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Abstract

Understanding biological phenomena requires a systemic approach that incorporates different mechanisms acting on
different spatial and temporal scales, since in organisms the workings of all components, such as organelles, cells, and
organs interrelate. This inherent interdependency between diverse biological mechanisms, both on the same and on
different scales, provides the functioning of an organism capable of maintaining homeostasis and physiological stability
through numerous feedback loops. Thus, developing models of organisms and their constituents should be done within the
overall systemic context of the studied phenomena. We introduce such a method for modeling growth and regeneration of
livers at the organ scale, considering it a part of the overall multi-scale biochemical and biophysical processes of an
organism. Our method is based on the earlier discovered general growth law, postulating that any biological growth
process comprises a uniquely defined distribution of nutritional resources between maintenance needs and biomass
production. Based on this law, we introduce a liver growth model that allows to accurately predicting the growth of liver
transplants in dogs and liver grafts in humans. Using this model, we find quantitative growth characteristics, such as the
time point when the transition period after surgery is over and the liver resumes normal growth, rates at which hepatocytes
are involved in proliferation, etc. We then use the model to determine and quantify otherwise unobservable metabolic
properties of livers.
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Introduction

First we introduce the earlier discovered general growth law and

its mathematical representation, the growth equation, and apply it

towards modeling growth of livers and liver transplants in dogs

and humans (the first article) and finding liver metabolism (the

second article). Then, we present a review of presently available

models from the perspective of developing a general framework for

modeling biological phenomena, and how the general growth law

can benefit it. Such a framework, if created correctly, would unite

and mutually reinforce available methods and provide directions

and guidance for the development of multi-scale models of living

organisms and their constituents, such as organs and cells, as well

as allow model verification and subsequent refinement. Such a

framework is especially important given the many practical

problems whose solution requires a transition to systemic under-

standing of living organisms, so that on this well founded basis the

following practical applications and methods could be introduced

in diverse areas, such as medicine, pharmacology, biology,

biotechnology, etc.

Developing such a framework, indeed, became a necessity given

the launch of projects aiming at the creation of models of

organisms and organs to be used in medicine, pharmacology,

biology, evolutionary and developmental studies, etc., such as, e.g.,

the Virtual Liver Network (VLN) [1], the Recon-2 project on

human metabolism [2], the virtual liver project [3], the whole-

body model [4], the Physiome Project on cardiac electrophysiol-

ogy [5], the BlueBrain project on modeling the brain cortex, and

others. Such models have different levels of generality addressing

certain phenomenological, structural, and organizational aspects.

However, since the different mechanisms and systems in organisms

closely interrelate, the adequacy and usefulness of models would

be improved by including additional mechanisms and compo-

nents, through interlacing different factors, and unification of

methodological approaches based on a general framework.
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Methods

1. The general growth law
Growth regulation and modeling growth of cells, organs, and

whole organisms is an area of intensive study. Approaches range

from studies of biomolecular growth mechanisms and growth

factors, to developmental and systems biology methods. For

instance, in [6], authors argue that changes during growth, such as

progressive decline in proliferation, ‘‘results from a genetic

program that occurs in multiple organs and involves the down-

regulation of a large set of growth-promoting genes.’’ The authors

further note that ‘‘This program does not appear to be driven

simply by time, but rather depends on growth itself, suggesting that

the limit on adult body size is imposed by a negative feedback

loop.’’ They consider different cellular events that could be

involved in cooperatively providing commensurate growth of

organs and whole organisms. An important inference is the

recognition of the existence of feedback mechanisms between the

current integral state of a growing organ or an organism (which the

authors call ‘‘growth itself’’) and triggering particular growth

mechanisms into cooperative action.

Reference [7] considers growth hypotheses based on morpho-

gen gradients. They conclude that the growth phenomenon is

driven by a combination of different factors. A similar view is

expressed in [8], which considers growth from a systems-biology

perspective. The author suggests that ‘‘developing systems devote

a considerable amount of cellular machinery to the explicit

purpose of control’’, although he does not specify what this

‘‘controlling machine’’ consists of, or what are the coordinating

and managing mechanisms.

All cited articles converge to the conclusion that growth is

driven by the cooperative working of many different factors, whose

action, besides other possible mechanisms, is regulated by

feedback loops. In [6], a guiding mechanism is placed into a

‘‘genetic program that occurs in multiple organs’’, which ‘‘depends

on growth itself’’. In other words, the authors assume that the

general governance and coordination of biomolecular growth

mechanisms resides at the molecular level. Articles [7,8] support

similar ideas, that biomolecular mechanisms govern and coordi-

nate the multitude of interacting mechanisms constantly synthe-

sizing and degrading molecules within cells, managing cooperative

growth of multiple cells, and growth of different organs and

systems in the whole organism. These governing molecular

mechanisms are assumed in [6] to be a ‘‘genetic program’’ that

has to have a complexity on the order of that of the biochemical

machinery itself. But still we are unable to explain the coordinated

growth of organs and systems within an organism. Such inter-

organ genetic regulation would amount to unmanageable com-

plexity and consequently to extreme vulnerability and instability,

which we do not observe in nature.

We hence take the view that biochemical mechanisms execute

operations in such a manner that one operation faithfully follows

another, so that there is no need for a run-time scheduler.

