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Abstract: Gastric carcinoma (GC) heterogeneity represents a major barrier to accurate diagnosis
and treatment. Here, we established a comprehensive single-cell transcriptional atlas to identify
the cellular heterogeneity in malignant epithelial cells of GC using single-cell RNA sequencing
(scRNA-seq). A total of 49,994 cells from nine patients with paired primary tumor and normal tissues
were analyzed by multiple strategies. This study focused on the malignant epithelial cells, which
were divided into three subtypes, including pit mucous cells, chief cells, and gastric and intestinal
cells. The trajectory analysis results suggest that the differentiation of the three subtypes could be
from the pit mucous cells to the chief cells and then to the gastric and intestinal cells. Lauren’s
histopathology of GC might originate from various subtypes of malignant epithelial cells. The
functional enrichment analysis results show that the three subtypes focused on different biological
processes (BP) and pathways related to tumor development. In addition, we generated and validated
the prognostic signatures for predicting the OS in GC patients by combining the scRNA-seq and bulk
RNA sequencing (bulk RNA-seq) datasets. Overall, our study provides a resource for understanding
the heterogeneity of GC that will contribute to accurate diagnosis and prognosis.

Keywords: single-cell RNA sequencing; bulk RNA sequencing; gastric carcinoma; malignant epithelial
cells; prognostic signatures

1. Introduction

Gastric carcinoma (GC) has a high incidence and mortality globally, and the most
common histological type is stomach adenocarcinoma (STAD) [1,2]. GC is characterized by
particular subtypes and clinical manifestations, which are the great challenges for clinical
diagnosis and treatment [3,4]. Although advances have been made in identifying different
molecular subtypes of GC through The Cancer Genome Atlas (TCGA) and Asian Cancer
Research Group (ACRG), the prognosis improvement of patients is not significant [5,6]. GC
is mainly the pathological change of gastric mucosa glandular epithelial cells, and the exact
pathogeny is unclear. This study shows that H. pylori infection, a high salt diet, and a low
intake of fruits and vegetables are risk factors for GC [7].

High-throughput sequencing technologies, such as bulk RNA sequencing (bulk RNA-
seq) and single-cell RNA sequencing (scRNA-seq), have greatly accelerated the pace of
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research into the molecular characteristics of human tumors. So far, a large number of omic-
sstudies have described the GC’s genetic and epigenetic heterogeneity [8–10]. Although
bulk RNA-seq can provide data for mass gene expression profiling, it cannot distinguish
the relationship between different cell lineage and cellular interaction [11]. The advent of
scRNA-seq compensates for the shortcomings of bulk RNA-seq. It provides a method that
can characterize the transcriptional status of thousands of cells simultaneously [12,13]. The
integration of scRNA-seq and bulk RNA-seq is of great scientific importance for the study
of tumor development and heterogeneity.

Here, we constructed a transcriptomic landscape of GC malignant epithelial cells by
scRNA-seq, encompassing various subtypes of GC pathology subtypes. We also combined
the results with bulk RNA-seq to find the prognostic signatures that can predict the overall
survival (OS) of GC patients. The landscape of GC malignant epithelial cells was con-
structed to interpret the heterogeneity of GC and shed light on the clinical diagnosis and
prognosis of GC in our study (Figure 1).
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2. Methods
2.1. Data Source and Preprocessing

The GC scRNA-seq dataset GSE183904 was downloaded as required from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/gds, accessed on
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24 March 2022). The nine patients with paired primary tumor and normal tissues were
selected for analysis in the present study. Using the R package Seurat, all samples were
analyzed for genes/features shared by more than three cells and for cells containing
500–6000 features. Cells with mitochondrial RNA content higher than 20% were ex-
cluded [14].

Public clinical data and gene expression information were obtained from the TCGA
database (https://portal.gdc.cancer.gov/, accessed on 24 March 2022), the Genotype-Tissue
Expression (GTEx) database (https://www.gtexportal.org/, accessed on 24 March 2022)
and the GEO database [5]. The bulk RNA-seq dataset included TCGA-STAD, GTEx-
stomach, GSE15459, GSE29272, GSE57303, GSE62254, and GSE66229. Differentially ex-
pressed genes (DEGs) were calculated using the R package limma between tumor and
normal samples. Only genes with an expression fold change (FC) >2.0 or <−2.0 and a false
discovery rate (FDR) < 0.05 were taken into subsequent analysis.

