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Adverse drug reactions are a public health issue that draws widespread attention, especially for
Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) which have high
mortality and lack of efficacious treatment. Though T-cell-mediated HLA-interacted immune
response has been extensively studied, our understanding of the mechanism is far from
satisfactory. This review summarizes infection (virus, bacterial, and mycoplasma infection), an
environmental risk factor, as a trigger for SJS/TEN. The mutations or polymorphisms of drug
metabolic enzymes, transporters, receptors, the immune system genes, and T-cell-mediated
apoptosis signaling pathways that contribute to SJS/TEN are discussed and summarized.
Epigenetics, metabolites, and mobilization of regulatory T cells and tolerogenic myeloid
precursors are emerged directions to study SJS/TEN. Ex vivo lymphocyte transformation
test has been exploited to aid in identifying the causative drugs. Critical questions on the
pathogenesis of SJS/TEN underlying gene polymorphisms and T cell cytotoxicity remain: why
some of the patients carrying the risky genes tolerate the drug and do not develop SJS/TEN?
Whatmakes the skin andmucousmembrane so special to be targeted? Do they relate to skin/
mucous expression of transporters? What is the commonmachinery underlying different HLA-
B alleles associated with SJS/TEN and common metabolites?
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INTRODUCTION

Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are two forms of the same
severe adverse drug reactions and are characterized by epidermal necrolysis. The disease has the
unique expression of blisters on the skin and the affection of mucous membranes in the mouth, nose,
eyes, and genitals (see Figure 1). SJS is characterized by a large area of skin andmucosal epithelial cell
shedding and typical performance on the oropharynx, eyes, urogenitals, and anal mucosa. SJS has less
than 10% of body surface area involvement. TEN is a more severe type than SJS and is defined as
greater than 30% total body surface area skin loss. The body surface area of 10–30% is defined as SJS/
TEN overlap (Duong et al., 2017). The mortality rate for SJS and TEN are as high as 1–5% and
25–30% (Harr and French, 2010; Marxer et al., 2020), respectively, and there will be a long-term
multiorgan damage after acute stage. Around half patients will have both physical and psychological
sequelae, including cutaneous (19.3%), oropharyngeal (4%), ocular (20.6%), urological (2.0%),
gastrointestinal (0.67%), genital system (5.3%) (Wang et al., 2020b), psychological distress (71%), and
impact on quality of life (Dodiuk-Gad et al., 2016).
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SJS/TEN is an immune-mediated hypersensitivity and at least 200
drugs have been reported to be related to disease onset. The most
common ones are nonsteroidal anti-inflammatory drugs [NSAIDs
(Kowalski et al., 2013; Chong and Chao, 2017)], sulfa-derived
medications [e.g., zonisamide (Vivar et al., 2018), sulphapyridine
(Xiong et al., 2018), and sulfamethoxazole (Kongpan et al., 2015;
Sukasem et al., 2020a; Wang et al., 2020a)], lactam antibiotics,
anticonvulsants (e.g., carbamazepine, phenobarbital, and
phenytoin), antiretroviral medicine, contrast agents, antigout drug
allopurinol, etc. (Yang et al., 2019; Zhao et al., 2019). Some rare cases
are caused by less commonly seen drugs like albuterol (Maggini et al.,
2015; Shariff et al., 2017), taurine-containing energy drink (Begolli
Gerqari et al., 2016), radiotherapy for cancers (Rouyer et al., 2018;
Esaa et al., 2020), fertility treatment (Hashimoto et al., 2019),
vaccines (Oda et al., 2017; Chahal et al., 2018; Flora et al., 2018;
Su et al., 2020), commercial cannabinoid oil (Yin et al., 2020),
herbs (Bonhomme et al., 2017; Lim et al., 2018), teriflunomide
(treating multiple sclerosis) (Gerschenfeld et al., 2015),
methotrimeprazine (Moubayed et al., 2017), diuretic drug
metolazone (Kumar et al., 2016), etoricoxib (Roy et al., 2018),
Dalbergia cochinchinensis (a tree) (Yang et al., 2015), etc.
Anticancer drugs like protein kinase inhibitors ribociclib (Lopez-
Gomez et al., 2019), palbociclib (Karagounis et al., 2018), afatinib
(Doesch et al., 2016), and vemurafenib (Arenbergerova et al., 2017),
immune checkpoint inhibitors (ICIs) (including cytotoxic T
lymphocyte associated antigen-4 [CTLA-4: monoclonal antibody
ipilimumab (Dika et al., 2017)], programmed cell death protein
[PD-1: monoclonal antibody nivolumab (Nayar et al., 2016; Salati
et al., 2018; Dasanu, 2019), pembrolizumab (Lomax et al., 2019)],
programmed cell death ligand 1 [PD-L1: monoclonal antibody
atezolizumab (Chirasuthat and Chayavichitsilp, 2018)], and CC
chemokine receptor 4 targeting antibody mogamulizumab (Tanba
et al., 2016) are also reported to cause SJS/TEN. Cancer patients are at
a higher risk to develop SJS/TEN not only due to consequence of the
nature of neoplastic diseases, but also exposure to a line of anticancer

drugs and disruption of immune system. These anticancer drugsmay
trigger an abnormal cytotoxic T lymphocyte response, predisposing
them to SJS/TEN.

The pathogenesis of SJS/TEN is generally considered to be
cytotoxic T-cell-mediated HLA-dependent drug hypersensitivity.
Drugmetabolites bindwith HLAprotein in the body, leading to cell
toxicity by killing autogenous cells. Though numerous studies show
the disease is related to different genes, the underlying mechanism
is not fully elucidated. It is usually described as the complex
interactions among multiple gene variants and environmental
factors, as well as possibly the biochemical and immunological
reactions with drug metabolites. To overview the current
understanding of SJS and TEN, this review summarizes the past
understanding and recent advances on pharmacogenetics of drug-
induced SJS and TEN, discusses unresolved questions, and foresees
potential targets for prevention and treatment of the disease.

INFECTION AND SJS/TEN

Notwithstanding the barriers to identify environmental risk factors,
infections have been identified to be associated with SJS/TNE in
multiple studies. Varying levels of support suggest involvement of
virus, bacteria, and other infections as a trigger for the development
of SJS/TEN, though at less frequency levels. The fact that some
people vaccinated with meningococcal B vaccine, yellow fever
vaccination, influenza vaccination, or virus/bacterial infection had
developed SJS or TEN (Oda et al., 2017; Chahal et al., 2018; Flora
et al., 2018; Su et al., 2020) indicates that the activated or inactivated
microorganisms (vaccine) can cause SJS/TEN. This highlights
infection as the new etiology to SJS/TEN. Some may argue that
the additives in the vaccine are the one that cause SJS/TEN (Oda
et al., 2017). Indeed, this may be true. However, the majority of
patients injected with the vaccine with the additives did not develop
drug hypersensitivity, indicating the additive is safe in some extent.