However, such a sequence of operations had to be evolutionarily

developed and organized over a long time. Some researchers

assume that such sequences of events are somehow stored in DNA.

However, the existence of genes does not explain neither how the

aforementioned sequence of events has evolved, nor does it give

satisfactory answers as to how it unfolds in a particular growth and

replication scenario on the cell, organ, and organism levels. So,

there should be other than purely genetic mechanisms responsible

for growth control. Examples of such views can be found in a

seminal work by D’Arcy Thompson [9], and the book [10].

Recent studies [11–17] (the most important and comprehensive

work is [17]), discovered that, indeed, such a regulatory

mechanism exists at higher-than-molecular scales, which is called

the general growth law. This law universally operates at scales

ranging from cells and cellular components to organs and whole

organisms. It is responsible for the evolutionary development of

sequentially executed biochemical mechanisms in developing

organisms, as well as for unfolding these sequences of events in

particular growth and replication scenarios of cells, organs, and

organisms. During growth, the general growth law imposes certain

constraints on the amount of produced biomass, which accord-

ingly causes changes in composition of biochemical reactions in

such a way that the growing entity proceeds through the growth

cycle. The same mechanism is also the major player securing

balanced growth of different organs and systems in an organism [17].

Mathematically, the general growth law is represented by growth

equations, which come in different forms depending on the

replication and growth scenario.

Previously, the general growth law and the growth equation

have been successfully used for studying and modeling the growth

and replication mechanisms in unicellular organisms, such as

fission yeast and its mutants, amoeba, and S. cerevisiae [13,17].

Here, we propose and demonstrate a method for modeling growth

of multi-cellular organs. We present mathematical forms of the

growth equations for modeling the growth of transplanted livers,

liver grafts, and liver remnants in dogs and humans. The purpose

of this study is twofold: First we develop a general method, which

can be thought of as a methodological framework, that allows to

describe, predict, and understand different aspects of the growth of

organs, such as finding the rate of growth and its dynamics, the

progression in changes of size and geometry, the size (meaning

mass and volume) of an organ, identifying certain qualitative

phases of growth, etc. Although in this work the proposed method

is exemplified by studying the growth of transplanted livers in dogs

and humans, the approach itself is of a general nature and can be

used in similar applications, including growth of artificial organs,

such as kidneys or hearts [18]. The second purpose of this work is

to continue the study of the general growth law, including

verification aspects. It is also the first time that the general growth

law is applied on the organ scale.

Growth and replication of living species are governed by

biophysical mechanisms on molecular and higher levels. The

general growth law and its mathematical representation, the

growth equation, formulate how nutrients are distributed at

higher-than-molecular levels and uniquely relate it to metabolic

and geometric properties of the growing organism and its

constituents, such as organelles, cells, and organs. The general

growth law is based on conservation of mass with regard to

nutrients, since nutrients are digested in biochemical reactions, for

which the law of conservation is valid.

Any living organism is an open system that consumes nutritional

resources, which are balanced between two main activities vitally

important for any organism: supporting existing biomass, the so-

called maintenance resources, and the resources that are used for

synthesis of new biomass. This distribution of resources is not

arbitrary, but represents a tradeoff that is uniquely defined in every

phase of growth and replication and on each spatial scale. The

parameter that mathematically defines this resource division is

called the growth ratio [17]. It naturally depends on the geometry

(shape) of the growing object and, indirectly, on the properties of

its biochemical machinery. An optimum distribution of nutritional

resources has likely emerged from evolutionary pressures.

As organs grow, more and more resources are required for

maintenance, leaving less resources for biomass production, since

Modeling Growth of Organs: Liver Example
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the nutrient-supplying ability of the environment and the

metabolic abilities of the cells are limited. Nutrients, regardless

of how they are supplied, are received through the surface (of the

organ or its blood vessels), while they have to support the

functioning of mass in the volume. Since volume increases faster

than surface area when organisms grow, the nutrient supply per

unit volume is fundamentally limited. At some point, the amount of

nutrients per unit volume decreases to a level that is just sufficient

to support maintenance needs, and no nutrients are left for

biomass production. This effectively imposes limits on the

maximum size of growing organisms and their constituents

(besides the specific properties of the biochemical machinery,

which, in this regard, plays the role of an execution mechanism).

Note that the nutrient concentration in the surrounding environ-

ment (for instance, in the blood flow) cannot increase endlessly too,

as well as the capacity of an organism or its constituent, such as a

cell or a liver, to process nutrients. So, in one way or another, at

some point of growth, the amount of nutrients per unit volume will

be capped.

The growth ratio, which defines the fraction of nutrients that goes

to biomass production, depends on the geometric shape of the

organ. It is defined as follows: Let us assume that nutrient

availability and the biochemical specifics of an organ that receives

nutrients through its surface, allow the organ to grow to a

maximum volume of VMAX with a maximum surface of

SMAX ~S(VMAX ). We define the dimensionless relative surface RS

and the relative volume RV as:

RS~
S(V )

S(VMAX )
ð1Þ

RV ~
V

VMAX

ð2Þ

Then, the growth ratio GR, which is also dimensionless, is

defined as:

GR~
RS

RV

{1 ð3Þ

Although this parameter is described in terms of geometric

characteristics, it is closely related to the biochemistry of the organ,

since it defines how much nutritional resources are used for

growth, in other words, for biomass production, while the rest is

used to support the organ’s maintenance needs. The particular

form of the growth equation depends on the growth scenario. For

instance, when nutrients are supplied through the surface, the

growth equation can be written as:

pc(X )dV (X ,t)~

ð
S(X )

k(X ,t)|dS(X )

0
B@

1
CA|

RS

RV

{1

� �
dt ð4Þ

.

