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Abstract
Myeloid neoplasms-post cytotoxic therapy (MN-pCT, previously therapy-related myeloid neoplasms/tMN), are secondary 
malignancies associated with prior chemotherapy treatment, historically carrying a very poor prognosis. These are rarely 
associated with primary central nervous system (CNS) tumors, usually high-grade CNS malignancies requiring intensive 
multimodal treatment. Pediatric low-grade gliomas (pLGGs) are the most common childhood CNS tumors, and up to 50% 
of patients will require adjuvant therapy, which has traditionally consisted of low-dose metronomic chemotherapy, though 
the recent identification of key molecular drivers of pLGG means targeted therapies are changing this paradigm. We present 
a novel case of a 17-year-old girl with therapy-related myelodysplastic syndrome following chemotherapeutic treatment for 
pLGG. Given the poor prognosis of MN-pCTs, this case represents an important note of caution when choosing appropriate 
therapy for pLGG, especially considering the evolving role for targeted treatments in this disease.
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Introduction

Myeloid neoplasms-post cytotoxic therapy (MN-pCT, previ-
ously referred to as therapy-related myeloid neoplasms or 
tMNs), are rare but devastating secondary conditions arising 
in the setting of previous cytotoxic treatment for an unrelated 
malignancy [1–4]. They develop most commonly in the set-
ting of previous alkylator or topoisomerase II inhibitor use 
and are therefore mostly associated with primary neoplasms 
that require intensive treatment with these agents, such as 
high-grade solid tumors of bone, soft tissue, and the CNS 

[3–6]. MN-pCT occur in 0.5–1% of children following can-
cer treatment and are associated with a worse prognosis than 
de novo pediatric myelodysplastic syndrome (MDS) or acute 
myeloid leukemia (AML), with 5-year overall survival (OS) 
of < 10% in untreated and ≤ 30% in treated patients [2, 3, 
6–11].

Pediatric low grade gliomas (pLGGs) are the most com-
mon central nervous system (CNS) tumors of childhood and 
are associated with excellent long-term survival outcomes, 
(> 80% 10-year OS) [12, 13]. Whilst surgical resection can 
be curative, tumors occurring in less surgically accessible 
locations (such as the optic pathway or hypothalamus) often 
require medical treatment for disease control. This has tra-
ditionally consisted of low-dose metronomic-style chemo-
therapy, with combination vincristine-carboplatin or single 
agent vinblastine widely used as first-line therapy. These 
regimens achieve 5-year progression-free survival rates of 
around 45–55%, therefore many patients experience further 
progressions and require multiple lines of therapy [14, 15]. 
Recent advances in molecular profiling have led to a greater 
understanding of the molecular drivers of pLGG, most com-
monly alterations in the mitogen-activated protein kinase 
(MAPK) pathway [16–20]. This has led to the development 
and investigation of multiple novel targeted therapies which 
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are changing the treatment paradigm for this disease [21, 
22].

Given the prevalence of pLGGs and the favorable long-
term survival outcomes, avoidance of serious long-term 
treatment-related sequelae is crucial. MN-pCT are not gener-
ally associated with pLGG treatment, with only two previous 
cases reported worldwide to our knowledge [23, 24]. Here 
we report a novel case of a 17-year old girl who developed 
MDS-pCT following chemotherapeutic treatment for pLGG.

Patient presentation

The patient initially presented at age 4 with diencephalic 
syndrome. MRI revealed a large suprasellar tumor involving 
the hypothalamus and optic chiasm and biopsy confirmed a 
pilomyxoid astrocytoma, WHO Grade 1. She was initially 
treated with chemotherapy as per the COG A9952 Regimen 
A protocol with weekly vincristine and carboplatin (cumu-
latively receiving approximately 7 g/m^2 of carboplatin), 
completing treatment at age 5. She had a year-long period 
of disease stability before progression at age 7, when she 
was commenced on second-line chemotherapy treatment per 
the COG A9952 Regimen B protocol with thioguanine, pro-
carbazine, lomustine and vincristine (cumulatively receiving 
1600 mg/m^2 and 880 mg/m^2 of procarbazine and lomus-
tine respectively). After a prolonged period of stability, 
the patient had slow progression of the suprasellar lesion 
at age 17, (8 years after the completion of chemotherapy), 

associated with progressive peripheral visual field impair-
ment (Fig. 1). Given the potential for targeted therapeutic 
options, the patient underwent a repeat biopsy, which con-
firmed a characteristic KIAA1549::BRAF fusion.