FIGURE 1 | Representative images showing dermatological manifestations of patients with Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis
(TEN). The patients participated in a clinical study approved by the Ethics Committee of the Institute of Clinical Pharmacology, Central South University (CTXY-
110011–2). The informed consent forms were signed for the publication of the photos. (A) Skin erosion on the face and mucous damage in the eye; (B) extensive skin
sloughing in the trunk; (C) skin peel in the feet; (D) painful mucous membrane damage in the genital.
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In addition, the underlying infection coinciding with drug reaction
might rationalize the involvement of infection. The concept is that
the infection will trigger the nondrug specific immune activation
and influence drug metabolism or presentation, making patients
more prone to drug-initiated reaction. First, the pathophysiological
status of infection itself might be involved in the SJS/TEN
development, as demonstrated in studies that found a
significantly positive association between infection and SJS/TEN
seriousness (Imatoh et al., 2017; Okamoto-Uchida et al., 2017).
Second, T cell cross-reactivity against pathogen epitope and drug
would affect the total balance of immunity or trigger the memory
CD8+ T cells. This will cause an undesired immune response
(Okamoto-Uchida et al., 2017), resulting in SJS/TEN. Third, the
conserved etiologic agents could cooperate with drugs to form virus-
drug-host complex and then trigger SJS/TEN (Shiohara and Kano,
2007; Ban et al., 2016). Fourth, the heterologous immunity model
has been proposed to explain some infection triggered SJS/TEN
(White et al., 2015). In this model, patients carrying a specific HLA
risk allele infected by pathogen (e.g., human herpesvirus) generate
pathogen-specific memory T cells. These memory T cells were
inhabited at specific anatomic sites. Upon drug intake, these
preexisting memory T cells become activated through cross-
reaction with drugs to trigger SJST/TEN.

Together, the viral, bacterial, and prokaryotes infections play a
nonnegligible role in the etiopathogenesis of SJS/TEN.

Virus Infection
The viral infection such as human immunodeficiency virus (HIV),
herpes simplex virus (HSV), Epstein-Barr virus (EBV), influenza
virus, cytomegalovirus (CMV), and coxsackievirus are reported to be
associated with SJS/TEN. Studies reporting the occurrence of drug-
induced SJS/TEN is approximately 1,000 times (Mittmann et al.,
2012) higher among HIV-infected individuals than noninfected.
Coxsackievirus A6 (CA-6) which belongs to enterovirus could
induce blistering skin reactions mimicking erythema multiforme
major or SJS (Chung et al., 2013). Herpesvirus 7 infection was
identified to cause TEN by both PCR and lymphocyte
transformation test (Shen et al., 2020). It was reported that in a
SJS patient without any imputable medication but showing atypical
activated T lymphocytes, EBV was the one contributing to the
disease (Brunet-Possenti et al., 2013). A minority of SJS cases
were related to HSV infection (Lerch et al., 2018). Case studies
reported that children or teenagers with influenza B infection rapidly
developed SJS (Tamez et al., 2018; Goyal and Hook, 2019). These
observations lead to the question whether virus infection predispose
patients more to immunopathogenesis of SJS/TEN.

How could viruses trigger SJS/TEN? Studies reported that the
immune response after EB virus and human herpesvirus (HHV) 6,
HHV7 infection helped clear up the virus, which could make the
body at a relatively high sensitivity state that makes it possible for
subsequent drug therapy prone to super-react (Yoshikawa et al.,
2006; Hashizume et al., 2013). Another direct evidence is the
production of cytokines/chemokines such as interferon γ (IFN-
γ). Subsequently high levels of IFN-γ after viral stimulation
disrupted the immune balance, leading to upregulation of the
major histocompatibility complex body (MHC) II molecules in
antigen-presenting cells which promoted the presentation of drug

hapten (Carr et al., 1994). There is another view that reactivation of
the original latent virus in the body is the main reason for the
development of drug eruption. The theory thought there is a
delayed recurrent drug eruption after the virus is activated and
the full antigen is formed (Torres et al., 2009). Unfortunately, I did
not find any large scale clinical reports showing direct evidence that
SJS/TEN is induced by viral infection. In contradiction, a recent
study did a systematic review and found there was no association
between SJS and vaccination. The reported SJS cases following
vaccines, such as influenza vaccine, smallpox, anthrax and tetanus
vaccine, MMR vaccine, varicella vaccine, DTaP-IPV vaccine or
rabies vaccine, were not statistically significantly associated with
SJS (Grazina et al., 2020). If viruses can interact with the immune
system and trigger severe cutaneous adverse reactions (SCARs), the
deactivated virus vaccines might have the same function, at some
extent, to interact with the immune system and trigger SCARs.
Whether virus initiates SJS/TEN needs further investigation.

Collectively, the interaction between viral infection and SJS/
TEN is not fully understood and the underlying mechanism
needs further investigation. However, on basis of available
evidence, it is undeniable that virus infection plays a role in
SJS/TEN formation and this may be an interest of future research.

Bacterial Infection
Given the association between the onset of SJS/TEN and bacterial
infection, it is possible that bacterial infection plays a role in the
occurrence of SJS/TEN. Limited cases reported that SJS/TEN are
induced by bacterial infection, such as streptococcus and
meningococcus infection (Czajkowski et al., 2007; Leaute-
Labreze et al., 2000). And it seems viral infection is more
common than bacterial infection in SJS/TEN. Patients who
had septicemia or any bacterial infection are more likely [odds
ratio (OR) � 4.1, 2.56, respectively] to have SJS/TEN (Hsu et al.,
2016). The explanation is the toxins produced by bacteria
predispose some individuals to SJS/TEN. While the
mechanism is not well investigated, new evidence is expected
to be disclosed.

Prokaryotic Microbe Infection
Mycoplasma infection is the most reported prokaryotic microbe
infection associated with SJS/TEN, especially in children (Meyer
Sauteur et al., 2012; Tomaino et al., 2012; Amode et al., 2018; Liu
and Shen, 2019; Sah et al., 2019). Mycoplasmas are ubiquitous
and the smallest, free-living microorganisms. Mycoplasma
pneumonia-induced SJS/TEN are frequently reported in
children and adolescents.

GENETIC VARIANTS AND SJS/TEN

Drug Metabolic Enzymes and SJS/TEN
Most common causes of SJS/TEN are drugs. Genetic variation in
drug metabolic enzymes directly affects drug metabolism and
metabolic pathways, and changes drug serum concentration.
Generating or accumulating metabolites that are more active
than the parent drugs or defect in detoxication/clearance of the
original drugs will lead to SJS/TEN. Most drugs pass through the
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liver, where they are metabolized by phase I enzymes
(cytochrome P450 (CYP), oxidoreductase, etc.) and phase II
enzymes (epoxide hydrolase, glutathione s-transferase (GST),
N-acetyltransferase (NAT), etc.).