2.2. scRNA-Seq Normalization, Clustering and DEGs Analyzing

SCtransform normalization was carried out separately for each sample, and FindInte-
grationAnchors was run to find anchor genes and integrate the data [15]. The integrated
data were scaled, principal component analysis (PCA) was performed, and the data were
visualized using the t-Distributed stochastic neighbor embedding (tSNE) method. A shared
nearest neighbor (SNN) modularity optimization-based clustering algorithm with a res-
olution of 1.0 was set to identify cell clusters. The FindAllMarkers module was used to
identify DEGs, and genes expressed in more than 25% of cells in each cluster were selected
for cluster demarcation. The cell type markers were employed to construct cell atlas.

2.3. Recognition of Malignant and Non-Malignant Epithelial Cells

To identify chromosomal copy number variations, InferCNV (https://github.com/
broadinstitute/inferCNV, accessed on 28 March 2022) was used to explore scRNA-seq
datasets from primary tumors compared with normal scRNA-seq datasets. Each epithelial
cell in the present study was clustered, and a CNV score was calculated using the k-means
clustering algorithm. The classes with a CNV score higher than the average was defined
as a group of malignant epithelial cells, whereas the others were considered as a group
of non-malignant epithelial cells. The malignant epithelial cells were also clustered and
annotated as different subtypes based on cell type markers. DEGs between malignant and
non-malignant epithelial cells and among different subtypes of malignant epithelial cells
were identified using the FindAllMarkers module.

2.4. Functional Enrichment Analysis

Gene ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis, and gene set enrichment analysis (GSEA) were
performed to uncover the potential biological function of the different cells through the
Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.
ncifcrf.gov/, accessed on 28 March 2022) database and the Molecular Signatures Database
(MSigDB, https://www.gsea-msigdb.org/, accessed on 28 March 2022). The enrichment
results were visualized using the R package ggplot2.

2.5. Trajectory Analysis

Pseudotime and cell trajectory analyses were used to investigate the differentiation
trajectories and related genes in different cell clusters and to explain the molecular mecha-
nism in the progression of GC. The R package Monocle was used to cluster cells and draw
learning maps to compare trajectories among different subtypes of malignant epithelial
cells [16,17].

https://portal.gdc.cancer.gov/
https://www.gtexportal.org/
https://github.com/broadinstitute/inferCNV
https://github.com/broadinstitute/inferCNV
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
https://www.gsea-msigdb.org/
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2.6. Cell–Cell Communication Analysis

To explore underlying interactions between various subtypes in malignant epithelial
cells, an analysis of cell–cell communication was conducted using the R package Cellchat,
which simulates intercellular communication by binding ligands, receptors and their co-
factors [18]. The enriched receptor-ligand interactions between the two cell types were
deduced based on the receptor expression of one cell type and the corresponding ligand
expression of another cell type.

2.7. Construction of Gene Regulatory Network

SCENIC is a tool for simultaneously reconstructing gene regulatory networks and
identifying stable cell states from scRNA-seq data [19]. The gene regulatory network was
derived based on co-expression and DNA motif analysis, and then the network activity
in each cell was analyzed to identify the cell state. In order to determine the search space
around the transcription start site, two gene-motif rankings (10 kb around the transcription
start site or 500 bp upstream and 100 bp downstream of the transcription start site) were
used as reference. Gene regulation of various malignant epithelial cells was constructed
using the R package GENIE3, RcisTarget and AUCell. Then, the gene regulatory network
was visualized using Cytoscape software.

2.8. Generation and Validation of the Prognostic Signatures

The bulk RNA-seq datasets GSE15459, GSE57303 and GSE66229 from the same plat-
form were integrated for subsequent analysis. The DEGs from the scRNA-seq and the
bulk RNA-seq datasets were screened related to the OS of TCGA-STAD patients using a
univariate Cox analysis. Moreover, LASSO analysis was employed to choose the reliable
predictors for multivariate Cox regression. Then, the prognostic signatures were used to
create a polygenic risk score and divide the TCGA-STAD samples into low- or high-risk
groups. The time-dependent receiver operating characteristic (ROC) curve was used to
assess the predictive ability of the prognostic signatures. The GSE62254 dataset was used
to validate the prognostic value of the prognostic signatures. All results were analyzed and
visualized using the R package survival, survminer, rms and timeROC.