Here, X is the spatial coordinate, pc is the density of the tissue

measured in kg=m3, t is time, k is the specific influx, which is the

nutrient influx per unit surface per unit time measured in

kg=(m2| sec ), pc(X )dV (X ,t) is the change in mass, and dS(X )

is the elementary surface area. In case when the specific influx

does not depend on the location of an elementary surface area,

equation 4 simplifies to

pc(X )dV (X ,t)~k(t)|S|
RS

RV

{1

� �
dt ð5Þ

where S is the total surface through which nutrients are supplied.

Equation 4 has a simple interpretation: The left-hand side

represents the mass increment. The right-hand side represents the

total influx through the surface, that is the termÐ
S(X )

k(X ,t)|dS(X ), multiplied by the growth ratio

RS=RV {1ð Þ, so that this product defines the amount of nutrients

that is available for biomass production.

Note that the maximum size of a growing organism or an organ

can vary, since the size and shape can change during growth

depending on many factors, such as nutrient availability,

temperature, etc. This fundamental property of every growth

phenomenon is exactly what the growth equation incorporates

through the introduction of a maximum size that can depend on

other parameters. This property can be illustrated as follows: It

was experimentally found in [19] that cells placed from a

nutritionally poor into a nutritionally rich environment grow

noticeably bigger. Similarly, suppose an organ started to grow in a

nutritionally poor environment so that it is destined to have a

smaller final size [17]. If, during growth, the nutritional

environment becomes richer, the organ’s final size can be larger.

So, unless conditions for the whole growth period are known at

the onset of growth, the final size is generally unknown. However,

in many instances, the final size of a growing organ is known from

prior information, for example when the organ’s mass is a well-

defined fraction of the mass of the whole organism.

Another approach to finding the maximum size is the following:

In an extensive review [20] on tissue growth, the authors note: ‘‘A

surprising result of this type of modeling (allometric) is that the

mass of an organism during its growth process can be predicted

based on metabolic processes in its cells.’’, referring to results

obtained in [21]. If we take a look at the growth equation,

equation 4, then the ‘‘surprising’’ result finds a rational explana-

tion. According to the growth equation, the rate of biomass

synthesis, and consequently the final size, depends on the nutrient

influx consumed by the growing organ, which is defined by the

metabolic abilities of the cells to process nutrients for biomass

synthesis and maintenance, which explains the aforementioned

result in [21]. In fact, the dependence of an organ’s final size on

the metabolic properties of its cells and on nutrient availability was

first inferred from the growth equation, and then the search in the

literature confirmed this fact.

Mathematically, this property can be expressed as a power law

[21], that is ‘‘If y is the length scale of the organ, and x is the length

scale of the body, they can often be related by a power law of the

form y~xb, for constant a and b’’. Reference [22] further

advances this result allowing finding the maximum size of a grown

organism based on metabolic properties of its cells. The authors

proved that ‘‘the mass of a wide variety of animal species grew

according to the equation
dm

dt
~am3=4{bm, where a, b are

constants (different for each species), which are dependent on the

metabolic characteristics of the cells. The key assumption here is

that the metabolic rate B depends on the total body mass m

through the power law relation B!m3=4which is true for a wide

range of biological organisms [23].’’

Modeling Growth of Organs: Liver Example
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Usage of the fact that the maximum size of a grown

multicellular organism depends on the metabolic activity of its

cells is facilitated by the growth equation as follows: According to

equation 5, the increase of biomass at any given moment is

proportional to the nutrient influx k, while the functional

dependence of the change of nutrient influx for the same organism

is similar in a wide range of growth scenarios [13,17]. So, once we

know the minimum kmin and maximum kmax nutrient influxes,

corresponding accordingly to the minimum and maximum

metabolic rates of the cells and the minimum mmin and maximum

mmax masses of the organism, we can find the maximum mass

resulting from influx k as m~mminz(mmax{mmin)(k{kmin)=
(kmax{kmin). Here, we assume that nutrient influxes k, kmin, kmax

relate to the same phase of growth, let us say to the beginning, and

kminƒkƒkmax.

When one does not know how the nutrient influx varies during

growth, and consequently how the maximum size changes, the

discussed approaches produce approximate values of maximum

size. Finding the maximum size is by no means restricted to the

described methods. Other considerations and approaches can be

used too.

So, the variable maximum size of an organism in the growth

equation is just a reflection of the fact that, generally, the

maximum final size is a value that is fundamentally unknown at the

beginning of growth, since the change of growth conditions

changes the maximum final size (unless we know how all

parameters, which influence the growth, dynamically change

during the whole growth period). However, in many instances,

when conditions of growth are stable, the maximum size can be

predicted with reasonable accuracy for practical purposes.