CYP enzymes oxidize most drugs into chemically reactive
metabolites that need to be actively detoxified and are
responsible for the clearance of various compounds. For
instance, nevirapine-induced SJS/TEN was found to be
associated with CYP2B6 T983C. The carriers of allelic variants
of CYP2B6 T983C were in 4.2-fold higher risk to develop SJS/TEN
due to low clearance of nevirapine (Ciccacci et al., 2013). Studies
showed the variation in drug clearance enzyme CYP2C9*3
contributed to phenytoin-related SCARs with reduced drug
clearance rate (Chung et al., 2014; Tassaneeyakul et al., 2016;
Wu et al., 2018; Su et al., 2019; Sukasem et al., 2020b; Fohner et al.,
2020), independently of HLA-B*15:02 risk allele. Glutathione-S-
transferases (GST), which is a family of metabolic enzyme, plays a
crucial role in the drug detoxification and activates some chemicals
in a few cases. A study in Mozambique showed the null phenotype
for glutathione transferase GSTM1 (glutathione S-transferase mu
1) conferred a higher risk of SJS/TEN in HIV-infected patients
treated with nevirapine (OR � 2.94), leading to a poor
metabolization of nevirapine and more predisposing of the toxic
effects of 12-sulfoxyl-nevirapine (Ciccacci et al., 2017).
N-acetyltransferases (NATs) are polymorphic drug-metabolizing
enzymes. The isoforms of NATs in human are NAT1 and NAT2.
NAT2, as one of the two-phase detoxification enzymes when
xenobiotics metabolize in the body, catalyzes acetyl to the
functional groups of aromatic primary amine or hydrazine from
acetyl coenzyme A and generates acetamide or acetohydrazide. It
plays an important role in the acetylation of isoniazid,
sulfamethazine, caffeine, and certain carcinogens precursors or
the like. The NAT2 slow acetylator genotype is one of the
predisposing factors for the development of severe cutaneous
adverse reactions to drugs that require N-acetylation in these
patients (Dietrich et al., 1995). Sulphonamide-induced SJS/TEN
has been reported to be linked with slow acetylator due to
decreased detoxication of NAT2 (Wolkenstein et al., 1995).

Some drugs are influenced by multiple metabolic enzymes.
For example, carbamazepine metabolizes through
microsomal epoxide hydrolase (EPHX1), CYP3A4, and
uridine 5′diphosphate-glucuronosyltransferases (UGT2B7)
in the body (Hung et al., 2012; He et al., 2014; Chbili
et al., 2016). Firstly, carbamazepine-epoxide is produced
when carbamazepine is metabolized by CYP3A4 in the
liver. Then it is inverted into inactive carbamazepine diol
through the microsomal epoxide hydrolase which is encoded
by EPHX1 (Hung et al., 2012). Alternatively, it could be
inactivated into glucuronic acid by UGT2B7 (Hung et al.,
2012). Lastly, the metabolites would be eliminated from the
body in urine.

In addition, renal function impairment (RFI) is strongly
associated with SJS/TEN (Hung et al., 2009). Drugs such as
allopurinol, water soluble antibiotics, are metabolized in the
kidney, and RFI has been shown to reduce drug metabolism
in the diseased kidney compared with the normal kidney (Hung
et al., 2005; Stamp et al., 2016).

To conclude, the plasma concentration of drug is largely
influenced by the drug metabolism enzymes. The mutation of
these enzymes is responsible for the development of idiosyncratic
adverse reactions like SJS/TEN. Knowledge of which
metabolizing enzyme is the most important for the induction
of SJS/TEN is warranted by further investigation.

Transporters and SJS/TEN
Drug transporters refer to the proteins which have the ability to
bind drugs specifically and mediate the process of pumping the
drugs in or out of the cell. Therefore, the gene polymorphisms of
drug transporters will affect the absorption, distribution,
metabolism, and excretion of the drug. P-glycoprotein (P-gp),
which is also known as multidrug resistance protein 1 (MDR1),
ATP-binding cassette subfamily Bmember 1 (ABCB1) or cluster of
differentiation 243 (CD243), is the most scrutinized plasma
membrane transporter in SJS/TEN. The well-known mutation
of 3435C > T in MDR1 exon 26 can lead to low expression of
P-gp and drug-resistance in epilepsy, though the drug was not
specified (Siddiqui et al., 2003). ABCB1 rs10276036TT genotype
was associated with nevirapine-induced skin hypersensitivity
(OR � 4.01) (Dhoro et al., 2013). The ATP-binding cassette
(ABC) transporters play important roles in absorption and
disposition of drugs in the cells. Takenaka et al. first found,
except ABCG family members, ABCA, ABCB, ABCC, ABCD,
ABCE, and ABCF family members were highly or moderately
expressed in the skin. And there were significant interindividual
variability in the expression levels of ABC transporters in the
human skin, which might be associated with drug-induced skin
diseases (Takenaka et al., 2013). Whether the high expression of
those transporters could lead to high amount of drug in the skin via
certain transporters is unknown. There is no study reporting drugs
may accumulate in the skin, mucous, and recruit the cytotoxic
T cells to attack. Thus, it is necessary to investigate the relationship
between the onset of SJS/TEN and different expression of high-risk
transporters in the skin.

A new bioinformatics approach to reanalyze the genome wide
association studies (GWAS) data identified the ABC transporter
and proteasome mutation may contribute to SJS/TEN (Nicoletti
et al., 2015). They also found the proteasome pathway was
enriched not only in genetic variants but also in genes which
were differentially expressed in blister cells from skin lesions of
SJS/TEN versus peripheral blood mononuclear cells (PBMC) as
assessed in a previous study (Chung et al., 2008; Nicoletti et al.,
2015). That proteasome complex got involved in SJS/TENmay be
due to proteasome-mediated protein degradation in generating
the repertoire MHC-I presented peptides. In addition,
proteasome complex participates in proliferation and
activation of T lymphocytes and neutrophils, which will
induce the T-cell-dependent skin reaction.

