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Memory CD8+ T cells accumulate with aging, while the naïve T cell compartment
decreases, leading to an increased susceptibility to infections and a decreased vaccine
efficiency. To get deeper insights into the underlying mechanisms, this study aims to
determine the age-dependent expression profile of total versus memory CD8+ T cells from
young and old donors. Total CD8+ and CD8+CD45RA- memory T cells isolated from
young (<30 years) and old (>60 years) donors were stimulated with anti-CD3 and anti-
CD28 antibodies for 48h before analyzing the cytokine secretion and activation markers
by flow cytometry and changes in the expression profiles using RNA sequencing. Gene
ontology (GO) term enrichment analyses were performed for up-regulated and uniquely
expressed transcripts identified in the T cell populations of both age groups. Total and
memory CD8+ T cells from old donors expressed significantly higher CD25 levels and have
an increased cytokine secretion. While approximately 1,500 up-regulated transcripts were
identified in all groups, CD8+CD45RA- memory T cells of old donors had approximately
500 more uniquely expressed transcripts. Four GO terms related to the JAK-STAT
pathway were identified for up-regulated transcripts in the total CD8+ T cells of old
donors, whereas CD8+CD45RA- memory T cells GO terms related to adjacent pathways,
like JNK and MAPK/ERK, were found. Additionally, the unique transcripts of
CD8+CD45RA- memory T cells of old donors were related to the JNK, MAPK and IL-12
pathways. For both T cell populations of the old donors, cytokine and JAK-STAT pathway
transcripts were up-regulated. Thus, an age-dependent effect was observed on the
transcriptomes of total and memory CD8+ T cells. The CD8+ CD45RA- memory T cells
from old donors maintained the increased cytokine secretion of the total CD8+ T cell
population and the increased JAK-STAT pathway transcripts, which have an impact on
inflammation and senescence.
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INTRODUCTION

A consequence of aging is the reduced efficacy of immune
responses and the depletion of the naïve T cell pool
accompanied by the increase of memory T cell subpopulations
during aging is a well-documented phenomenon (1–7).
Compared to CD8+CD45RA+ naïve T cells, memory
CD8+CD45RO+ T cells were exposed to an antigen and do not
require a co-stimulatory signal for activation (8). Hence, memory
CD8+ T cells cannot respond to newly encountered antigens,
thereby contributing to the increased susceptibility to infections
(9–13) as well as a reduced efficiency of vaccines in old
individuals (14).

Furthermore, HLA-DRB1+ memory CD8+ T cells, which have
regulatory properties (15, 16), accumulate with aging (17) and
have also been used for determining the metastatic status of
breast cancer patients (18). Since memory CD8+ T cells are easily
activated and produce more pro-inflammatory factors than
unprimed naïve T cells (19) they participate together with
increased visceral fat, increased gut permeability and chronic
viral infections (20)in creating a low level of chronic
inflammation which was observed in old individuals. This
implies an increase in the circulation of pro-inflammatory
factors, such as interleukin-6 (IL-6), tumor necrosis factor-
alpha (TNF-a) and interferon-gamma (IFN-g) (21, 22), while
circulating anti-inflammatory factors were decreased or varied
within old individuals (22, 23).

So far, the increase of circulatory memory CD8+ T cells in
peripheral blood has been extensively analyzed in old individuals
(1–7) using high-throughput assays such as mass cytometry,
which identified CD8+ T cell subpopulations expressing CD5,
CCR2, CCR4, CXCR6 or CXCR4 to accumulate in old
individuals (24).

In contrast, only a few studies compared CD8+ T cell
subpopulations from young and old individuals. One marker
for aging is the loss of CD28 on T cells, which provides the
secondary costimulatory signal for naïve T cells, essential for
their activation (25). High-resolution microarrays CD8+CD28- T
cells from both young and old individuals showed similar gene
expression patterns, while CD8+CD28+ T cells from old
individuals exhibit a gene expression pattern comparable to
that of CD8+CD28- T cells rather than that of CD8+CD28+ T
cells from young individuals (26). This technology was also
employed for the analysis of gene expression changes during T
Abbreviations: cDNA, complementary DNA; Cq, quantification cycle; ERK,
extracellular signal-regulated kinases; GM-CSF, granulocyte-macrophage
colony-stimulating factor; GO, gene ontology; GOrilla, gene ontology
enrichment analysis and visualization tool; IFN-g, interferon-gamma; IL,
interleukin; JAK, Janus kinases; JNK, c-Jun N-terminal kinases; mAb,
monoclonal antibody; MAPK, mitogen-activated protein kinases; NEFL,
neurofilament light; NOD2, nucleotide-binding oligomerization domain-
containing protein 2; PBMC, peripheral blood mononuclear cells; PBS,
phosphate-buffered saline; PCA, principal component analysis; qPCR,
quantitative PCR; SDHA, succinyl dehydrogenase subunit A; STAT, signal
transducer and activator of transcription proteins; TBP, TATA-binding box
protein; TNF-a, tumor necrosis factor-alpha; TNFRSF11, TNF receptor
superfamily member 11.
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cell activation and the kinetics of specific gene clusters (27). In
addition, the chromatin accessibility of different CD8+ T cell
subpopulations from different age groups demonstrated a
progression toward an effector-like chromatin accessibility
pattern in the naïve and central memory CD8+ T cell
subpopulations from old individuals (28).