2. Modeling growth of whole livers transplanted from
small dogs into large dogs

In [24], the authors measured the growth of whole livers that

were transplanted from small dogs, whose weight was (13:2+0:4)
kg, to large dogs with weights (23:7+0:8) kg. The control group

consisted of dogs with similar weights. In that group, livers from

donor dogs with weights (19:5+4:5) kg were transplanted to

recipient dogs with weights (18:7+4:6) kg. The goal of the

experiments was to find out which factors define the final size of

transplanted livers. It turned out that the liver volumes (and

accordingly their masses, since the density of a liver is relatively

constant) grows to a final size defined by a certain, stable fraction

of the overall body mass. In other words, there is no ‘‘memory’’ in

a small liver of a small dog that it is small or that it belonged to a

small dog. This confirms that the molecular pathways are diligent

reactive executers of instructions at the cellular level, but not more

than that, while the organ’s size and geometrical characteristics are

defined by other mechanisms. From this study, we consider in

more detail two data sets of liver volume over time, from two dogs,

for a total observation period of 30 days.

2.1. Geometrical model of a dog liver. Dog livers have a

shape that is largely defined by the anatomical location and by

adjoining organs. We model a dog liver as a partial torus, cut

through its plane of symmetry. The parameters defining the torus

are: initial distance db (index ‘b’ stands for ‘‘beginning’’, i.e., at the

onset of growth) between the torus center and the center of the

circle that creates the torus, the initial (rb) and final (re) radii of the

torus at the beginning and at the end of growth, and the number P

that defines which fraction of the torus is left (like 2/3 of the total

circle). The ends of the torus are capped by two hemispheres, and

then the whole shape is cut through its plane of symmetry (see

front and side views in Fig. 1).

This shape imitates the growth of a liver that increases

proportionally in all dimensions, so that once we know how much

the radius of the torus increases (which is defined by the final liver

volume), we can find how the size changes of all other dimensions.

For example, the distance d is defined through a scaling coefficient

C~re=rb as de~Cdb. The four parameters (rb,re,db,P) uniquely

define the shape of the dog liver before and after the growth

period. We assume that a liver grows proportionally in all

dimensions. This is a reasonable, albeit not confirmed assumption,

since no indications were made in [24] with regard to the shape of

the liver at intermediate phases of growth. Using the notation

introduced in Fig. 1, the volume V and the surface S of the liver

model are:

V (r,d)~Ppr2(pdz2=3r)

S(r,d)~Ppr(2pdz4dzr) ð6Þ

Accordingly, the relative surface RS and the relative volume

RV , which we need for the growth equation, are:

RS~S(r,d)=S(re,de) ð7Þ

RV ~V (r,d)=V (re,de) ð8Þ

For known relative surface and relative volume, the growth ratio

G can be found using equation 3.

In order to formulate the growth equation, we have to define

the nutrient influx. In a liver, nutrients are supplied through the

blood, which flows through the liver as driven by blood pressure.

In the portal veins, the blood pressure drops from 130 to 60 mm

water. After passing the sinusoids the pressure further drops to

20 mm water. We assume that the amount of nutrients supplied to

every position in the liver is the same, and that each unit of volume

consumes the same amount of nutrients. Under these assumptions,

the growth equation becomes:

pdV (r,d)~K|(V (r,d)=Vb)|
RS

RV

{1

� �
dt ð9Þ

where p is the liver density, which we assume to be constant, K is

the total influx of nutrients supplied to the liver by the blood per

Figure 1. Front and side views of a partial, sliced torus. It is used
as a geometric model for dog livers.
doi:10.1371/journal.pone.0099275.g001

Modeling Growth of Organs: Liver Example

PLOS ONE | www.plosone.org 4 June 2014 | Volume 9 | Issue 6 | e99275



unit volume per unit time, t is time, Vb is the initial liver volume,

and (RS=RV {1) is the growth ratio. We normalize K = 1, since its

value defines the unknown time-scaling coefficient.

The assumption of constant density of the liver is well justified,

given its anatomical and cytological uniformity [25,26]. Although

the composition of the nutrients received by the hepatocytes

depends on the location along the sinusoid, the amount of

nutrients available per unit volume is assumed to be constant [25].

This is reflected in equation 9 by the multiplier (V=Vb).

We numerically solve equation 9 using the rectangular rule for

numerical integration, i.e., by dividing the ranges of the radius r

and the distance d into equal intervals and computing the

appropriate function values at the centers of the intervals (recall

that r/d = const). All variables except t in equation 9 depend on

volume, so that we collect them on the left-hand side, and

integrate over the range of r (and correspondingly d) in order to

obtain time.

2.2. Modeling the growth of entire livers in dogs. The

geometric parameters of the growing livers from two dogs, as taken

from [24], are summarized in Table 1. This is a complete set of

parameters required to compute the growth curve using equation

9. Then, we scale the obtained growth curve along the time axis

only, in order to adjust the time scale to experimental data. Note

that this is not a data fitting procedure, because we first computed the

growth curve, and only after that compared it to experimental data.

The scaling along the time axis does not change the shape of the

growth curve, but rather amounts to identifying time scale K of the

observed dynamics.

Due to transition processes occurring in a transplanted liver

after resection and surgery, the transplanted liver initially does not

grow the same way it would normally grow, and less hepatocytes

are involved in replication compared to a normally growing liver.