Prior to commencing treatment with a MAPK pathway 
inhibitor as third line therapy, the patient was noted to have 
neutropenia (ANC 0.1–1.1 ×  109/L) and macrocytic anemia 
(Hb 75–95 g/L, MCV of 95–105 fL). This bicytopenia per-
sisted for 6 months, prompting a diagnostic bone marrow 
biopsy (BMB) which revealed a hypocellular marrow with 
reduced trilineage hematopoiesis and a clonal cytogenetic 
abnormality with a gain of chromosome 1 (Table 1). Serial 
monitoring showed progression of marrow hypocellularity 
and trilineage dysplasia in > 10% of cells, consistent with 
myelodysplasia (Figs. 2 and 3). In addition, there was clonal 
evolution of the cytogenetic abnormalities, with develop-
ment of three separate abnormal populations (Table 1). 
Blasts were not increased.

Of note, germline whole exome DNA next-generation 
sequencing was done to investigate for any bone marrow 
failure syndromes or underlying genetic predisposition to 
increased treatment-related toxicity. No significant germline 
variants were found.

In the setting of myelodysplasia with clonal evolu-
tion and the emergence of new cytogenetic abnormali-
ties, the patient was diagnosed with myelodysplastic 
syndrome-post cytotoxic treatment (MDS-pCT), 9 years 
after chemotherapy and 13 years following her original 
brain tumor diagnosis. She underwent a hematopoietic 

Fig. 1  MRI brain (T2 sequence): heterogeneously T2 hyperintense suprasellar lesion measuring 26 × 43 × 29 mm (transverse × AP × craniocau-
dal)
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stem cell transplant, (10/10 matched-unrelated donor, 
CD34 selected graft, with reduced intensity conditioning 
regimen of Thiotepa/Fludarabine/ATG). She is now 18 
months post-HSCT and is clinically well, with full donor 
engraftment.

Discussion

MC-pCT are well known to be associated with alkylating 
agents (including carboplatin, lomustine, and procarbazine) 
and topoisomerase II inhibitors, with risk correlating to 
cumulative dose exposure [2–6, 25]. MN-pCT exhibit a 
higher proportion of high risk cytogenetic abnormalities 
than de novo AML, particularly TP53 mutations (found in 
~ 30%) and complex karyotypes, as is seen in this patient 
[3, 4, 26–28].

MN-pCT are exceedingly rare in the pLGG setting. The 
largest published review of secondary neoplasms (SNs) 
in pediatric patients with primary CNS tumors retrospec-
tively analyzed 1283 patients; among these, 24 SNs were 
identified, including 3 patients with t-MN, none of whom 
had a primary diagnosis of pLGG [29]. There have only 
been two other reported cases of MN-pCT occurring in 
LGG patients [23, 24]. The first patient was treated simi-
larly to our case with sequential alkylator-based regimens 

Table 1  Serial bone marrow 
biopsy results

1 First BMB performed 9 years after completion of chemotherapy (and 13 years after initial diagnosis)

BMB date Morphologic findings Cytogenetic findings

Dec  20221 Moderately hypocellular (30–40%)
No dysplasia evident

Gain of chromosome 1p in 13% of cells

Feb 2023 Markedly hypocellular (0–10%)
Dysplastic changes evidence in < 10% of 
erythroid and granulocytic precursors

Gain of chromosome 1p in 13% of cells
Complex karyotype in 2% cells (trisomy 

1, 8 and der(1;18))
Mar 2023 Moderately hypocellular (30–40%)

Trilineage dysplastic changes of > 10%, 
consistent with myelodysplasia

Gain of chromosome 1p in 40% of cells
Trisomy 1 and der(1;18) in 4% cells

Fig. 2  Markedly hypocellular bone marrow for age

Fig. 3  Dysplastic bone mar-
row changes. a Bone marrow 
dysplasia with internuclear 
bridging. b Karyorrhexis. c 
Hypogranular neutrophil
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(vincristine-carboplatin followed by TPCV at recurrence) 
and developed t-MDS 9 years following diagnosis [23]. 
Details of the other patient’s treatment are not known [24].

Pediatric MN-pCT carry a poor prognosis with a 5-year 
OS in patients treated with HSCT of 30% (based on limited 
pediatric data series) compared with de novo AML which 
has an expected 5-year overall survival of 75% [2, 3, 6–11, 
30]. For patients with a primary diagnosis of pLGG, which 
carries an otherwise excellent 10-year OS of > 85%, MN-
pCT represent an unacceptable secondary treatment effect 
[12]. Given the evolving understanding of the molecu-
lar drivers in pLGG, MAPK-targeted therapies are being 
increasingly used in this disease, with several agents FDA-
approved in the both the upfront and recurrent/progressive 
settings, and multiple others under investigation in phase 
II/III clinical trials [21, 22]. Consideration of long-term 
treatment morbidity is paramount in pLGG, and this case 
highlights a particularly devastating entity that may prompt 
consideration of targeted treatment options in an effort to 
avoid prolonged alkylator exposure and risk of secondary 
malignancy.
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