So far, gene expression patterns during T cell activation and
distinct CD8+ T cell subpopulations were compared between
young and old individuals, but the expression profiles of memory
CD8+ T cells from young and old individuals have not yet been
compared after T cell activation.

RNA sequencing-based approaches have been used for the
analysis of gene expression patterns and differentiation of CD8+

T cells after vaccination or after response to immunotherapy (29,
30). This high-throughput method was also applied for
comparing different routes of administration for personalized
cancer vaccines and the functional activity of neo-antigen
specific CD8+ T cells (31). Furthermore, it could be
demonstrated that an aged host environment leads to the
development of granzyme K-expressing CD8+ T cells, which
have a comparable transcriptional signature to exhausted CD8+

T cells (32).
It is noteworthy that many cytokines signal via the JAK/STAT

pathway. Hence, the JAK/STAT signaling pathway was shown to
contribute to the regulation of differentiation, proliferation,
migration and cytotoxicity of T cells in response to cytokines
(33). Many of these cytokines are crucial for T cell function,
including IL-2 (34), IL-4 (35), IL-12, and IFN-g (36, 37). To
better understand the underlying cellular mechanisms of
impaired T cell functionality occurring during aging, the
transcriptional profiles of total CD8+ and CD8+CD45RA-

memory T cells of young and old healthy blood donors were
compared in an exploratory study using high throughput
RNA sequencing.
MATERIALS AND METHODS

Biological Material
Peripheral blood mononuclear cells (PBMC) were purified from
blood with the gradient method (Bicoll, 1.077 g/ml, Biochrom,
Berlin, Germany). The healthy human blood donors were
separated into young (23-30 years) and old (60-68 years)
donors (Supplementary Table 1). These two age groups were
selected based on published evidence, which shows that the two
selected ages are distinct enough for the current study (38). The
blood was provided by the blood bank of the University Hospital
in Halle (Saale), Germany, upon donor consent. In total, blood
from 32 healthy donors (equal numbers of women and men) was
analyzed. Due to the limited numbers of cells that can be isolated,
these donors were split into two cohorts for each one
cell population,

Isolation and Activation of T Cells
The total CD8+ T cells were magnetically sorted from PBMC
using CD8+ beads (Miltenyi, Bergisch Gladbach, Germany)
January 2022 | Volume 13 | Article 806906
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according to the manufacturer’s protocol. For the isolation of
CD8+CD45- memory T cells, the whole CD8+ T cell population
was sorted first by magnetic positive purification using a
MultiSort Kit (Miltenyi, Bergisch Gladbach, Germany). Then
the CD8+CD45RA- memory T cells were purified using a
memory CD8+ kit (Miltenyi, Bergisch Gladbach, Germany)
according to the manufacturers’ recommendations. The gating
strategy is presented in the Supplementary Figure 1. Only
preparations with a purity of CD3+CD8+ or CD8+CD45RA- T
cells of >95% were used. All cells were cultured in X Vivo-15
medium (Lonza, Verviers, Belgium) supplemented with 1%
penicillin-streptomycin mixture (Sigma-Aldrich Chemie
GmbH, Taufkirchen, Germany) and 1% L-glutamine (Lonza).
The T cells were seeded at a density of 106 cells/ml, activated with
2.5 µg/ml plated anti-CD3 monoclonal antibody (mAb; clone
OKT3; Thermo Fisher Scientific, Waltham, MA, U.S.A.) and 1
µg/ml soluble anti-CD28 mAb (clone REA1047; BD Biosciences,
San Jose, CA, U.S.A.) and then cultured for 48 hours. The anti-
CD3 mAb was plated for at least 16 hours before each assay at 4°
C in sterile phosphate-buffered saline (PBS). All flow cytometric
data were acquired using a BD LSRFortessa flow cytometer with
the BD FACSDiva software (both from BD Biosciences).

Assessment of T Cell Activation
To assess the activation levels (39), total CD8+ T cells and
CD8+CD45RA- memory T cells were activated for 48 hours
and approximately 105 cells were washed once with ice-cold PBS
supplemented with 2mM ethylenediaminetetraacetic acid
(Sigma-Aldrich GmbH) and 0.5% (v/v) fetal calf serum (PAN
Biotech, Aidenbach, Germany), before they were stained with
anti-CD69 FITC, anti-CD25 PE (BD Biosciences) and anti-CD71
APC-H7 (Biolegend, San Diego, CA, U.S.A.) mAbs for 10 min in
the dark on ice. The stained cells were subjected to flow
cytometric analysis and the percentages of cells expressing each
activation surface marker were determined by gating the positive
cells in the histogram of each fluorophore.

In addition, the cell supernatant of each preparation was
collected after 48 hours, aliquoted and stored at -20°C until use.
The concentration of cytokines was determined using BD
Cytometric Bead Array Flex Sets (BD Bioscience) containing
IFN-g, TNF-a, IL-3, IL-4, IL-5, IL-6, IL-10, granulocyte-
macrophage colony-stimulating factor (GM-CSF), granzyme A
and granzyme B according to the manufacturer’s specifications.
The cytokine secretion data were analyzed using the FCAP Array
software (BD Biosciences). The results are presented as pg/ml or
ng/ml.