Receptors and SJS/TEN
SJS/TEN are T-cell-mediated hypersensitivities. The T-cell
receptor (TCR) repertoire is characterized in some
investigations to ask if a type of TCR expanded clonally is
drug specific. In carbamazepine-induced SJS/TEN, it was
shown that the one who has the common TCR clonotype and
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carbamazepine/peptide–HLA-B*15:02 complex will trigger SJS/
TEN. This might explain some HLA-B*15:02 carriers are tolerant
to carbamazepine since they do not have that specific TCR
clonotype. It also explains why carbamazepine-specific TCR
clonotypes showed cross-reactivity to oxcarbazepine,
lamotrigine, and phenytoin. Studies identified preferential TCR
usage, clonal expansion, and similar CDR3 (third
complementarity-determining region) clonotypes in the blister
cells and PBMC of patients with carbamazepine-SCARs (Chung
et al., 2015; Pan et al., 2019). They conducted an adoptive transfer
of this specific αβTCR-T cells to the HLA-B*15:02 transgenic
mice, and these mice which received carbamazepine developed a
phenotype mimicking SCARs while those mice received vehicle
control drug did not show SCARs phenotypes. The HLA-B*15:02
transgenic mice which received carbamazepine but no adoptive
transfer of the αβTCR-T lymphocytes also showed no phenotype
of SCARs. In addition, investigators found the TCR repertoire of
allopurinol-induced SCARs seems more complex and different
from that of carbamazepine–SJS/TEN (Chung et al., 2015).
Likewise, Xiong et al. found SJS/TEN patients had less TCR
repertoire diversity and predominant shared usage of TRBV/
TRBJ clonotypes. The TCR repertoire diversity of these patients
showed certain association with the clinical severity of disease
(Xiong et al., 2019). Moreover, it was found the TCR CDR3
shared a similar motif in metronidazole-induced SCARs patients
(Yang et al., 2020).

Other receptors involved in SJS/TEN are most focused on
immune system. Receptor-interacting protein kinase 3
(RIP3) is a component of TNF receptor-1 signaling
complex and is an essential part of cellular machinery for
necrosis. RIP3 was highly expressed in TEN patient lesions,
suggesting that RIP3 is an essential actor in the programmed
death and necrosis of keratinocytes (Kim et al., 2015). The
serum level of RIP3 in SJS/TEN patients was associated with
the amount of necrotic changes in the epidermis and could be
used to predict the disease severity of SJS/TEN (Hasegawa
et al., 2020). A recent report identified a network of Toll-like
receptor 3 (TLR3), prostaglandin-E receptor 3 (PTGER3),
and IKAROS family zinc finger 1 (IKZF1) gene
polymorphisms was significantly associated with cold
medicine-SJS/TEN with severe ocular surface
complications (SOC), and these genes may regulate
mucocutaneous inflammation. The authors postulated that
they may help to predict the development of SJS/TEN with
mucocutaneous inflammation including that of the ocular
surface (Ueta et al., 2007; Ueta et al., 2010; Ueta et al., 2011;
Ueta, 2018). They consider it as complementary association
factors for cold medicine-SJS/TEN with SOC independent of
HLA-A*02:06. A group from Japan found the keratinocytes
exposed to PBMC supernatants from SJS/TEN were dead,
while those exposed to PBMC supernatant of ordinary drug
skin reactions (ODSRs) were not. Mass spectrometric
analysis identified annexin A1 and its receptor formyl
peptide receptor 1 (FPR1) as a key mediator of
keratinocyte death and blocking annexin A1 with antibody
attenuated the disease, suggesting that necroptosis pathway
mediated by annexin 1 contributed to SJS/TEN (Saito et al.,

2014). Further studies regarding specific receptors or
receptor polymorphisms related to SJS/TEN have yet to
be found.

The Immune System and SJS/TEN
While the mechanism of SJS/TEN is not fully addressed,
accumulating studies strongly support the disease is an
immune-mediated hypersensitivity induced by drug
presentation by human leucocyte antigen (HLA). The drug-
induced SJS/TEN is strongly linked to certain HLA alleles with
overwhelming activation of cytotoxic T lymphocytes. A specific
MHC, which the drug or drug metabolite binds directly to, is
identified to be associated with the disease.

The MHC, also named as HLA in human, is a group of related
proteins encoded by MHC genes which are located on the short
arm of human sixth chromosome 6p21.3 region. The HLA DNA
fragment has a length of 3.6 mega base pairs (Mb), containing
approximately 200 genes (Horton et al., 2004). As the most
complex human genetic system currently, HLA is mainly
involved in immune response. The association of HLA and
drug-induced SJS/TEN has significant ethnic disparities across
drugs used. Countless studies reported different HLAs have been
strongly associated with SJS/TEN (shown in Table 1).

Carbamazepine is an effective broad-spectrumanticonvulsant drug
and one of the most common drugs to induce SJS/TEN.
Carbamazepine–induced SJS/TEN was first shown to be strongly
associated with HLA-B*15:02 in Taiwan Han Chinese (Chung et al.,
2004). Later, this strong association was confirmed in other ethnicities
including Thai, Indian, mainland Han Chinese, and Malaysian, but
not in European, Korean, Japanese, and Filipino populations.
Individuals at highest risk of Han Chinese descent, followed by
those in Vietnam, Cambodia, the Reunion Islands, Thailand, India
(specifically Hindus), and Malaysia, are recommended to be screened
for the presence ofHLA-B*15:02 allele prior to starting carbamazepine
by Clinical Pharmacogenetics Implementation Consortium (CPIC)
guidelines (Leckband et al., 2013). HLA-A*31:01 and HLA-B*11:01
were reported to be associated with carbamazepine–induced SJS/TEN
in Caucasians (McCormack et al., 2011; Ramirez et al., 2017). HLA-
A*31:01 and HLA-B*15:11 were reported to be associated with
carbamazepine–induced SJS/TEN in Korean and Japanese (Kaniwa
et al., 2010; Kim et al., 2011; Ozeki et al., 2011). HLA-B*15:21 was
associated with carbamazepine–induced SJS/TEN in Filipino (Capule
et al., 2020). Another example is the antiseizure drug phenytoin
induced SJS/TEN. In Malaysia, it was not only found to be
associated with HLA-B*15:02 but also with HLA-B*15:13 (Chang
et al., 2017). In Thai population, HLA-B*15:02, HLA-B*56:02, HLA-
B*38:02, and HLA-B*46:01 were observed to be associated with
phenytoin-induced SJS/TEN (Locharernkul et al., 2008;
Tassaneeyakul et al., 2016; Sukasem et al., 2020b; Manuyakorn
et al., 2020). When prescribing phenytoin to patients, CPIC
guideline recommended considering the HLA-B*15:02 genotype
first, then other variants such as CYP2C9 and HLA-A*31:01
(Karnes et al., 2020).