When the liver grows normally, its size increase is described by the

growth equation, which represents the evolutionarily optimized

growth scenario, securing the shortest growth time. According to

[25], which considers hepatectomy with significant resections,

gradually all hepatocytes become involved in replication. The

authors say: ‘‘After tissue loss, residual hepatocytes are activated to

proliferate within few hours; hepatocytes proliferation begins at

the portal ends of plates …, and successive waves of hepatocytes

proliferation ultimately involve virtually all residual hepatocytes.

Hepatocytes proliferation is followed sequentially by proliferation

of sinusoidal endothelial cells and macrophages, and the other cells

of parenchymal matrix’’. However, towards the end of growth,

more and more hepatocytes switch to a quiescent state, since at the

end the liver growth decelerates. Another possibly contributing

factor could be a slowing of the hepatocyte cell cycle toward the

end of growth, but according to [27] switching to a quiescent state

is the main cause of growth deceleration. So, although according

to [25] there is a relatively long phase of growth when all

hepatocytes become involved in liver regeneration (in donors and

recipients), when the liver is only reduced little by resection, and

also towards the end of growth, a noticeable fraction of

hepatocytes are in a quiescent state.

In order to identify the time point after which the entire liver

grows normally (according to the general growth law), we first

assume that the entire liver grows normally from the beginning

and compare the so-obtained growth curve to the experimental

data. The point after which the curve agrees with the data is the

time when the entire liver grows normally. When the resected liver

part is significant, then, according to [24], this is also the point

after which all hepatocytes are involved in replication. Then, once

we know when the entire liver begins to regenerate normally, we

can model the preceding phase of partial growth with gradual

involvement of hepatocytes.

Using equation 9, we compute growth curves for dog livers and

compare the results with experimental data from [24], as shown in

Fig. 2. For dog 1 (Fig. 2A) the first experimental point is not taken

into account, since it corresponds to the not-yet transplanted liver,

when it was weighted right after hepatectomy, while the rest of the

experimental points correspond to results obtained by CT

scanning. The second point marks the beginning of growth where

less hepatocytes than in normal growth are involved in regener-

ation. As one can see from the graph, this point is off the growth

curve computed under the assumption of normal growth.

For the rest of data, the correspondence between the

experimental results and the computed growth curve is very good,

which is an indication that the proposed approach produces a real

dependence. So, the growth equation can serve as an adequate

tool for modeling the growth of dog livers.

The computed growth curve for the second dog (Fig. 2B) is also

in good agreement with the experimental data after some initial

divergence, which indicates the time it takes for the liver to engage

in normal growth.

Our model has hence allowed us to identify the time point after

which the maximum number of hepatocytes are involved in the

regeneration process. This is the point where the growth curve

computed under the assumption of normal proliferation starts to

agree with the experimental data. For large resections, according

to [25], at this stage ‘‘virtually all residual hepatocytes’’ are

involved in proliferation. In case of usual hepatectomy, when

roughly 30% is removed from the donor liver, according to [25],

this will be the point where normal growth resumes (points V1 and

V2 in Fig. 2, which we refer to as ‘‘joining’’ points).

Table 1. Dimensions of geometric models used for computing dog liver growth, taken from (24).

Parameter Dog 1 Dog 2

Initial torus radius rb 1 1

Final torus radius re 1.291 1.45

Initial distance from the center to torus axis db 1.25 1.25

Final distance from torus center to torus axis de 1.613 1.8125

Fraction of the torus used for modeling 2/3 2/3

Minimum initial volume (cubic centimeters) 374.28 344.778

Final volume (cubic centimeters) 805.05 1049.963

Relative volume (relative to minimum) 2.1509 3.0453

doi:10.1371/journal.pone.0099275.t001
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2.3. Modeling partial growth of livers in dogs. The phase

before the joining points is characterized by partial growth where

less hepatocytes than in case of normal growth are contributing to

organ increase. As we discussed before, liver transplants do not

start growing entirely at once after transplantation, since the liver

structure is built sequentially starting from proliferation of

hepatocytes. Also, not all hepatocytes are activated for prolifera-

tion simultaneously, but are gradually engaged in the proliferation

process from the portal ends of plates. However, it is presently

unknown what fraction of hepatocytes, relative to normal growth

or total volume, are involved in proliferation at the beginning, and

when all hepatocytes become involved in regeneration, although

these are important characteristics which are directly related to

transplantation outcome and recovery process. Our model allows

answering these questions.

In order to extend our model to partial growth, given the

observed slower growth at the beginning, we assume that a smaller

fraction of hepatocytes is initially involved in proliferation. The

indication that ‘‘hepatocytes proliferation begins at the portal ends of plates’’

[25] means that a fairly large part of the total liver volume is

involved in proliferation from the very beginning. For simplicity,

we assume that the proliferating hepatocytes are uniformly

distributed across the entire organ. If shells of proliferation would

exist, as they do for example in other organs in which actively

growing areas are located at the periphery, then we would

consider such a growing shell and compute the value of the growth

ratio for this shell only, and accordingly would apply volumetric

characteristics to the shell as well.

During partial growth, we distinguish the growing part of the

liver (we call it the ‘‘active’’ part below) from the part of the liver

that does not participate in regeneration (the ‘‘passive’’ part). We

take into account that the passive part still requires nutrients for

maintenance, but do not contribute to biomass production. More

and more cells from the passive part get activated until the whole

organ contributes to growth. Computationally, this means that at

each integration time step we transfer an elementary volume from

the passive part to the active part.