Total RNA Isolation
After 48 hours of activation, T cells were pelleted and washed
once with ice-cold PBS, before the cell pellet was treated with the
lysis buffer provided in a NucleoSpin RNA Isolation Kit
(Macherey-Nagel, Dueren, Germany) supplemented with b-
mercaptoethanol (AppliChem GmbH) as indicated in the kit
manual and either stored in a -80°C freezer or directly used for
RNA isolation. Total RNA was isolated from the cell lysate using
the NucleoSpin RNA Isolation Kit according to the
manufacturer’s instructions. RNA concentrations were
Frontiers in Immunology | www.frontiersin.org 3
determined with an Infinite 200 PRO Microplate Reader
(Tecan Group Ltd., Mannedorf Switzerland) and NanoQuant
Plate™ (Atlantic Lab Equipment, Beverly, MA, U.S.A.).

Relative Gene Expression
Total RNA was subjected to quantitative PCR (qPCR). For each
sample, complementary DNA (cDNA) was synthesized from 500
ng of total RNA using a RevertAid First Strand cDNA synthesis kit
(Thermo Fisher Scientific). qPCR reactions were performed using
the 2 X SYBR Green qPCR Master Mix (Promega, Madison, WI,
USA) according to the manufacturer’s recommendations. The
primers used are listed in Supplementary Table 2. qPCR data
are presented as a fold change calculated using the quantification
cycle (Cq) according to the formula DDCq =(CqHK-CqGOI)
young-(CqHK-CqGOI)old (40). CqHK represents the mean of
the Cq values for the housekeeping genes and CqGOI represents
the Cq value of the gene of interest for the indicated age group. The
genes of the TATA-binding box protein (TBP) and the succinyl
dehydrogenase subun i t A (SDHA) were us ed a s
housekeeping genes.

RNA Sequencing and RNA-Seq
Data Analysis
For RNA sequencing, total RNA from eight donors for each T cell
subpopulation was prepared (Figure 1A) and 2 µg/sample was
processed by Novogene (Hong Kong, China) in two batches using
the NEBNext® UltraTM RNA Library Prep Kit for Illumina®

(NEB, USA) and the HiSeq-PE150 platform. The quality of the
sequencing data was assessed using FastQC1 and MultiQC (41).
Adapter sequences and quality nucleotides were trimmed using
Trimmomatic (42). The quantification of the gene expression at
the transcript level was performed by computing a pseudo-
alignment to the human reference genome (GRCh38) using
Kallisto (43). Additional bioinformatics analyses were performed
using the programming language R2. The R package tximport (44)
was used for importing the estimated read counts and for
summarizing the transcript abundances. For the CD8+CD45RA-

memory T cells, one donor was excluded from further analysis for
technical reasons.

Differentially expressed transcripts for the two comparisons
of (i) total CD8+ T cells from young versus those from old donors
and (ii) CD8+CD45RA- memory T cells from young versus those
from old donors were calculated using the DESeq2 package (45).
Lowly abundant transcripts with less than 10 reads in total were
removed from the analysis. For each transcript, DESeq2 fits a
generalized linear model indicating the overall expression level of
the transcript and returning the log2(FoldChange) between
samples from young and old donors. The samples of old
donors were used as controls, therefore, a negative value of the
log2(FoldChange) represents an up-regulation in old donors (or
a down-regulation in young donors), whereas a positive value an
up-regulation in young donors (or a down-regulation in old
donors). P values were calculated using the Wald test and then
adjusted for multiple testing using the Benjamini-Hochberg
January 2022 | Volume 13 | Article 806906
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correction. The variation between the samples of each CD8+ T
cell population was visualized using the principal component
analysis (PCA).

The final list of transcripts was divided into (i) uniquely
expressed transcripts, which were expressed by only one age
group and (ii) up-regulated transcripts, setting a threshold for
the log2(FoldChange) value below -2 or above +2. Transcripts
with a log2(FoldChange) value over 2 were considered up-
regulated in young donors or down-regulated in old donors
and transcripts with a log2(FoldChange) below -2 were
Frontiers in Immunology | www.frontiersin.org 4
designated as down-regulated in young or up-regulated in
old donors.

Gene Ontology (GO) Term
Enrichment Analysis
GO term enrichment analysis was performed on eight lists of
transcripts (Figure 1B) containing (i) up-regulated transcripts in
young donors for the total CD8+ T cells, (ii) up-regulated
transcripts in old donors for the total CD8+ T cells, (iii)
uniquely expressed transcripts in young donors for the total
A

B

FIGURE 1 | Overview of the workflow. (A). Generation of T cell populations used for RNA sequencing. PBMC were isolated from multiple donors of two age groups:
young (<30 years) and old (>60 years). The total CD8+ T cells were magnetically sorted from the PBMC directly, and to isolate the CD8+CD45RA- memory T cells,
the total CD8+ T cells were magnetically sorted from the PBMC and then the memory T cells were isolated from the total CD8+ T cells. This protocol was applied for
both age groups. (B). Lists of transcripts used for GO term enrichment. For both T cell populations, the log2(FoldChange) of gene expression was calculated as the
expression of T cells of young versus that of the old donors. The transcripts up-regulated in either young or old donors were determined based on the log2
(FoldChange) value. Two additional lists were generated for each cell population, based on the absence of expression for one of the age groups. Up-regl = up-
regulated. The figure was prepared with Biorender.com.
January 2022 | Volume 13 | Article 806906
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CD8+ T cells, (iv) uniquely expressed transcripts in old donors
for the total CD8+ T cells, (v) up-regulated transcripts in young
donors for the CD8+CD45RA- memory T cells, (vi) up-regulated
transcripts in old donors for the CD8+CD45RA- memory T cells,
(vii) uniquely expressed transcripts in young donors for the
CD8+CD45RA- memory T cells and (viii) uniquely expressed
transcripts in old donors for the CD8+CD45RA- memory T cells.
Up-regulated transcripts were ranked according to their adjusted
p values, and uniquely expressed transcripts were ranked
according to the average of the normalized count values of
all samples.

