 ◦C on 
receipt. Oragene tube samples were capped and mixed with the stabilizing liquid that is part of the Oragene tube, 
and then kept at room temperature until transfer to the lab, where they were processed for RNA-sequencing as 
described below. Daily samples were all taken at 8 am, to limit variability. Additionally the subject followed the 
exact same diet and meal timings during TFH1 and TFH2, and had neither meals/drinks nor teeth brushing for 
at least 30 min prior to TFH1 and TFH2, and 1 h prior to TFD sample donations.

Saliva sample processing for RNA‑sequencing.  The saliva samples (2 ml) for RNA processing were 
collected in Oragene (DNAGenotek) tubes. The samples were incubated at 50 ◦C for 1 h, and stored at −80◦C . 
RNA Processing: 500µl aliquots were incubated at 90 ◦C for 15 min in a heating block and then then cooled 
to room temperature. 20µl neutralizer solution were mixed with each aliquot, vortexed and incubated on ice 
for 10 min, precipitating impurities and inhibitors. The sample was then centrifuged at 13,000 g for 3 min. The 
supernatant was transferred into a new microcentrifuge tube, 2 volumes of cold 95% EtOH were added and 
mixed thoroughly, followed by incubation at − 20 ◦C for 30 min. Following centrifugation at 13,000g for 3 min, 
the precipitate was collected. This pellet was dissolved in 350µl of buffer RLT (RNeasy Micro kit). 350µl of 70% 
ethanol were added and mixed. Additional steps followed the RNeasy Cleanup (Qiagen) per manufacturer’s 
instructions to obtain concentrated RNA.

Libraries were constructed and sequenced by Novogene, using a Eukaryotic directional mRNA library (NEB). 
cDNA preliminary concentration was quantitated on a Qubit (Life Technologies), an Agilent 2100 Bioanalyzer 
was used to test the insert size, and Q-PCR was used to quantify the library effective concentration precisely. 
The cDNA libraries were sequenced on an Illumina HiSeq 4000.

Saliva EV processing.  Saliva samples for EV processing were collected in a conical tube and stored in 
− 80 ◦C on sample receipt. EVs were processed from 500µl saliva, following centrifugation at 3000g for 20 min 
at 4 ◦C . 500µl of saliva were centrifuged at 3000g for 20 min at 4 ◦C to remove cells and cell debris. ExoQuick-TC 
Exosome Precipitation Solution (SBI) was added to the supernatant in a 2:1 ratio, and the mixture was refriger-
ated overnight at 4 ◦C . Following incubation samples were centrifuged 1500g for 30 min at 4 ◦C . The supernatant 
was aspirated and residual ExoQuick-TC solution was spun down at 1500g for 5 min. EV pellets were stored at 
−80 ◦C . RNA was extracted using the SeraMir RNA Amplification Kit (SBI) per manufacturer’s instructions. The 
quality of EV RNA was checked using a 2100 Bioanalyzer (Agilent).

Small RNA library preparation was carried out using NEBNext Multiplex Small RNA library prep kit (New 
England Biolabs) following manufacturer’s instructions. After PCR amplification, quality of libraries was assessed 
using a high sensitivity DNA kit on a Bioanalyzer (Agilent) according to manufacturer’s instructions. Size selec-
tion was performed using 3% agarose dye-free marker H cassettes on a Pippin Prep (Sage Science) following 
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manufacturer’s instructions with a specified collection size range of 125–153 bp. Libraries were further purified 
and concentrated by ethanol precipitation, resuspended in 10µl of 10 mM tris-HCl (pH = 8.5) and quantified 
using a Qubit and a Bioanalyzer. Based on the quantification, equimolar library pools were prepared, quality was 
assessed as described above and the library was further diluted to 4 nM using 10 mM tris-HCl (pH = 8.5). Pooled 
libraries were sequenced at a final concentration of 1.2 pM on an Illumina HiSeq 2500 (15-plex, 1 × 50 bp format).