We model the reduction of the passive part VP during growth

as:

VP~Vb(1{A)|
VJVb{VC

VJVb{Vb

� �p

ð10Þ

where A is the fraction of the initial active part, Vb is the initial

liver volume; VJ is the relative volume at the joining point, VC is

the total volume of the growing liver, p is a power that allows

varying the functional dependence VP(VC), choosing different

concave and convex shapes. Equation 10 reflects the monotonic

increase of the active liver volume. The exponent p accounts for

deviations from purely linear increase (when p~1). Both

parameters p and A are found by fitting to experimental data,

including the one before the ‘‘joining point’’. The volumes at the

joining points for dog 1 and dog 2, according to our previous

computations, are VJ1~1:1576 and VJ2~1:6918. Note that

equation 10 is constructed in such a way that the passive volume

becomes zero when VC~VJVb. The active growing part is the

complement of the passive part, hence

VA~VC{VP ð11Þ

The growth equation for a partially growing liver is:

pdV (r,d)~K|(VA=Vb)|
RS

RV

{1

� �
dt ð12Þ

Equations 10–12 define a complete system of equations

required for computing growth curves for partially growing livers.

Computed growth curves for the whole growth cycle, including the

phase of partial growth, are shown in Fig. 3 for both dogs

considered.

The parameters p and A reveal that initially about half of the

organ is engaged in proliferation, and that proliferation increases

until normal growth is reached. The computed increase of the

actively growing part of the liver, defined as a~(Vb{VP)=Vb, is

shown in Fig. 3 for both dogs (dashed curves). If the resection is

small, and the liver size is close to original, then there is no growth

phase in which all hepatocytes are involved in proliferation. In this

case, our considerations are valid with regard to the fraction of

hepatocytes contributing to normal, evolutionarily developed

growth as described by the growth equation.

Is the result of identifying p and A from the data unique, or

could there be several combinations of p and A that would lead to

similar results? We claim that the found values are unique and

Figure 2. Growth of small livers in big dogs. Computed growth
curves versus experimental data. A - dog 1; B - dog 2.
doi:10.1371/journal.pone.0099275.g002
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robust. The reason is that parameter A defines the shape of the

whole growth curve, while parameter p affects only the shape of the

growth curve before the joining point. Besides, the shape of the

growth curve is very sensitive to the value of A, indicating that this

parameter has a good identifyability; changing A by few percent

increases the difference between the computed growth curve and

the experimental data by tens of percent. In fact, A influences the

shape and location of the growth curve substantially more than p,

even during partial growth. We hence first only find the value of A

such that we obtain the least diversion of the computed growth

curve from the experimental data. Then we identify p to best

represent the partial growth phase. This alternating optimization

scheme is then iterated until convergence is reached. While the

results are very sensitive to the value of A, the value of p causes

orders of magnitude less change in the diversion from experimen-

tal data.

Overall, the correspondence between the computed growth

curves and experimental data can be considered good within the

entire growth period.

Results and discussion for Models of Dog Livers

Based on the computed growth curves, we can make several

observations: First, using the proposed method in case of

substantial resections, we are able to accurately estimate when

partial growth is complete and the entire liver begins to grow (or,

in case of small resections, when normal growth begins). This is

important information, which previously could not be obtained

from observations. In the case of the first dog, whose transplanted

liver was larger relative to the final size, this happened after 3 days,

while the liver of the second dog began regenerating normally (and

in this case apparently entirely because of the small original size)

after 6 days.

Although the second dog had a noticeably smaller initial liver

size compared to the final size, the fractions of volumes

corresponding to the joining points (relative to the final liver size)

for both dogs are remarkably close and within overlapping error

margins:

vJ1~VJ1=Ve1~1:1576=2:15091~0:5382+0:026

vJ2~VJ2=Ve2~1:6918=3:045332~0:5555+0:019

Here, we take into account that the error of volume

measurement by CT scan is about 5% [16], which translates to

errors of +0:026and +0:019 for dogs 1 and 2, respectively.

From this, one may conclude that regardless of the initial size of

a liver transplant, the liver begins to normally regenerate when its

relative size (relative to the final size) is about 54%. Before

reaching the joining point, the liver can grow only partially. One

possible explanation for this is that a liver, which is smaller than

the size corresponding to the joining point, is under stress, and its

first priority is to support the functioning of the organism, while

less nutritional resources and less hepatocytes can be allocated for

growth.

We were also able to quantify another important parameter: the

fraction of liver that is involved in regeneration from the very

beginning. In the case of the first dog, which had a larger initial

liver transplant, this was about 67+1:8% of the entire liver, while

in the smaller liver transplant of the second dog about 51+1:6%
of the initial liver volume contributed to regeneration. (The error

was estimated for a 5% change of the average deviation of the

computed growth curve from the experimental data). Overall, we

see that in both cases a significant portion of the liver is involved in

regeneration from the beginning.

The rates of liver growth in both dogs were almost identical.

Although we do not have data for smaller fractions for the first

dog, because the original size of the liver transplant was larger, we

can compare rates of liver growth in the last two days before the

joining points. For the first dog the relative increase in volume

during these two days was Dv1&0:1576, while for the second dog

it was Dv1~VJ2=V4&0:1567, where V4 is the liver’s relative

volume on day 4. Given the measurement error of about 2%, this

is a remarkable similarity in the rates of liver regeneration. Of

course, having results from only two dogs does not allow definitive

conclusions.