GO term enrichment analysis was performed using the gene
ontology enrichment analysis and visualization tool3 (GOrilla)
with the “one ranked list” option, which identifies those
transcripts at the top of a ranked list that most likely
part ic ipates in shared funct ions with the minimal
hypergeometric test (46). The overlap between various lists of
genes and transcripts was assessed using the interactive tool for
comparing lists with Venn`s diagrams Venny 2.1.04. The
visualization of the overlap was done with Biorender5.
RESULTS

Increased Activation of Both Total CD8+ T
Cells and CD8+ CD45RA- Memory T Cells
of Old Donors
The distribution of CD8+CD45RA- memory T cells in the
preparations of total CD8+ T cells was determined prior to
sorting in order to examine the differences in the T cell
popula t ions be tween young and old donors . The
CD8+CD45RA- memory T cells represent on average 30% and
60% of the total CD8+ T cell population for the young and old
donors, respectively (Figure 2A).

After 48h of culture, the cell surface expression of the
activation markers CD25, CD69, and CD71 was measured for
the CD8+CD45RA- memory T cells. The expression of CD69 was
very heterogeneous for the young donor groups, but stable
within the old donor groups with no significant difference
between the age groups (Figure 2B). In contrast, CD25
expression was increased in CD8+CD45RA- memory T cells
compared to the total CD8+ T cells (data not shown). The
young CD8+CD45RA- T cells exhibited a more heterogeneous
and reduced expression of CD25 compared to that of old donors.
CD71 expression was comparable to CD25 expression, but with
an increased heterogeneity in the old donor groups.

In addition, the secretion pattern for the CD8+CD45RA-

memory T cel ls had a heterogeneous distr ibution.
Concentrations of TNF-a, IL-6, and granzyme A were
comparable between young and old donors, while concentrations
3http://cbl-gorilla.cs.technion.ac.il/

4https://bioinfogp.cnb.csic.es/tools/venny/index.html

5https://biorender.com/
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of GM-CSF, IL-3, IL-4 and IL-5 were significantly higher in old
donors than in young donors. Secretion of granzyme B, Il-2 and Il-
10 was marginally increased for the old donors. This expression
pattern was also confirmed by qPCR (Supplementary Figure 2A).

Distinct Transcriptome Profiles of Total
CD8+ T Cells and CD8+CD45RA- Memory
T Cells in Young and Old Donors
To determine differences in the expression profiles, total RNA
from CD8+ and CD8+CD45RA- memory T cells of both young
and old donors was subjected to RNA sequencing. In total, 32
samples were sequenced at a depth of 30 million paired-end
reads on average with eight biological replicates in each T cell
population and age group. A total of 1,443 and 1,400 transcripts
were up-regulated in young and old donors, respectively, for the
total CD8+ T cells and 1,598 and 1,579 transcripts were up-
regulated in young and old donors, respectively, for the
CD8+CD45RA- memory T cell population. Additionally, 2,757
and 2,777 transcripts were uniquely expressed in young and old
donors, respectively, for the total CD8+ T cells, and 2,510 and
3,302 transcripts were unique in young and old donors,
respectively, for the CD8+CD45RA- memory T cell population.

The PCA plot showed a relatively homogeneous pattern and
no clear clustering based on age or sex in the total CD8+ T cells
with the first two components accounting for 28% and 16%,
respectively, of the total variance within the dataset (Figure 3A
and Supplementary Figure 3). In contrast, the PCA plot showed
a higher variance within the CD8+CD45RA- memory T cell
population from old donors, with the first two components
accounting for 36.5% and 12%, respectively, of the total
variance within the dataset (Figure 3B).

Homogeneity of the Expression Profiles
in Total CD8+ T Cells, but Increased
Heterogeneity in CD8+CD45RA-

Memory T Cells
Volcano plots demonstrated a similar extent of the log2
(FoldChange) of the transcript expression for both CD8+ T cell
populations (Figures 4A, B), but total CD8+ T cells had an
approximately two-fold increase of the number of transcripts
with a significant adjusted p value compared to CD8+CD45RA-

memory T cells with 802 and 442 transcripts, respectively.
The total number of up-regulated transcripts in young and

old donors was comparable for both CD8+ T cell populations
(Figure 4C). The number of unique transcripts for total CD8+ T
cells was almost identical between young and old donors
(Figure 4D). In contrast, CD8+CD45RA- memory T cells of
old donors expressed more unique transcripts than those of
young donors.