Exosome quantitation by ELISA.  EV concentrations were quantitated using the EXOCET Exosome 
Quantitation Assay kit (SBI). EVs from 1 ml of saliva were precipitated using the Exoquick TC protocol (see 
above). Each exosome pellet was dissolved in 80µl of lysis buffer and diluted with 80µl of PBS to be used for 
duplicate reactions. Samples were then incubated at 37 ◦C for 5 min to liberate EV proteins, vortexed for 15 s, 
and centrifuged at 1500g for 5 min to remove debris. The supernatant EV protein samples were then assayed on 
a microtiter plate following the EXOCET kit manufacturer protocol (SBI), including 7 standards and blanks in 
duplicates. The plate was read using a spectrophotometric plate reader (Bio-RAD) at 405 nm. Spectrophotom-
etry results for standards were used to obtain a linear fit, and sample results were indicative of ∼ 109 EVs/ml 
(supplementary data on Zenodo).

EV transmission electron microscopy.  Isolated EVs were fixed in 2% paraformaldehyde (PFA) for 5 
min. For negative-staining of EVs, 5µl of the sample solution was placed on a carbon-coated EM grid and EVs 
were immobilized for 1 min. Next, the grid was transferred to five 100µl drops of distilled water and letting it 
for 2 min on each drop. The sample was negative-stained with 1% uranyl acetate. The excess uranyl acetate was 
removed by contacting the grid edge with filter paper and the grid was air-dried. The grids were imaged with a 
JEOL 100CXII Transmission Electron Microscope operating at 100 kV. Images were captured on a Gatan Orius 
Digital Camera.

Nanoparticle tracking analysis (NTA).  NTA was carried out using the ZetaView (Particle Metrix) fol-
lowing the manufacturer’s instructions. EVs derived from saliva were further diluted 1000- to 5000-fold with 
PBS for the measurement of particle size and concentration.

Saliva proteomics (mass spectrometry).  Saliva samples for proteomics processing were collected in a 
conical tube (same as EVs—see above) and stored in −80 ◦C on sample receipt. For proteomics processing, the 
Tandem Mass Tag (TMT) 6-plex kits were used (Thermo). Per sample, 300µl of saliva were and dissolved in 
300µl lysis buffer (1:1 ratio saliva to lysis buffer to achieve > 2 mg/ml protein concentration). Protein concen-
tration were evaluated using a Qbit (Life sciences). Per timepoint, 100µg were used, adjusted to a final volume of 
100µl with 100 mM TEAB. The manufacturer’s TMT labeling protocol was then followed to prepare the protein 
extract (part A, steps 7 onwards, and parts B for protein digestion and C for peptide labeling). Samples were ran 
through OffGel Fractionation (using an Agilent Offgel 3100 fractionator), and mass spectrometry was carried 
out with a ThermoFisher Q-Exactive mass spectrometer (www.therm​o.com) using a FlexSpray nano-spray ion 
source. Survey scans were taken in the Orbi trap (70,000 resolution, determined at m/z 200) and the top twelve 
ions in each survey scan are then subjected to automatic higher energy collision induced dissociation (HCD) 
with fragment spectra acquired at 35,000 resolution. Additional details are provided in the online experimental 
protocols on Zenodo (see above).

Data mapping.  Total saliva RNA‑seq.  Fastq files from paired-end sequencing (150 bp paired-end 
reads) were mapped using Kallisto32,33 (with bootstrap sample parameter, -b, set to 100. For annotation, 
GENCODE36 v28 transcripts and genome built GRCh38.p12 were used. The mapping results across timepoints 
were compiled using sleuth34(with DESeq35 adjustment of Transcripts per Million). We note that the annota-
tion used gene name concatenated with ‘kind’ information (‘ext_gene’:‘kind’).