Phenytoin, phenobarbital, lamotrigine, carbamazepine, and
oxcarbazepine are commonly used antiepileptic aromatic amines
and they have similar chemical structures. HLA-B*15:02 is the
common risk allele for aromatic antiepileptic. The patients
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carrying HLA-B*15:02 in phenytoin, lamotrigine, or
oxcarbazepine SJS/TEN sufferers, took proportion of 30.8%
(OR � 5.1), 33% (OR � 5.1), 100% (OR � 80.7) respectively,
in a case-control study (Hung et al., 2010). This indicates that the
aromatic antiepileptic-drugs share common risk allele, and HLA-
B*15:02 is the most significant. Take aromatic antiepileptics as a

whole, HLA-A*24:02 was identified as another independent risk
factor for SJS/TEN in Southern Han Chinese patients, and this
strong association was not only in aromatic antiepileptics but also
in each individual drug including carbamazepine, lamotrigine,
and phenytoin (Shi et al., 2017). The study also revealed a
multiplicative interaction between HLA-B*15:02 and HLA-

TABLE 1 | Selected drug-induced SJS/TEN and their association with HLA.

Drug category Drug Associated HLA
locus

Odds ratio
(OR)

Ethnicity References

Antiseizure Carbamazepine HLA-B*15:02 2504 Taiwan Han Chinese Chung et al. (2004)
1357 Taiwan Han Chinese Hung et al. (2006)
25.5 Thai Locharernkul et al. (2008)
54.76 Thai Tassaneeyakul et al. (2010)
9.54 Thai Sukasem et al. (2018a)
71.4 Indian Mehta et al. (2009)
16.15 Malaysian Chang et al. (2011)
184 Central Chinese Wu et al. (2010)

114.826 Southern Han Chinese Wang et al. (2011)
152 Central and northern Han Chinese Zhang et al. (2011)
89.25 Hong Kong Han Chinese Cheung et al. (2013)
6.5 Indonesian Yuliwulandari et al. (2017)

HLA-A*31:01 25.93 European McCormack et al. (2011)
7.3 Korean Kim et al. (2011)
33.9 Japanese Ozeki et al. (2011)

HLA-B*15:11 18.0 Korean Kim et al. (2011)
9.76 Japanese Kaniwa et al. (2010)
54.12 Thai Jaruthamsophon et al. (2017)

HLA-B*15:21 40.73 Thai Jaruthamsophon et al. (2017)
7.53 Filipino Capule et al. (2020)

HLA-B*11:01 63.89 Spanish Caucasian Ramirez et al. (2017)
Phenytoin HLA-B*15:02 5.1 Taiwan Han Chinese Hung et al. (2010)

3.50 Hong Kong Han Chinese Cheung et al. (2013)
18.5 Thai Locharernkul et al. (2008)
5.71 Malaysian Chang et al. (2017)

HLA-B*15:13 11.28 Malaysian Chang et al. (2017)
HLA-B*56:02 10.40 Thai Tassaneeyakul et al. (2016)
HLA-B*38:02 12.67 Thai Manuyakorn et al. (2020)
HLA-A*02:01/Cw*15:02 14.75 Spanish Caucasian Ramirez et al. (2017)
HLA-B*46:01 2.341 Thai Sukasem et al. (2020b)

Lamotrigine HLA-B*15:02 5.1 Taiwan Han Chinese Hung et al. (2010)
4.89 Thai Koomdee et al. (2017)

HLA-B*15:02 3.59 Hong Kong Han Chinese Cheung et al. (2013)
HLA-A*31:01 11.43 Korean Kim et al. (2017)
HLA-A*02:07 7.83 Thai Koomdee et al. (2017)
HLA-B*38:01 147 Spanish Caucasian Ramirez et al. (2017)

Phenobarbital HLA-A*01:01 11.66 Thai Manuyakorn et al. (2016)
HLA-B*13:01 4.60 Thai Manuyakorn et al. (2016)

Oxcarbazepine HLA-B*15:02 80.7 Taiwan Han Chinese Hung et al. (2010)
27.90 Taiwan Han Chinese and Thai Chen et al. (2017)

Antihyperuricemia Allopurinol HLA-B*58:01 580.3 Taiwan Han Chinese Hung et al. (2005)
40.83 Japanese Kaniwa et al. (2008)
97.8 Korean Kang et al. (2011)
80 89% of European Caucasian Lonjou et al. (2008)

348.3 Thai Tassaneeyakul et al. (2009)
229.7 Hong Kong Han Chinese Chiu et al. (2012)
203.40 Mainland Han Chinese Cao et al. (2012)
127.60 Mainland Han Chinese Cheng et al. (2015a)
579.0 Thai Sukasem et al. (2016)

Decreasing intraocular pressure Methazolamide HLA-B*59:01 249.8 Korean Kim et al. (2010)
305 Mainland Han Chinese Yang et al. (2016)

HLA-Cw*01:02 22.1 Korean Kim et al. (2010)
12.1 Mainland Han Chinese Yang et al. (2016)
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A*24:02. Positivity for HLA-A*24:02 and/or HLA-B*15:02
showed a sensitivity of 72.5% and a specificity of 69.0%.

Allopurinol, a drug widely used to treat hyperuricemia and its
complications, is commonly reported to induce SJS/TEN. A
research team from Taiwan first found the risk of allopurinol-
induced severe skin reactions is 580.3 times higher in HLA-B*58:
01 carriers than noncarriers in Han Chinese patients (Hung et al.,
2005). They recruited 51 individuals with allopurinol-induced
severe allergic skin reactions, all having the HLA-B*58:01
genotype (100%), while in the control group containing 135
individuals tolerant with allopurinol (using allopurinol at least
six months without adverse responses) and 93 healthy subjects,
the probability of carries with the HLA-B*58:01 was, respectively,
15% (20/135) and 20% (19/93). Afterward, a number of studies
showed HLA-B*58:01 is a high-risk factor of allopurinol-induced
skin reactions in Mainland Han Chinese (Cao et al., 2012; Chiu
et al., 2012; Cheng et al., 2015a), Thai (Tassaneeyakul et al., 2009;
Sukasem et al., 2016), Korean (Kang et al., 2011), European
(Lonjou et al., 2008), and Japanese (Dainichi et al., 2007;
Kaniwa et al., 2008), with 229.7, 203.40, 127.60 (Han Chinese),
348.3 (Thai), 97.8 (Korean), 80 (European), and 40.83 (Japanese)
fold risk than noncarriers. It seems there is a universal risk HLA
genotype with allopurinol-SJS/TEN, but to varying degrees, with
a higher association in Han Chinese and Thai, and a lesser but
significant association in other ethnicities like Japanese, Korean,
and European. A study in Korean revealed that HLA-B75, DR13
homozygosity, and DR14 increased the risk of allopurinol-
induced SCARs when combined with HLA-B*58:01, especially
in those with impaired kidney function (Shim et al., 2019). To
reduce the risk of allopurinol hypersensitivity syndrome, CPIC
guidelines recommend testing for the HLA-B*58:01 allele in
populations of Korean descent with stage 3 or worse chronic
kidney disease and those of Han Chinese or Thai descent prior to
initiation of the drug (Saito et al., 2016).