The overlap between the lists of transcripts of the same age,
but different cell populations was comparable across the groups
(Figures 4E, F). For old donors, the overlap of the up-regulated
transcripts was 5.5% (151 transcripts), for unique transcripts
6.6% (377 transcripts). Despite the overlap percentage not being
significantly different between both age groups, it is noteworthy
that the total CD8+ T cells of young and old donors are
January 2022 | Volume 13 | Article 806906
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A

B

C

FIGURE 2 | Functional analysis of T cell subpopulations subjected to RNA sequencing. (A). Composition of the total CD8+ T cell populations of young and old
donors. Pre-sort distribution of the CD8+ CD45RA- memory T cell subpopulation within the total CD8+ T cell population preparations were determined with flow
cytometry. N = 8. (B). Expression of activation markers on CD8+CD45RA- memory T cell subpopulations. The surface expression of common activation markers was
measured after 48h. N = 8. * = p value < 0.05, ** = p value < 0.01. (C). Soluble-protein secretion patterns of CD8+ CD45RA- T cells from young and old donors.
Soluble proteins were measured in the supernatant after 2 days of culture with a CBA Flex Set from BD Biosciences. The kit contains granzymes A and B, IFN-g,
TNF-a, GM-CSF, IL-10, IL-6, IL-5, IL-4, IL-3, and IL-2. N=8; * = p value < 0.05, ** = p value < 0.01.
Frontiers in Immunology | www.frontiersin.org January 2022 | Volume 13 | Article 8069066
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composed of 31 ± 12% and 60 ± 13% CD8+CD45RA- memory T
cells, respectively (Figure 2A).

The distinct transcript expression patterns identified by RNA
sequencing were validated by qPCR for selected transcripts
chosen based on their stable expression across the donors,
which was observed in the RNA sequencing and include
CCR4, IL-5, IL-21, SMAD3, LEF1, GATD3A, SLC35A5,
U2AF2, ZNF483 for total CD8+ T cells and FOXO3, JAK1, IL-
3, EZR, GAPVD1, RNF40 and TTC17 for CD8+CD45RA-

memory T cells demonstrating a comparable expression
pattern (Supplementary Figure 1B).

Age-Dependent GO Term Enrichment of
Immune Relevant Pathways
In the next step, the RNA seq data were analyzed for age-
dependent GO enrichment. The number of GO terms and the
significance of the interactions were higher for transcripts up-
regulated in old donors compared to transcripts up-regulated in
young donors (Figure 5). For transcripts up-regulated in total
CD8+ T cells from old donors, the GO term with the lowest p
value (7 x 10-14) was “cytokine-mediated signaling pathways”,
which included transcripts of IL-5, IL-21, IL-10, IL-9, and IL-31.
This term was also found for transcripts up-regulated in
CD8+CD45RA- memory T cells of old donors with a p value of
8 x 10-5.

Approximately one third (28.8%) of the biological processes
identified for the transcripts up-regulated in total CD8+ T cells
from old donors referred to immune-related functions or
immune-cell activation (Figure 5) such as “defense response,”
“inflammatory response,” “positive regulation of secretion,” and
“regulation of lymphocyte activation.” In addition, several GO
terms related to the Janus kinases (JAK) signal transducer and
activator of transcription proteins (STAT) pathway and other
Frontiers in Immunology | www.frontiersin.org 7
associated cellular pathways were identified for the transcripts
up-regulated in old donors in both total CD8+ T cells (5) and
CD8+CD45RA- memory T cells (8).

GO terms for transcripts up-regulated in old donors in the
CD8+CD45RA- memory T cells mirror the GO terms enriched
for the same age group of total CD8+ T cells (e.g., “inflammatory
response” in total CD8+ T cells and “positive regulation of acute
inflammatory response” in CD8+CD45RA- memory T cells).
Terms linked to the JAK-STAT pathway, such as “positive
regulation of the mitogen-activated protein kinases (MAPK)
cascade” and “positive regulation of the extracellular signal-
regulated kinases 1 (ERK1) and ERK2 cascade” were also
identified. Despite this similarity, the transcripts annotated
with these terms are different in the two T cell populations.

In-Depth Analysis for the GO Term
Enrichment of Up-Regulated Transcripts
Genes annotated with the ten most significant GO terms for the
biological process category obtained for both CD8+ T cell
populations of old donors were compared and visualized in a
heatmap (Figure 6). Transcripts common for both CD8+ T cell
populations were HLA-C, HLA-DRB1, STAT2, nucleotide-
binding oligomerization domain-containing protein 2 (NOD2),
IL-5, neurofilament light (NEFL) and TNF receptor superfamily
member 11 (TNFRSF11). The number of differentially expressed
cytokine transcripts is higher in total CD8+ T cells than in
CD8+CD45RA- memory T cells of old donors with a partial
overlap for the term “cytokine-mediated signaling pathway” for
both CD8+ T cell populations.

IL-5 and HLA-DRB1 were annotated with a high number of
the most significant GO terms for total CD8+ T cells, whereas
both genes were annotated with only three GO terms in
CD8+CD45RA- memory T cells. A similar pattern was detected
A B

FIGURE 3 | Principal Component Analysis of the transcriptomic profiles of the total CD8+ T cell population and the CD8+CD45RA- memory T cell subpopulation
from young and old donors. (A). PCA for the total CD8+ T cell preparations. The variation found was 16% and 28%, respectively. Total CD8+ T cells from young
donors are blue circles, and old donors are red squares. (B). PCA for the CD8+CD45RA- memory T cell subpopulation. The variation found was 12% and 36.5%.
The young donors are blue hollow circles and the old donors are red hollow squares.
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for NOD2 and TNFRSF11A, but these genes were more
prevalent in CD8+CD45RA- memory T cells than in total
CD8+ T cells.