2.9. Statistical Analysis

R version 4.0.3 was used for statistical analysis (https://www.r-project.org/, accessed
on 28 March 2022). The Wilcoxon-rank sum test was used to evaluate associations with
continuous variables. Student’s t-test was used to analyze significant differences among
distinct groups. Kaplan–Meier curves with log-rank statistics were used to compare OS.
p < 0.05 was considered to indicate statistical significance.

3. Results
3.1. A Single-Cell Transcriptome Atlas of GC

Cell populations and corresponding molecular characteristics in GC were investigated
in the GSE183904 dataset, which includes nine patients with paired primary tumor and
normal tissues (Supplementary Table S1). After the removal of low-quality cells based on
the screening criteria in Methods 2.1, 49,994 cells were persisted for biological analysis
(Figure 2A). The cells were divided into 33 clusters after normalization, integration and PCA.
These clusters were noted as eight known cell types according to marker genes recorded
in the literature. The details were as follows: (1) the epithelial cells highly expressing
CDH1; (2) the endothelial cells highly expressing PLVAP; (3) the fibroblast cells highly
expressing FN1; (4) the T cells highly expressing CD8A; (5) the B cells highly expressing
TNFRSF17; (6) the macrophage cells highly expressing CD163; (7) the NK cells highly
expressing KLRD1; (8) the mast cells highly expressing KIT. The proportion of each cell
type varied in different samples (Figure 2B–E, Supplementary Table S2).

https://www.r-project.org/
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Figure 2. Cellular atlas of GC primary tumor and normal tissues. (A) tSNE plot for the
49,994 high-quality cells showing sample origin, Lauren’s histopathology and status. (B) tSNE
plot showing cell types for the 49,994 cells. (C) The proportion of each cell type in 18 samples.
(D) Violin plots showing the expression distribution of marker genes in eight cell types. (E) tSNE
plots showing the expression levels of marker genes for eight cell types.
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3.2. Classification of Malignant and Non-Malignant Epithelial Cells

First, the cell population annotated as epithelial cells in the dataset was accurately
determined and clustered (Figure 3A). Next, InferCNV was employed to distinguish
malignant and non-malignant epithelial cells according to the CNV score. The kemans
classes with a CNV score higher than the average (0.00124) were defined as the malignant
epithelial cells group, and the others were defined as the non-malignant epithelial cells
group (Figure 3B–E, Figure 4A). The top five DEGs of malignant and non-malignant
epithelial cells were as follows: (1) malignant epithelial cells highly expressing CAPN8,
CLDN4, CYP3A5, PHGR1, and PLEC; (2) non-malignant epithelial cells highly expressing
IGFBP2, LIPF, PGA3, PGA4, and PGA5 (Figure 4B,C). Compared with non-malignant
epithelial cells, malignant epithelial cells were enriched for signaling pathways such as
TNF-α/NF-κB, KRAS and IL6/STAT3/JAK. Moreover, there were also cells enriched in
the epithelial mesenchymal transition genes associated with cancer development and
progression (Figure 5A, Supplementary Table S3).
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Figure 4. Classification of the epithelial cells as malignant or non-malignant. (A) tSNE plot showing
the classification of malignant and non-malignant cells. (B) Violin plots showing the expression of
ten representative genes with differential expression between malignant and non-malignant cells.
(C) tSNE plots showing the expression of ten representative genes with differential expression.
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3.3. Transcriptional Heterogeneity of Malignant Epithelial Cells