Lastly, we were able to identify the rate at which the passive part

of the liver joins active regeneration. Fig. 3 (dashed lines) shows

two convex curves with exponents 0.85 and 0.83 for the first dog

and the second dog, respectively. So, the rate at which ‘‘passive’’

liver parts become ‘‘active’’ is similar for both dogs, and it

accelerates toward the ‘‘joining’’ point. Both features are

Figure 3. Partial growth of the liver in two dogs. Computed
growth curves versus experimental data and fractions of replicating
hepatocytes relative to normal growth. A - dog 1; B - dog 2.
doi:10.1371/journal.pone.0099275.g003
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physiologically justified, since fundamental mechanisms of liver

regeneration should not significantly differ across different

specimens, while acceleration of the rate is facilitated by liver

growth, which allows devoting progressively more resources to

regeneration, while continuing to support the physiological

requirements of the organism.

Modeling Liver Growth in Humans

3.1. Geometrical model of a human liver
We further validate our model using experimental data on the

growth of transplanted livers in humans from [28,29]. We model

human liver geometry as a prism with one edge cut as shown in

Fig. 4, based on liver description from [26]. In clinical practice,

either the right or left liver lobe is transplanted, leaving the donor

with the remaining lobe. In Fig. 4, the right lobe is on the left, and

vice versa, since this is how livers are presented in the anatomy

literature. In the previous case of dogs, whole livers were

transplanted and then grew in size at constant shape. Here, the

growing liver changes shape as a single lobe regenerates to a full

liver. The geometric form of the liver hence changes during

growth. The geometric characteristics of whole livers, as taken

from [26,28,29], are given in Table 2.

Using the same consideration as for dog livers, we can also

assume that the nutrient influx per unit volume in human livers is

constant. This assumption and the parameters from Table 2

constitute a complete set of parameters required to compute the

growth curve for the model of a human liver. Other parameters,

such as graft lengths, can be computed using the formulas below.

For the simulations, we also need the angle a at the prism’s base

(see Fig. 4), which is defined as:

tga~L=(BX {B) ð13Þ

Let us denote t~tga for brevity. Then, in the notation of Fig. 4,

we can find the surface and volume of the cut prism as:

V (B,L,t)~W (BLzL2=(2t)) ð14Þ

S(B,L,t)~W (2BzL=t)zWL(1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z1=t2

q
)z

L(2BzL=t)

ð15Þ

The equivalent expressions in terms of the larger base BX are

more convenient for computations of the right lobe:

V (BX ,L,t)~W (BX L{L2=(2t)) ð16Þ

S(BX ,L,t)~W (2BX {L=t)zWL(1z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z1=t2

q
)z

L(2BX {L=t)

ð17Þ

equation 17 is the sum of the areas of all prism faces.

The mass or volume of the graft taken from the donor for

transplantation is usually recorded as a fraction of the total size of

the donor’s liver. We denote this fraction F (fraction). Then, in

case of a left-lobe transplant, we find initial length Lb as follows:

We rewrite equation 16 as:

FV (B,L,t)~W (BLzL2=(2t)) ð18Þ

Solving this equation for LbL, we find:

LbL(B,t,W ,F )~{Btz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2t2z2tFV=W

q
ð19Þ

Substituting the volume V from equation 14 into equation 19,

we can rewrite it as:

LbL(B,t,F )~{Btz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2t2z2FBLtzFL2

p

Similarly, we can find the initial length LbR for a transplanted

right lobe:

Figure 4. Geometric model of a human liver. The boundary plane
defines the initial volume of the transplanted lobe. It can be shifted
along the direction of arrow A.
doi:10.1371/journal.pone.0099275.g004
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LbR(BX ,t,F)~BX t{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

X t2{2FBX LtzFL2

q
ð20Þ

Equations 15–20 uniquely define the shapes of the transplanted

and remaining liver grafts.

3.2. Growth of the remaining graft in human donors
Reference [28] focused on the growth of the remaining parts of

livers in donors, whose safety was a primary goal of that study.

Fig. 5A presents results for 27 male donors who had their right

lobes removed, so that their left lobes had to regrow to full livers.

The data points show average and standard deviation values

across all 27 donors. Comparing with female donors (Fig. 5B), the

growth phase in male donors lasted longer. There are several

plausible explanations for this difference, but in lack of experi-

mental data no sound conclusion can be made. The authors also

noted that ‘‘Female donors had significantly slower liver regrowth

when compared to males at 12 months (79:8+9:3% versus

85:6+8:2%)’’. This result is almost surely due to higher metabolic

capacity of female livers required to support pregnancy (this

feature has been discovered and discussed in the second article on

liver metabolism), so that neither female liver transplants nor liver

remnants in females need to grow as big as in males, since their

higher metabolic capacity allows supporting metabolic require-

ments by having smaller size.

Given the inter-patient fluctuations, the computed growth curve

from our model corresponds well with the experimental data.

Overall, the present model also accurately reproduces the growth

dynamics of organs whose geometric shape changes during

growth.