For the transcripts up-regulated in total CD8+ T cells of
young donors, 13.5% of the enriched GO terms for Biological
Process were associated with cell proliferation and
differentiation. GO terms enriched for the CD8+CD45RA-

memory T cells of young donors were similar to those for total
CD8+ T cells such as “alpha-beta T-cell activation” in total CD8+

T cells and “positive regulation of alpha-beta T-cell activation” in
CD8+CD45RA- memory T cells. Four terms linked to the JAK-
STAT pathway, such as “positive regulation of the MAPK
cascade” and “positive regulation of the ERK1 and ERK2
cascade”, were also identified, but the transcripts annotated
with these terms were different in T cells of the two age groups.

GO Term Enrichment Analysis of Uniquely
Expressed Transcripts
All of the uniquely expressed transcripts were sorted according
to the normalized mean of the counts for all preparations and
Frontiers in Immunology | www.frontiersin.org 8
then processed with GOrilla. CD8+CD45RA- memory T cells had
a higher number of unique transcripts (Figure 4D), so a larger
number of GO terms were retrieved by Gorilla for this
subpopulation (Figure 7).

For the Biological Process category, the GO terms for the
total CD8+ T cells with the lowest p values were “regulation of
the c-Jun N-terminal kinases (JNK) cascade” for the
transcripts unique in old (p value = 1 x 10-5) and
“regulation of viral-induced cytoplasmic pattern recognition
receptor signaling pathway” for the transcripts unique in
young donors (p value = 7 x 10-6). Terms related to the
JAK-STAT pathway were found for the transcripts unique in
total CD8+ T cells of old donors (“regulation of stress-
activated MAPK cascade” and “positive regulation of the
JNK cascade”). These GO terms were also enriched for the
up-regulated transcripts in CD8+CD45RA- memory T cells of
the same age group. GO terms directly related to the JAK-
STAT pathway were not enriched for the transcripts unique
in the CD8+CD45RA- memory T cells of old donors, but
the GO term “interleukin-12-mediated signaling pathway,” a
A B

D

E F

C

FIGURE 4 | Identified differentially expressed transcripts in young versus old donors. (A, B). Volcano plot for the transcripts with an up-regulated gene expression in
the total and memory CD8+ T cell populations, respectively. The log2(FoldChange) of the transcripts was plotted against the -log10(padj). Selected genes with the
lowest adjusted p values are labeled. A line is placed at a -log10(padj) of 2, which corresponds to an adjusted p value of 0.01. (C, D). The number of transcripts with
an up-regulated expression, and uniquely expressed transcripts, respectively. For both CD8+ T cell populations the number of transcripts from each dataset are
plotted as a graph plot. (E, F). Overlap between the transcripts for the total and memory CD8+ T cell population. For both T cell populations, the overlap between
the up-regulated and unique transcripts was calculated with Venny 2.1.0 and the figure was prepared with Biorender.com.
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component of the JAK-STAT signaling family, was identified
with a p value of 2 x 10-4.

For the Molecular Function category, the GO terms
“heterocyclic compound binding” and “nucleic acid binding”
were retrieved for the unique transcripts in both T cell
populations from old donors. For the GO terms enriched in
the current lists of transcripts for the Cellular Component
category, the term “nuclear part” had a p value under 10-6 for
all groups except for the total CD8+ T cells of the young donors.
DISCUSSION

Advanced age is associated with alterations in the function of
CD8+ T cell subpopulations, but the pathways and genes
involved in this process have not yet been analyzed in detail,
in particular regarding the comparison of total CD8+ T cells to
memory CD8+ T cells. Therefore, this study determined the
transcriptional profile in total CD8+ T cells and CD8+CD45RA-

memory T cells from young and old healthy blood donors, to
further understand the declined T cell responses against e.g.,
pathogens and vaccines in the aging population. A hallmark of
reduced immunity in old individuals is an increased frequency
Frontiers in Immunology | www.frontiersin.org 9
of CD8+CD45RA- memory T cells in the total CD8+ T cells (1–
7), which was also confirmed by our study (Figure 2A). Since
total CD8+ T cells of young donors have more naïve T cells than
that those of old donors, it was hypothesized that the gene
expression profiles as well as the function of CD8+CD45RA-

memory T cells from both age groups are more similar to each
other than to those of total CD8+ T cells of the corresponding
age groups.

Therefore, the age-dependent functionality of both T cell
populations was investigated by measuring the surface
expression of activation markers (Figure 2B) and the
concentration of secreted soluble proteins (Figure 2C) after 48
h of culture. The discrepancies found for the total CD8+ T cells
between young and old donors were mirrored by the
CD8+CD45RA- memory T cells. T cells from old donors had a
stronger cytokine secretion and a higher surface expression of
CD25 and CD71. The secretion levels of GM-CSF, IL-3, IL-4 and
IL-5 were markedly increased in old donors in both cell
populations, whereas the soluble factors TNF-a and granzyme
A showed no detectable difference between old and young
donors. The literature provides evidence of maturation
differences in memory T cells in old individuals (6, 47), but
little information is available regarding the functionality of these
FIGURE 5 | GO terms for transcripts with an up-regulated expression in the total CD8+ T cell population and the memory CD8+ T cell subpopulation in old and
young donors retrieved with GOrilla. The resulting GO terms were classified as biological process, molecular function, or cellular component. The dotted line is
indicating −log10(p value) = 2, which corresponds to a p value of 0.01.
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cells compared to the functionality of memory CD8+ T cells of
young individuals.