The malignant epithelial cells were accurately determined and clustered. Subsequently,
the subtypes have been annotated based on marker genes in the literature. There were
three subtypes as follows: (1) the pit mucous cells with high expression of GKN1, GKN2,
MUC5AC, and TFF1; (2) the chief cells with high expression of PGC; (3) the gastric and
intestinal cells with high expression of TFF1, TFF3 and REG4 (Figure 5B–D, Supplementary
Table S2). The proportion of each subtype varied considerably among the different Lauren’s
classifications, and the top 20 DEGs of the three malignant epithelial cell subtypes were
shown (Figure 6A,B). The GSEA results show that the pit mucous cells were mainly enriched
in the pathways and gene sets correlated with cell proliferation, metastasis and invasion,
cell differentiation and inflammatory response. The chief cells were mainly enriched in the
pathways and gene sets related to cell proliferation, cell migration and invasion, cell cycle,
cell differentiation, inflammatory response and cell survival. The gastric and intestinal cells
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were enriched mainly in pathways and genes that were relevant to apoptosis, cell growth,
cell survival and cell metabolism (Figure 6C, Supplementary Table S4).
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3.4. Trajectory of Malignant Epithelial Cells

Trajectory analysis was performed to identify the differentiation heterogeneity of
malignant epithelial cells within and between tumors. It was found that the underlying
cell differentiation trajectories of malignant epithelial cells comprised nine states, and the
contents of three subtypes differed in various states. The pit mucous cells differentiated
into the chief cells and the gastric and intestinal cells (Figure 7A). In the whole potential
differentiation trajectories of malignant epithelial cells, the activities of genes related to the
biological processes (BP) and pathways of cell proliferation, cell migration and invasion,
cell cycle and apoptosis were reduced. In contrast, the activities of genes associated with
translation, enzyme activity and regulation of other cell biological processes and pathways
were increased (Figure 7B, Supplementary Table S5).
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3.5. Intercellular Communication in Malignant Epithelial Cells

Cellchat was used to identify ligand–receptor pairs and molecular interactions among
the three subtypes of malignant epithelial cells. The results show that multiple ligand–
receptor-mediated cell interactions existed mainly in the MK signaling pathway (MDK-
SDC4, MDK-SDC1, MDK-NCL, MDK-LRP1, MDK-ITGA6+ITGB1 and MDK-ITGA4+ITGB1)
and in the MIF signaling pathway (MIF-CD74+CXCR4, MIF-CD74+CXCR2 and MIF-
CD74+CD44) (Figure 8A–C, Supplementary Table S6).
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3.6. Construction of Gene Regulatory Network in Malignant Epithelial Cells

The enrichment results of transcription factor (TF) in three subtypes of malignant ep-
ithelial cells were displayed, and the top 5 TFs were selected for further study (Figure 9A–C,
Supplementary Table S7). The top 5 TF-gene regulatory networks were visualized using
Cytoscape software (Figure 10A). The enrichment analysis results show that the common
genes regulated by the top 5 TFs in three subtypes of malignant epithelial cells were mainly
related to cell proliferation, signal transduction, and metabolism. The special genes regulated
by the top 5 TFs in pit mucous cells were enriched in pathways and biological processes
associated with cell proliferation, signal transduction and metabolism. The special genes
regulated by the top 5 TFs in the chief cells were involved in the cell cycle and cell survival.
The special genes regulated by the top 5 TFs in the gastric and intestinal cells involved the cell
migration, invasion, and translation process (Figure 10B, Supplementary Table S8).
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intestinal cells involved the cell migration, invasion, and translation process (Figure 10B, 
Supplementary Table S8). 

 
Figure 9. The SCENIC analysis predicted the TF. (A) tSNE plot showing the TF in three subtypes of
malignant epithelial cells. (B) Heatmap showing the top 5 TF in three subtypes of malignant epithelial
cells. (C) tSNE plots and histograms show the top 5 TF activities in three subtypes of malignant
epithelial cells.
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Figure 10. The TF-gene regulatory network of malignant epithelial cells. (A) Network showing the
top 5 TF and their regulated genes in three subtypes of malignant epithelial cells. (B) Chord and
bubble plots show the functional enrichment results of the top 5 TF regulated genes in three subtypes
of malignant epithelial cells.

3.7. Bulk RNA-Seq Data Analysis

Differential gene expression analysis of all bulk RNA-seq datasets included in the
present study was used to identify the DEGs between GC tumors and normal tissues.
Then, the intersection of the results was taken to extract the common up-regulated and
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down-regulated genes for functional enrichment analysis (Figure 11A,B). The down-
regulated genes were mainly enriched in the biological processes and pathways related
to metabolism and normal gastric function. In addition, the up-regulated genes were
involved in the behavior of malignant tumor cells, such as cell migration and invasion
(Figure 11C, Supplementary Table S9).
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Figure 11. The analysis of the bulk RNA-seq datasets. (A) Volcano plots and heatmaps show the
DEGs between the tumor and normal tissues in bulk RNA-seq datasets. (B) Venn plots showing the
common up-regulated and down-regulated genes in different bulk RNA-seq datasets. (C) Bubble
plots show the functional enrichment results of the up-regulated and down-regulated genes.