The transcriptomics results were imported as OmicsObject constructs in MathIOmica37. Zero intensities 
were tagged as missing values, and intensities with aTPM < 1 were set to unity. Time series were constructed 
only for transcripts for which a signal was detected for at least 3/4 of the time points, and also constant time 
series were removed.

Total saliva proteomics.  Proteomics .raw mass spectrometry files were analyzed using Proteome Discoverer 
(Thermo), using UniProt38 human proteome database for reference. Mass tolerance was set to 10 ppm for pre-
cursor ions, and to 0.02 Dalton for fragment ions. Modifications included cysteine carbamidomethylation (fixed) 
and N-terminal and lysine TMT 6-plex and methionine oxidation (variable). Furthermore, we allowed for < 2 
trypsin digestion missed cleavages. Proteins were identified using unique peptides of length ≥ 6 amino acids. 
We set FDR < 1% (strict) and < 5% (non-strict). For identification, we calculated results for both cases with 1 
or 2 unique peptides per protein. We carried out peptide quantitation using unique peptides (reporter ion mass 
tolerance < 10 ppm ). For protein quantitation, we used medians of peptide ratios.

Multi-consensus reports from each set of technical replicates were constructed and used downstream in 
MathIOmica to construct an annotated OmicsObject. For each timepoint (sample) a Box-Cox power 
transformation was first used to transform the data to normal distributions39. Time series were constructed only 
for proteins with at least 2 unique peptides, and for which a signal was detected for at least 3/4 of the time points. 
Constant time series were also removed.

http://www.thermo.com
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EVs small RNA‑seq.  Small RNA-seq data from EVs were processed using the Genboree Workbench41,42,83 
exceRpt pipeline40 to assess content by: (1) First removing reads that map to UniVec contaminants, 45S, 5S 
and mitochondrial rRNAs; (2) mapping reads sequentially to human miRNAs (mirBase), tRNAs (gtRNAdb), 
piRNAs (piRNABank), GENCODE and circRNAs (cirBase); (3) mapping unmapped reads from (2) to exog-
enous miRNAs and rRNAs; (4) finally mapping unmapped reads from (3) to all genomes in Ensembl and NCBI. 
Parameter settings and Genboree output files are available on Zenodo (see data availability).

For each biotype MathIOmica OmicsObject constructs were created. Zero intensities were tagged as 
missing values, and intensities with aTPM < 1 were set to unity. Time series were constructed only for transcripts 
for which a signal was detected for at least 3/4 of the time points, and also constant time series were removed.

Temporal analysis and integration.  For all mapped data time series were constructed with reference to 
the first timepoint for TFH1, TFH2 and TF� , and with reference to the vaccination day for TFDaily. TF� time 
series were constructed as paired hourly timepoint intensity differences between TFH2 and TFH1. All series 
were normalized as vectors to unit length. Time series classification analyses were carried out using MathI-
Omica as detailed below and in the online Mathematica notebooks37,84.

Temporal classification details.  The time series classification used MathIOmica’s TimeSeriesClassi-
fication function with the Method -> “Autocorrelation” setting37. Briefly, for a given omic sig-
nal j with Xj intensities over N times we construct a time series Xj =

{

Xj(t1),Xj(t2) . . . ,Xj(tN )
}

 . The signal’s 
periodogram is obtained using a Lomb–Scargle transformation43–45 to account for uneven sampling, PLS . An 
inverse Fourier transform on PLS results in the autocorrelations ρj for signal j as a list for lags 0 to n = ⌊N/2⌋ , 
ρj =

{

ρj0, ρj1, . . . , ρjk, . . . , ρjn
}

 . The autocorrelations’ significance (p-value ≤ 0.01) is assessed by using a list of 
cutoffs, ρc =

{

ρc1, ρc2,, . . . , ρck
}

 , determined from a null distribution of autocorrelations for each lag. These 
null distributions are generated from the calculated autocorrelations of simulated random signals that are cre-
ated by bootstrapping (re-sampling of the original data with replacement). A signal is categorized in a class cor-
responding to the lowest lag deemed statistically significant, i.e. in class Lag l, where l = Min

[{

i : ρji ≥ ρci
}]

 , 
and i ∈ 1, . . . , k . The result is a unique classification for each signal into Lag classes, which also ensures that any 
identified autocorrelation at a particular lag cannot possibly arise due to dependence on autocorrelations at 
lower lags.