Interestingly, the CD8+CD45RA- memory T cells mirrored the
total CD8+ T cells of the same age group at the transcriptional and
functional level despite the different composition of both T cell
populations in young and old donors (Figure 2A). Other studies
made a similar observation by demonstrating that CD8+CD28+ T
cells of old donors are more similar to CD8+CD28- T cells of the
same age group than to the same subpopulation of a different age
group (26). CD28- T cells exhibit a weak immune responsiveness
in addition to shorten telomeres (48). A significant difference was
observed in the number of uniquely expressed transcripts, which
was increased for CD8+CD45RA- memory T cells from old donors
(Figure 4D) suggesting that the gene expression profile of this
subpopulation is different than the other groups. However, the
overlap in transcripts was similar when comparing the transcript
list of the same age group, but different cell populations
(Figures 4E, F).

To obtain further insights into the relevance of the observed
differential gene expression patterns, the functional profile of each
list of transcripts was acquired with GO term enrichment analyses.
Frontiers in Immunology | www.frontiersin.org 10
For transcripts up-regulated in total CD8+ T cells of old donors, the
JAK-STAT pathway and the “cytokine-mediate signaling pathway”
had the most significant p values. The JAK-STAT pathway is
involved in the signal transduction of multiple cytokines including
IL-2 (34), IL-5 (49, 50), IL-4 (51), IFN-g (36) and other soluble
factors (52, 53). Thus, the JAK-STAT pathway regulates the
activation, proliferation and cytotoxicity of T cells, while there is
evidence that defective signaling within this pathway results in
chronic inflammation (53, 54) or premature aging of stem cells
(55). In addition, JAK inhibitors, such as the JAK1/2 inhibitor
ruxolitinib, alleviate premature aging effects for the Hutchinson-
Gilford progeria syndrome (56). In addition, increased cytokine
production in T cells of old individuals was reported (21, 22, 57,
58). In this study, a correlation between the increased cytokine
secretion and activation was identified in CD8+ T cells of old
donors upon examining the soluble proteins in the supernatant, the
surface expression of activation markers and the presence of the
JAK-STAT pathway in the set of enriched GO terms in CD8+ T
cells from old donors.

For transcripts up-regulated in CD8+CD45RA- memory T
cells from old donors several enriched GO terms were associated
FIGURE 6 | Differentially expressed genes leading to 10 biological process GO terms with the lowest p values for the total and memory CD8+ T cell subpopulation
of old donors. A binary heatmap (red = yes, white = no) was established using the biological process GO terms with the lowest p values from both old groups. A
rectangle indicates the transcripts common for both cell populations.
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with the JAK-STAT cascade such as “positive regulation of the
MAPK cascade” and “positive regulation of ERK1 and ERK2
cascade.”Multiple kinases from the MAPK pathway were shown
to activate the JAK-STAT pathway including ERK (59) and JNK
(60), which is known to phosphorylate STAT1 and STAT3 upon
inhibition of the MAPK pathway (59). Both signaling pathways
are activated by the same ligands (61) and also modulate the
expression of a number of similar genes and are known to
coordinate senescence and inflammation (62–64).

Additional GO terms enriched in the set of transcripts up-
regulated in CD8+CD45RA- memory T cells of old donors related
to the “cytokine-mediate signaling pathways” such as “positive
regulation of fever generation.” Fever represents a consequence of
inflammation, which is a key element of the immune response
(65). In a murine model, it was shown that naïve CD8+ T cells
differentiate into CD62Llo CD44hi effector T cells in a
temperature-dependent manner both in vivo and in vitro (66).

Despite the apparent overlap of the different GO terms
enriched in the sets of transcripts up-regulated in the two
CD8+ T cell populations of old donors, the only common
transcripts were IL-5, HLA-DRB1, HLA-C, STAT2, NOD2,
Frontiers in Immunology | www.frontiersin.org 11
TNFRSF11A, and NEFL (Figure 6). TNFRSF11A, IL-5, and
other cytokines directly bind to several JAK and STAT
proteins (67, 68). HLA-C was found up-regulated in CD8+ T
cells from the cerebrospinal fluid of Alzheimer’s patients through
RNA sequencing (69). Interestingly, a subpopulation of HLA-
DR+CD8+ T cells was described, which has regulatory properties
mediated by direct cell contact (15, 16). HLA-DRB1 was used as
a biomarker for dry eye diseases, which correlated with an
increase in pro-inflammatory and JAK-STAT related genes
(70). Our study suggests an up-regulated frequency in HLA-
DRB1+ CD8+ T cells in old blood donors, which is in line with
the increased number of CD8+HLA-DR+ T cells during aging
next to other CD8+ T cell memory phenotypes (17). However,
the role of this T subpopulation during the aging process has not
yet been demonstrated and thus deserves further investigation.