Except for those commonly reported drugs, some other drugs are
described to be associated with HLA. Strontium ranelate, a medicine
to treat osteoporosis, was associated with HLA-A*33:03 and HLA-
B*58:01 inHanChinese in Singapore (Lee et al., 2016). In the context
of methazolamide (a carbonic anhydrase inhibitor to lower
intraocular pressure)-induced SJS/TEN, HLA-B*59:01 was a
strong risk in Koreans (Kim et al., 2010) and Han Chinese (Yang
et al., 2016). Ueta et al. reported that cold medicine (including
NSAIDs and multi-ingredient cold medications)-induced SJS/TEN
with SOCwas strongly associatedwithHLA-A*02:06 (OR� 5.6) and
HLA-B*44:03 (OR � 1.99) in Japanese patients (Ueta et al., 2014a).
In addition, the authors found HLA-B*44:03 was significantly
associated with cold medicine-SJS/TEN with SOC in the Indian,
Brazilian, and Thai, but not the Korean population, and that HLA-
A*02:06might be weakly associated in the Korean but not the Indian
and Brazilian population (Ueta et al., 2014b; Jongkhajornpong et al.,
2018; Jun et al., 2019). Except for these two alleles, a meta-analysis
revealed HLA-A*33:03 (OR � 2.28) and HLA-C*05:01 (OR � 2.55)
were also associated with cold medicine-induced SJS/TENwith SOC
(Tangamornsuksan et al., 2020). Furthermore, trimethoprim/
sulfamethoxazole- (TMP/SMX-) induced SJS/TEN was
significantly associated with HLA-B*15:02 and HLA-C*08:01 in
Thai patients (Kongpan et al., 2015; Sukasem et al., 2020a). As

more andmore HLAmarkers have been found to be associated with
drug-induced SJS/TEN, prospective screening for HLA genotypes to
avoid drug hypersensitivities is highly recommended (Chen et al.,
2011; Saokaew et al., 2014; Cheng et al., 2015b; Dong et al., 2015; Ko
et al., 2015; Sukasem et al., 2018b).

There are four major hypotheses or models to predict antigen
presenting in drug-induced SJS/TEN (Pichler et al., 2011;
Duong et al., 2017). i) Hapten/prohapten model: the
“hapten and prohapten model” thinks the drug or drug
metabolites bind covalently to a peptide carrier and then are
presented by HLA proteins to TCR in antigen presenting cells
(APC). One example of hapten model is penicillin metabolites
binding to serum albumin, generating chemically modified
peptide and triggering the immune reaction (Padovan et al.,
1996). ii) Noncovalent, direct binding of the drug to a peptide
(pharmacological interaction (p-i) model): the “p-i model”
thinks the drug or drug metabolites directly or noncovalently
bind to HLA protein and are presented to TCR without a
peptide carrier-loading. One example is carbamazepine-
induced SJS/TEN. Carbamazepine binds to HLA-B*15:02
directly without any peptide assistance, as evidenced by the
fact that fixation of APC could still elicit an immune reaction
(Wei et al., 2012). In “p-i model”, APC or intracellular antigen-
processing pathway is not necessary to elicit the immune
response. iii) Altered peptide repertoire model: X-ray
crystallography illustrates that the drug binds directly to the
HLA and alters its specificity, resulting in presentation of novel
ligands and leading to cytotoxic T-cell activation. One example
is the abacavir-induced hypersensitivity. Abacavir alters the
repertoire of self-peptides and changes the binding cleft of
the HLA-B*57:01 protein, where it acts as the foreign antigen
resulting in generation of a polyclonal T-cell response and
induction of hypersensitivity reactions (Illing et al., 2012;
Ostrov et al., 2012). iv) Altered TCR repertoire model: in
contrast to the third model, some drugs can bind directly to
TCR without peptide-HLA complex on APC. One example is
sulfamethoxazole that causes change in TCR conformation, free
from HLA or peptide interaction (Watkins and Pichler, 2013).
Taken as a whole, no matter which model is used to predict
antigen presenting, it is still not well understood how HLA
emerge into drug-specific immune-response so far.

T-CELL-MEDIATED APOPTOSIS
SIGNALING PATHWAYS IN SJS/TEN

Drug-induced SJS/TEN is generally believed to be an HLA restricted
T lymphocyte cytotoxicity (Chang et al., 2020). The drug activates
the natural killer (NK) cells and cytotoxic T lymphocytes (CTLs),
and their effect is largely amplified by cascade release of death
mediators. Perforin and granzyme, Fas–Fas ligand, TNF-α, and
granulysin are the most frequently reported mediators involved
in SJS/TEN. As T lymphocytes infiltrate into the lesions, it shows
cell toxicity to autologous target cells and leads to massive death of
keratinocytes and mucosal cells. A schematic representation of
immunopathogenic mechanism underlying drug-induced SJS/
TEN is shown in Figure 2.
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Perforin-Granzyme B Create Channels in
the Cell Membrane and Activate Cell Death
Perforin and granular enzyme are proteins that play a part in
cytotoxicity. These macromolecules are usually expressed in
CTLs and NK cells and are subject to regulation of several
cytokines such as IL-2 and IL-12. When the activated CTLs
and NK cells bind to target cells, effector cells release dense
cytoplasmic granules to the binding sites between target cell
and effector cell through granule exocytosis. The most
important macromolecules released in the degranulation
process are perforin and granzyme B. A high expression of
granzyme B in CD8+ T cells was detected in blisters (or skin)
samples of SJS/TEN (Chung et al., 2008). Granzyme B is
released along with perforin which inserts into a target
cell’s plasma membrane forming a pore. Perforin is a pore
forming cytolytic protein secreted by CTLs and NK cells. Upon
degranulation, perforin changes from monomer molecular to
the conformation that exposes the dichotomy region of
hydrophilic molecules, in a Ca2+-dependent manner. Several
monomers are polymerized to form transmembrane channels,
which are 5–20 nm in diameter. The hydrophilic monomer
amino acid residues are located at the inside of these channels,
while the hydrophobic residues are sited toward the
phospholipid bilayer (Liu et al., 1996). And thus, perforin is
capable of inserting into the lipid bilayer of the target cells.
After the channel loses ion selectivity, the water, ions, and
other small molecules can move freely across the tunnel into
the target cells. Finally, the osmotic shock will cause cell
swelling which will end up to burst or apoptosis.