3.8. Generation and Validation of the Prognostic Signatures in Malignant Epithelial Cells

The up-regulated genes from bulk RNA-seq and DEGs in malignant epithelial cells
from scRNA-seq were integrated to construct a polygenic risk score based on prognostic
signatures for predicting prognosis in GC. Ten genes (AKR1B1, CFDP1, IMPACT, PRR15L,
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PTTG1IP, SLC17A9, STX10, TRIM25, UPP1 and VCAN) were selected to calculate the
polygenic risk score through univariable, multivariable Cox and LASSO regression. GC
patients were divided into low-risk or high-risk groups, and the prognosis of patients in the
high-risk group was poor in the training cohort (TCGA-STAD) and test cohort (GSE62254).
The ROC curve showed that the ten prognostic signatures performed well in predicting
the OS of GC patients, with an area under the ROC curve > 0.7 in the training cohort and
around 0.6 in the test cohort (Figure 12A,B). Prognostic signatures in three subtypes of
malignant epithelial cells were also generated and validated with prognostic values for GC
patients (Supplementary Figures S1–S3).

Cells 2022, 11, x FOR PEER REVIEW 15 of 19 
 

 

common up-regulated and down-regulated genes in different bulk RNA-seq datasets. (C) Bubble 
plots show the functional enrichment results of the up-regulated and down-regulated genes. 

3.8. Generation and Validation of the Prognostic Signatures in Malignant Epithelial Cells 
The up-regulated genes from bulk RNA-seq and DEGs in malignant epithelial cells 

from scRNA-seq were integrated to construct a polygenic risk score based on prognostic 
signatures for predicting prognosis in GC. Ten genes (AKR1B1, CFDP1, IMPACT, PRR15L, 
PTTG1IP, SLC17A9, STX10, TRIM25, UPP1 and VCAN) were selected to calculate the pol-
ygenic risk score through univariable, multivariable Cox and LASSO regression. GC pa-
tients were divided into low-risk or high-risk groups, and the prognosis of patients in the 
high-risk group was poor in the training cohort (TCGA-STAD) and test cohort 
(GSE62254). The ROC curve showed that the ten prognostic signatures performed well in 
predicting the OS of GC patients, with an area under the ROC curve > 0.7 in the training 
cohort and around 0.6 in the test cohort (Figure 12A,B). Prognostic signatures in three 
subtypes of malignant epithelial cells were also generated and validated with prognostic 
values for GC patients (Supplementary Figure S1–S3). 
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4. Discussion

GC is a heterogeneous disease influenced by many factors, presenting a number of
difficulties for clinical diagnosis and individualized treatment. Burgeoning scRNA-seq
has been widely applied to explore tumor heterogeneity, including the analysis of tumor
development, drug resistance programs, cell–cell communication and immune infiltration
patterns [20–22]. In the present study, we used the technology to construct a comprehensive
landscape of malignant epithelial cells from GC at single-cell resolution.

Focusing on malignant epithelial cells, we identified three subtypes (the pit mucous
cells, the chief cells, and the gastric and intestinal cells) with different transcriptome
characteristics. The pit mucous cells and the chief cells were mainly derived from diffuse
and intestinal GC patients, respectively. The gastric and intestinal cells had the largest
proportion in GC patients with mixed intestinal and diffuse conditions. This suggests
that the different Lauren’s histopathology of GC might originate from various subtypes of
malignant epithelial cells. We can use the marker genes of different subtypes of malignant
epithelial cells to help determine the Lauren’s classification. The results of the functional
enrichment analysis show that they had different activities in the signaling pathways and
biological processes associated with tumor development. The pit mucous cells and the chief
cells were mainly enriched in cell proliferation, differentiation, migration and invasion,
while the gastric and intestinal cells focused on cell survival and metabolism. The trajectory
analysis results suggest that the differentiation of malignant epithelial cells could occur
from pit mucous cells to chief cells and then to gastric and intestinal cells. These findings
suggest that the tumor cells of diffuse-type GC were poorly differentiated and the cases
with intestinal histology had a different degree of differentiation [23]. Zhang et al. found
that the GC with a low differentiation degree was more aggressive, which was consistent
with our findings [24].