The signals that do not show significant autocorrelation at any lag are checked for sudden signal spikes at 
any time point, and if so classified as spike maxima or minima. For each signal not showing autocorrelation, 
X̃j the signal maximum, maxj = max X̃j , and minimum, minj = min X̃j , are calculated across all time points. 
These values are compared against cutoffs {maxcn, mincn} generated from bootstrap simulated distributions 
from the data. If for a signal X̃j of length n, maxj > maxcn it is classified in the SpikeMax class, or otherwise if 
minj < mincn it is classified in the SpikeMin class. Signals for which the signal intensity does not meet cutoff 
conditions are not reported.

Enrichment analysis.  Gene-based over-representation analyses were run using MathIOmica37 in Mathemat-
ica for GO and Reactome database entries. For miRNA enrichment analysis was run using the miRNA Enrich-
ment Analysis and Annotation tool (miEAA) over-representation tool85.

Taxa groups were checked for over-representation using MicrobiomeAnalyst’s86’s web interface. Each 
subgroup and also each aggregate class were tested on multiple levels. The online MicrobiomeAnalyst 
database used included the following information, to show analyses at three different levels of mixed-level taxons, 
species-level and strain-level:

•	 Mixed-Level Taxon sets included the following taxon sets: 1545 associated with host genetic variations, 239 
associated with host-intrinsic factors such as diseases, 118 associated with host-extrinsic factors including diet 
and lifestyle, 446 associated with environmental factors such as drugs, chemical exposures and 53 associated 
with microbiome-intrinsic factors such as motility, shape, or spore forming.

•	 Species-level taxon sets included: 61 associated with host-intrinsic factors including diseases, 92 associated 
with host-extrinsic factors including diet and lifestyle, 7 associated with environmental factors including 
drugs and chemical exposures.

•	 Strain-level taxon sets included: 42 associated with host-intrinsic factors including diseases, 50 associated with 
microbiome-intrinsic factors such as microbe mobility and shape, and 399 associated with environmental 
factors including drugs and chemical exposures.

The statistically significant ( p < 0.05 ) over-representation results are available with the online data on Zenodo 
(DOI:10.5281/zenodo.3987587).

Network construction.  Weighted expression networks were constructed in which each node represents 
one molecular species and each edge weight is defined as wij =

1
(dij+0.0001) , where dij is the Euclidean distance 

between each pair of nodes {i, j} , and the offset 0.0001 was added to account for cases where dij = 0 . Networks 
were constructed for both the classified TFD data and the TF� data. To account for missing data in the computa-
tion of the Euclidean distance, mean imputation was used. Edge selection for the network construction was 
determined by filtering on one-tailed quantiles q(N) based on the wij distribution in a given network k with Nk 
nodes:
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Finally, in the network plots nodes were colored based on the MathIOmica classification group to which they 
belong.

Ethical approval.  All experimental protocols were approved by the Institutional Review Board under pro-
tocol number LEGACY15-071 (15-071) at Michigan State University. All methods were carried out in accord-
ance with the relevant guidelines and regulations. Informed consent was obtained from the participant as per 
the above protocol.

Data availability
Sequencing data reported are available on Gene Expression Omnibus under accessions GSE108664 (Saliva 
mRNA-sequencing) and GSE108666 (EV small RNA). Proteomics data are available on MassIVE as part of 
accession MSV000081869. All scripts and data analysis code utilized in the integrative analysis are available on 
Zenodo (DOI:10.5281/zenodo.3987587) as online data files (ODFs).
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