Fas–Fas Ligand Interaction Destroys
Keratinocytes
Fas and Fas ligand are well-deliberated apoptosis-related
membrane surface molecules. The Factor associated suicide
(Fas) and Fas ligand (FasL) pair function as a guardian against
autoimmunity and tumor genesis. In 1989, Yonehara et al.
(Yonehara et al., 1989) found a monoclonal antibody which
recognizes the unknown molecule in the surface of myeloid
cells, T lymphocytes, and fibroblasts, and could induce
apoptosis in many human cell lines. This new antigen was
named as Fas. In 1993, Suda et al. (Suda et al., 1993)
successfully cloned FasL from the CTLs hybridoma-derived
cell line PC60-d10S cells, which are capable of binding to Fas
and subsequently mediate cell apoptosis. In 1998, Viard and
colleges (Viard et al., 1998) reported Fas-FasL can mediate
apoptosis of keratinocytes. In SJS/TEN, FasL was upregulated
before clinical development of skin detachment and mucosal
erosions, and the concentration was much lower than that of
granulysin (Murata et al., 2008). In general, FasL in CTLs will
bind to Fas in target cells, triggering apoptosis through Fas-
associated protein with death domain (FADD) adaptor-mediated
recruitment of a series of downstream factors, including Caspase-
8, resulting eventually in cell apoptosis.

Before Fas/FasL was found, it was considered that the killing
effect of CTLs was largely accomplished by perforin and
granzyme. Now we know that perforin/granzyme B is
working independent of Fas-FasL to cause cell apoptosis.
Perforin can punch pores into the target cell membrane in
the presence of Ca2+. However, in the absence of Ca2+, activated

FIGURE 2 | Schematic representation of immunopathogenic mechanism underlying drug-induced SJS/TEN. The drug allopurinol is listed as the demonstrating
drug. Allopurinol and/or its active metabolite oxypurinol is presented by antigen presenting cells (APC) and is interacting with HLA-B*58:01 protein. They are capable of
generating a sufficient strong signal to TCR for cell activation. Upon activation, the stimulated CD8+ cytotoxic T cells will have a cascade release of cytokines or
chemokines, including perforin/granzyme, Fas-FasL, TNF-α, and granulysin, which will kill keratinocytes and mucosal cells causing skin sloughing and necrosis.
Meanwhile, CTLs and NK cells will infiltrate into the skin to form blisters. The left bottom image illustrates keratinocyte necrosis (black arrow) and development of large
bullae (red arrow), adapted from (Gupta et al., 2019). Abbreviations: APC: antigen presenting cells. APCs include dendritic cells, macrophages, Langerhans cells, and
B cells. TCR: T-cell receptor. CTLs: cytotoxic T lymphocytes. NK cells: natural killer cells.
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CTLs can still kill target cells via Fas/FasL. Upon CTLs
recognition of target cells, Fas is highly expressed on cell
surface of target cells (like keratinocytes) and the ligation of
Fas and FasL will trigger the apoptotic program to release a
caspase cascade; subsequently the target cells are subject to
programmed cell death. In addition, the FasL interaction could
promote the inflammation via NF-κB activation (Ahn et al.,
2001; Xiao et al., 2002).

Additionally, diverging results remain as Chen and colleagues
found the pathological feature of chronic conjunctivitis in SJS
patients was consistent with chronic inflammation, but the
expression of Fas-FasL in conjunctiva was as low as normal
conjunctiva (Chen et al., 2014). It seems Fas-FasL is unlikely
to mediate conjunctival cell death in SJS/TEN. Whether the
elevation of serum Fas-FasL is responsible for the death of
conjunctival and mucous cells needs further investigation.

TNF-α-Related Apoptosis
TNF-α, a substance made by monocytes and macrophages in the
epidermis, has been identified as a mediator of keratinocyte death.
TNF-α can interact with a surface death receptor TNF receptor-1,
which will induce the recruitment of adaptor proteins such as
FADD to trigger the extrinsic apoptotic pathway, leading to cell
death. Plenty of studies support that TNF-α is strongly expressed
in SJS/TEN lesions and is involved in the epidermal necrosis
(Caproni et al., 2006; Neuman and Nicar, 2007; Wang et al.,
2018b). Excitingly, TNF-α antagonists are translated into clinical
therapeutics for SJS/TEN in recent years. Tons of evidence
supports TNF antagonists halt SJS/TEN (Paradisi et al., 2014;
Gavigan et al., 2018; Shear et al., 2018; Trujillo-Trujillo et al.,
2018; Chafranska et al., 2019; Coulombe et al., 2019; Pham et al.,
2019; Zhang et al., 2020). A randomized controlled trial
compared etanercept (a TNF inhibitor) with systemic
corticosteroid treatment in adult SJS/TEN patients and showed
a decreased SCORTEN-predicted mortality rate, reduced skin
healing time, and less gastrointestinal hemorrhage in the
etanercept group. In addition, TNF-α and granulysin secretion
in blister fluids and plasma were decreased by 45.7–62.5% and the
regulatory T cells (Tregs) population was increased by two fold
(Wang et al., 2018a). However, the risk of serious infection is
increased when using potent immunosuppressant, and thus the
risk of TNF inhibitors should be weighted when administrated
(Woolridge et al., 2018).

Granulysin, the Cytolytic Granules,
Mediates the Keratinocyte Apoptosis
Analysis of blister fluids from carbamazepine, phenytoin, and
amoxicillin-induced SJS/TEN in Han Chinese has pointed out
that a high expression of granulysin secreted by CTLs and NK
cells is the key molecule responsible for the disseminated
keratinocyte death in SJS/TEN (Chung et al., 2008). There was
a high amount of granulysin in the blister fluid and its
concentration was 2–4 times more than other cytotoxic
proteins. The expression of granulysin was high in the plasma
even before the onset of blister and slough. Granulysin was found
to have a strong role in cell membrane perforation triggering cell

apoptosis, and dissolving a wide variety of bacteria and killing
tumor cells. When injecting granulysin into the mouse skin, the
mice developed a sign similar to SJS/TEN. For this reason, it is
believed that granulysin plays an important role in regulating
epidermal cell death in SJS/TEN (Saito et al., 2013).

As granulysin is the predominant cytotoxic protein in SJS/
TEN, therapies targeting granulysin may be promising for SJS/
TEN. A recent study showed that the c.11G > A heterozygous
mutation in granulysis encoding gene contributed to a mixed
drug-induced SJS/TEN. This mutation creates a premature
termination codon (p.Trp4Ter) and an abnormal subcellular
mislocalization of granulysin (Fonseca et al., 2019). A group in
Taiwan developed a novel siRNA chimera targeting granulysin
and CTLs that showed great effect on inhibiting granulysin in
activated T cells (Wang et al., 2013). Though not tested in
patients, this method may lay a cornerstone for future
research on granulysin.