Moreover, the cell–cell interactions indicated that the different subtypes of malignant
epithelial cells communicate with each other to a high degree. The cytokines mainly
mediated the intercellular communication among the three subtypes of malignant epithelial
cells in the MK and MIF signaling pathway, which are involved in the inflammatory
response, tumor growth, and cell migration, which have been poorly studied in GC [25–27].
The gene regulatory network in malignant epithelial cells showed that TF and its activities
varied in different subtypes of malignant epithelial cells. Thus, the three subtypes of
malignant epithelial cells were enriched in the different biological processes and pathways
associated with malignant biological behavior. The above results suggest that intratumoral
and intertumoral heterogeneity is a fundamental property of GC malignant epithelial cells.

In this study, we integrated the scRNA-seq and bulk RNA-seq datasets to find the
prognostic signatures for predicting OS in GC patients. The prognostic signatures appeared
to be essential for GC because they performed well in the train and test cohorts and could be
used for GC clinical screening. In addition, we also generated and validated the prognostic
signatures for different subtypes of malignant epithelial cells. They had prognostic value
for the patients with different malignant epithelial cells in combination with Lauren’s
histopathology in clinical use. We could predict the progression of patients by detecting
the expression of these prognostic signatures.

The results of this study may be used in clinical diagnosis and treatment in the
future. The cell atlas and marker genes of GC malignant epithelial cells can be applied to
identify Lauren’s histopathology of GC patients by combining diagnostic methods such as
endoscopy. Developing personalized therapy for malignant epithelial cell heterogeneity
to improve clinical efficacy and the prognostic signatures can be used to test clinical
application value and design the targeted drugs. At the same time, this study also had
some limitations. First, the number of patients included in the study was small, and it was
impossible to determine whether there was the same result in large-scale samples. Second,
all results of this study were not validated in experiments and clinical practice to ensure
they can be extended.
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5. Conclusions

In summary, using scRNA-seq, we constructed a single-cell transcriptome atlas of GC
malignant epithelial cells, encompassing several GC Lauren’s histopathological subtypes.
Various methods analyzed the subtypes of malignant epithelial cells, and the heterogeneity in
terms of functional enrichment, cell differentiation trajectory, and intercellular communication
was preliminarily clarified. Furthermore, we combined the scRNA-seq with the bulk RNA-
seq datasets to find the prognostic signatures for predicting the OS of GC patients. All the
results of the present study need to be further validated in experimental and clinical practice.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells11162550/s1, Figure S1: Generation and validation of the prognostic signatures in the pit
mucous cells. * p < 0.05, ** p < 0.01. Figure S2: Generation and validation of the prognostic signatures in
the chief cells. (A) The gen-eration of the prognostic signatures in the train cohort. (B) The validation of
the prognostic sig-natures in the test cohort. * p < 0.05, ** p < 0.01, *** p < 0.001. Figure S3: Generation
and validation of the prognostic signatures in the gastric and intestinal cells. (A) The generation of the
prognostic signatures in the train cohort. (B) The validation of the prognostic signatures in the test
cohort. * p < 0.05. Table S2: List of cell-type markers from literature used for annotating cell-states.
Table S3: The GSEA results of malignant vs non-malignant epithelial cells. Table S4.1: The GSEA
results of the pit mucous cells. Table S4.2: The GSEA results of the chief cells. Table S4.3: The GSEA
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Table S5.5: The enrichment results of GO biological processes and KEGG pathways in red cluster.
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and targets information in the gene regulatory network of malignant epithelial cells. Table S8.1: The
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of malignant epithelial cells. Table S8.2: The GO and KEGG enrichment results of the special genes
regulated by the top5 TF in the pit mucous cells. Table S8.3: The GO and KEGG enrichment results of
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BP, biological process; DEGs, differentially expressed genes; GC, gastric carcinoma; GO, gene ontology;
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