A large number of transcripts was found to be uniquely
expressed in one of the age groups with the highest number of
such transcripts in CD8+CD45RA- memory T cells of old
donors (Figure 4D). The term “interleukin-12-mediated
signaling pathway” was enriched for transcripts uniquely
expressed in CD8+CD45RA- memory T cells of old donors.
FIGURE 7 | GO terms for the uniquely expressed transcripts retrieved by GOrilla in total CD8+ T cells and CD8+ CD45RA- memory T cells in old and young donors.
All transcripts were ranked according to the normalized mean of the counts for all preparations. The resulting GO terms are classified as biological process,
molecular function, or cellular component. The dotted line is indicating −log10(p value) = 2, which corresponds to a p value of 0.01.
January 2022 | Volume 13 | Article 806906

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Toma et al. Comparison of Total and Memory T Cells
IL-12 signaling is associated with the JAK-STAT pathway (60)
and has been shown to trigger IFN-g secretion by activating the
STAT4 protein (68, 71).

In contrast to these observations, several studies demonstrated
that this pathway was defective in old individuals (54, 72), but a
comparison of the expression of this pathway in memory CD8+ T
cells of young versus old donors was not performed in these
studies. When comparing the transcripts expression profiles of
different CD8+ T cells populations, the JAK-STAT pathway and
related pathways were present both in up-regulated transcripts and
in uniquely expressed transcripts in CD8+ T cells from old donors
both in total CD8+ T cells and CD8+CD45RA- memory T cells.

Overall, our results suggest an altered expression of cytokine
pathways in total and memory CD8+ T cells of old individuals
when compared to that of young donors. Further studies are
required to confirm the regulatory function of the JAK/STAT
pathway, which might give insights into how to revert these
expression changes in T cells of old donors.
CONCLUSIONS

While many studies have shown that the distribution of various
CD8+ T cell subpopulations changes with aging, few comparisons
of different T cell subpopulations were made within the same age
group. In this study, the transcriptional profile, secretion, and
surface marker expression of CD8+CD45RA- memory T cells of
young and old donors were analyzed and compared to those of
total CD8+ T cells of young and old donors. Our results
demonstrate that the secretion patterns of both total and
memory CD8+ T cells were higher in old individuals than in
young individuals, which correlated to the substantial changes in
the gene expression during the aging process.

In addition, both T cell populations showed an age-dependent
increase in CD25 surface expression, indicating an increased
potential for T cell activation in the old individuals. Functional
annotation analyses indicate that aging affects transcripts
involved in the JAK-STAT pathway with an increased
expression in total CD8+ T cells and CD8+CD45RA- memory
T cells of old donors. Moreover, pathways related to the JAK-
STAT cascade were enriched for transcripts uniquely expressed
in old donors both for total CD8+ T cells and for the
CD8+CD45RA- memory subpopulation.

Ultimately, CD8+CD45RA- memory T cells of old donors had
a functional and transcriptional profile comparable to total CD8+

T cells from old donors rather than CD8+CD45RA- memory T
cells from young donors. Thus, both total and memory CD8+ T
cells undergo an age-related functional decline, which is reflected
by changes in specific genes and signaling pathways. These might
provide attractive targets for future studies on T cell aging.
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Supplementary Figure 1 | Flow cytometry gating strategy. The first gate of
forward scatter (FSC) versus side scatter (SSC) was used to discriminate the cells
from possible debris or bubbles in the machine. The second gate set on PE and
PerCP-Cy5.5 distinguished between live and dead cells; the double-negative cells in
this gate were the living cells. The third gate was used for doublet exclusion by plotting
the FSC area against its width. Once the live single lymphocytes were determined,
these cells could be further separated based on their surface markers. The next gate
was set on FITC versus Qdot 605 (same as BV605), which allowed for the evaluation
of CD3 and CD8, respectively. The CD3+CD8+ T cells were further gated for APC
versus Qdot 6005, representing CD45RA versus CD8, respectively. This final gate
was used only for the preparation of the memory CD8+ CD45RA- T cells.

Supplementary Figure 2 | Validation of RNA seq data. (A). Relative gene
expression of cytokines after 48h of activation. Total RNA was isolated from total
and memory CD8+ T cells and qPCRs were prepared for the selected cytokines.
SDHA and TBP served as housekeepers. The DDCq value was calculated using the
Cq values for the young versus those for the old donors. Therefore, a negative value
represents an increase in the expression of the respective gene in the old donors
and a positive value an increase in the young. N = 8. (B). Comparison of the qPCR
and RNA seq values for selected genes. qPCRs were prepared for the selected
genes, using SDHA and TBP as housekeepers. The DDCq value was calculated
using the young versus the old donors, so that the change in expression can be
compared to RNA seq log2(FoldChange). N = 8.
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Supplementary Figure 3 | Principal Component Analysis of the
transcriptomic profiles of the total CD8+ T cell population and the
CD8+CD45RA- memory T cell subpopulation from young and old donors
divided by gender. (A). PCA for the total CD8+ T cell preparations. Total CD8+ T
cells from young female donors are light red squares, young male donors light
Frontiers in Immunology | www.frontiersin.org 13
blue squares, old female donors dark red squares, and old male donors dark
blue squares. (B). PCA for the CD8+CD45RA- memory T cell subpopulation.
The young female donors are light red hollow circles, young male donors light
blue hollow circles, old female donors dark red hollow circles and old male
donors dark blue hollow circles.
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