Other Cytokines or Molecules
Except for the cytokines mentioned above, other cytokines
including IFN-γ and IL-15 are involved in the development of
SJS/TEN and might be used as biomarkers for SJS/TEN. A report
showed a significant higher serum levels of Th1 cytokine IFN-γ
and chemokines CXCL9 and CXCL10 in SJS/TEN patients than
tolerant controls (Wang et al., 2016). IL-15 is a proinflammatory
cytokine that plays an essential role in the activation and
proliferation of T cells and NK cells. Su et al. found IL-15 was
significantly associated with SJS/TEN fatalities (Su et al., 2017).
Notably, long-standing evidence has suggested that IL-15 could
be a diagnostic and prognostic marker, and a therapeutic target
for SJS/TEN (Stern and Divito, 2017), though not tested in
clinical settings. Serum level of IL-33, which might be released
from epidermal keratinocytes, was elevated in patients with TEN
in the early stage and gradually decreased during their clinical
course. Therefore, IL-33 might be a good marker for the early
stage of TEN (Adachi et al., 2019).

Besides these, Hama et al. used the mass spectrometry to
analyze the supernatant in PBMCs from SJS/TEN patients after
reexposure to causative drugs and found galectin-7 was strongly
upregulated (Hama et al., 2019). Galectin-7 is a protein
specifically expressed in keratinocytes and is moderately
repressed by retinoic acid (Magnaldo et al., 1995). High-
mobility group box 1 protein (HMGB1) is a damage-
associated molecular-pattern protein. Serum level of HMGB1
was found significantly higher in SJS/TEN compared with healthy
controls in Japanese (Fujita et al., 2014) and Taiwanese patients
(Carr et al., 2019), but its expression level varied on a case-to-case
basis (Adachi et al., 2019).

The kinetics of cytokines varies tremendously during the
disease course. For instance, the concentrations of soluble FasL
and granulysin decrease rapidly in the disease course (Murata
et al., 2008; Abe et al., 2009), while IFN-γ and TNF-α quantities
are relatively stable (Yang et al., 2017; Lerch et al., 2018). The
variable levels of these cytokines in SJS/TEN depend largely on
the relative disease course (Yang et al., 2017), and some of them
can decrease immediately after initiation of immunosuppressive
therapy albeit no improvement in the skin symptoms.
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Therefore, finding a good cytokine marker that correlates with
disease severity and mortality but may not be interfered by
treatment is urgently needed for the diagnosis and prognosis of
SJS/TEN.

Regulatory T Cells
Tregs cells are essential in regulating immune homeostasis and
inflammation (Chen and Oppenheim, 2014; Zhou et al., 2014). Treg
inhibits the function of T effector cells (Teff) at the site of
inflammation, thus limiting severe immunopathology (Takahashi
et al., 2009). A previous study showed Tregs were almost lacking in
the SJS skin lesion (Amakata and Teraki, 2019), and its expression
could prevent life-threatening skin damage such as TEN (Azukizawa
et al., 2005). A study in Japan suggested that the infection affected the
activity of Treg and caused more severe symptoms of SJS/TEN and
early onset time (Okamoto-Uchida et al., 2017). A study explored
Tregs in allopurinol-induced SJS/TEN and found allopurinol
suppressed the chemokines involved in Treg migration and
compromised the migratory chemokine receptors in human
keratinocyte cell lines, highlighting the sparse distribution of
Tregs in the skin of SJS/TEN patients (Osabe et al., 2018).

DISCUSSION AND FUTURE PERSPECTIVE

As the most severe adverse drug reactions with high mortality,
SJS/TEN is initiated jointly by environmental and genetic factors,
and the interaction between these two. However, in about half
cases of SJS/TEN no causative drug is identified (Auquier-Dunant
et al., 2002) and in 15% of SJS/TEN patients they either had taken
no drug or drug responsibility is deemed unlikely (Sassolas et al.,
2010). Virus, bacterial, or mycoplasma infections are suggested to
be a trigger for SJS/TEN. Some reported autoimmune diseases
such as lupus erythematous and dermatomyositis without any
drug causality or infectious aetiology can be a cause of SJS/TEN
(Ziemer et al., 2012; Dumas et al., 2018). Finding a common
allogeneic etiology that can elicit SJS/TEN is imperative to further
elucidate the pathophysiology of SJS/TEN. Even with a variety of
genetic markers being used for prophylaxis, new diagnosis of SJS/
TEN is made every year. Various in vivo, in vitro, and ex vivo
assessment tools have been exploited to aid in finding the
causative drugs and predict the prognosis. For instance, drug-
challenged ex vivo lymphocyte transformation test such as IFN-γ
ELISpot has been adopted to identify possible culprit drugs in SJS/
TEN (Klaewsongkram et al., 2016; Trubiano et al., 2018).

Notwithstanding the fact that numerous researches have
been input to autoimmune reactions and HLA serotypes, it is
worth mentioning that the correlation between SJS/TEN and
HLA does not mean immunological reactions are the sole
effector mechanism of epidermal necrosis. Other genetic or
metabolic factors outside HLA need to be delineated. Some
studies have found the possible roles of epigenetics, including
microRNAs, ncRNAs (noncoding RNA), and DNA
methylation, in drug-SJS/TEN (Ichihara et al., 2014; Sato

et al., 2015; Sun et al., 2017; Cheng et al., 2018). Mawson and
colleagues proposed SJS and TEN share a common
pathogenesis that it is endogenous retinoids (vitamin A
and its congeners) that obstruct normal liver function and
spill to the circulation that cause SJS/TEN. Blocking
circulating retinoids could mitigate the symptoms of SJS/
TEN (Mawson et al., 2015). A study showed Wnt signaling
was downregulated in drug-induced SJS/TEN, and
enhancement of Wnt signaling attenuated ex vivo
activation of drug-specific T cells from SJS/TEN patients
(Chen et al., 2020). Plus, using metabonomics to study the
metabolites might be helpful to identify the common etiology
to cause SJS/TEN. Mobilization of Tregs and expansion of
tolerogenic myeloid precursors might promote
reepithelialization on SJS/TEN (Wolkenstein and Wilson,
2016), and this could be another research direction.

Although gratifying achievements have been made, pivotal
questions on pathogenesis of SJS/TEN underlying gene
polymorphisms and T cell cytotoxicity remain. For instance,
why some of the patients carrying the risky genes tolerate the
drug and do not develop SJS/TEN? What makes the skin and
mucous membrane in the mouth, throat, eyes, genitals, and anus
so special to be targeted in SJS/TEN? Do they relate to skin
expression of drug transporters? What is the link between
various culprit drugs? Do risky HLA-B alleles work by the
same mechanism? And is there a common risk factor or
metabolite among these drug hypersensitivities? In addition
to well-elucidated HLA and CYP variants, more studies are
warranted to reveal novel risk factors and mechanisms to
promote diagnosis, treatment, and prognosis of SJS/TEN.
Pharmacogenetics will be sure to play a big role in the
prevention and individualized treatment of severe adverse
drug reactions.
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