3.3. Comparison of liver growth rates for the left and
right lobes: The effect of geometry

In [29], the authors studied the growth of livers in both donors

and recipients for both left-lobe donors and left-lateral-section

donors. It was discovered that ‘‘Livers of the right lobe donor

group regenerated fastest in the donors group…’’. Our model,

which is based on the general growth law, readily explains this

effect. Looking at Fig. 4, the thickest part of the liver has to regrow

during the regeneration of a left lobe. When the right lobe grows,

then the thinnest part of the liver (on the right in Fig. 4) has to

regrow. Such different growth geometries lead to different values

of the growth ratio and consequently to different rates of growth

for left and right lobes. Fig. 6 shows the change in value of the

growth ratio during growth of right and left lobes when the relative

initial volumes are the same (females). We see that the value of the

growth ratio for the left lobe is higher than for the right lobe,

although all other parameters are the same, except geometry.

Since the amount of nutrients available for biomass production is

defined by the growth ratio, this means that for the same nutrient

supply the amount of biomass produced per unit time is higher in

growing left lobes than it is in right lobes, which, indeed, was

experimentally observed [29].

The aforementioned difference in growth ratios between right

and left lobes creates a difference in the rate of biomass production

of several percent. For instance, after 108 days the rates of biomass

production between the right and left lobes differ by about 7%.

Note that the discussed difference in values of growth ratios

when the relative initial volumes of right and left lobes are the

same is not the only factor contributing to different rates of liver

growth. Differences in the initial relative volume also influence the

value of the growth ratio and consequently the rate of biomass

production, as seen for the male cohort. In Fig. 6, the right lobe

remnant in males began to grow at a size of about 69% of the final

liver volume, while the size of left lobe remnants was about 47% of

the final volume. Both remnants grew to about the same final size.

As we can see, the value of the growth ratio for the left lobe

remnant is significantly higher than for the right lobe, which in this

case is due to different geometries of right and left lobes, and also

due to different initial volumes. (Strictly speaking, different initial

volumes also influence geometrical characteristics, but the result of

this influence is of lesser value.) The simultaneous action of the two

discussed effects explains the observed differences - the faster

growth of left lobes in donors that donated right lobes.

Developing Integral Models

The liver is an important part of any organism. Its working

interrelates to other organism systems and organs. On the other

hand, it is a separate organ with specialized functions, whose

relationship to other organs and systems can be described in terms

of inputs and outputs. Indeed, given the multitude of different,

often interrelated, factors that affect liver function, its mathemat-

ical modeling presents a challenge. In such a situation, it is

especially important to provide a robust and adequate modeling

structure (including hierarchical relationships) that would incor-

porate different scales, from molecular mechanisms to the whole

organ. In this regard, the proposed model presents a valuable and,

in fact, unique development, since the general growth law is

applicable at dimensional scales from cellular components to

entire organisms, thus providing a universal conceptual approach

and the same uniform mathematical apparatus for different scale

levels. This way, all meaningful parameters, such as, for instance,

nutrient influxes, can be related from the lower scale level to the

upper one, up to the integral parameters characterizing the whole

Table 2. Geometric parameters of initial liver grafts and whole livers (from [26,28,29]).

Parameter Male Female

Width of a whole liver (relative units) 1, 2 1, 2

Small base B of a whole liver (in units of width) 1 1

Large base of a whole liver BX (in units of width) 3.5 3.5

Length of a whole liver (in units of width) 2.9 2.9

Initial volume (percentage of the original donor liver) 48.5 59.6

Final volume (percentage of the original donor liver) 85.42 79.58

Relative final volume (relative to minimum) 1.7612 1.5605

doi:10.1371/journal.pone.0099275.t002
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organ. Note that exactly the same concept and mathematical

framework is entirely applicable to other systems, organs and their

subcomponents, which is a consequence of the universal nature of

the general growth law [17]. Such a universal approach significantly

simplifies mathematical modeling of organisms and their constit-

uents.

However, would the above be sufficient to develop an adequate

biophysical and biochemical model of a complex organ? In principle,

the answer is yes. The proposed approach resolves several

fundamental issues defining success of any modeling, such as

model uniqueness, stability, scalability and integrity. In practical

applications, much attention is given to biochemical mechanisms

because of their importance for medical, pharmaceutical and

biotechnological purposes. In this regard, presently the relation-

ship between the integral characteristics, such as nutrient

consumption or geometrical form of an organ or cells, and

biochemical reactions are very weakly explored, if at all. This is

why the ‘‘biochemical part of the story’’ is usually self-enclosed,

although it is far from being self-sufficient. In such a situation, the

use of the general growth law and models developed on its basis,

like the one which we introduced in this work, become of critical

importance, since they enable to directly relate integral charac-

teristics, such as nutrient influx and amount of produced biomass,

to composition of biochemical reactions and to geometric size and

shape. In this arrangement, the amount of produced biomass

(which in turn is defined by the growth ratio) is a leading indicator

that defines composition of biochemical reactions. This fact is well

studied at a cellular level [13,17] with the aid of methods of

metabolic flux analysis. However, according to the general growth

law, the same is true at the organ level. Thus, we acquire a very

important universal link between the composition of biochemical

reactions, integral nutrient influxes and biomass production at the

organ level. Of course, further studies are required to realize this

potential.

Model Applications

The introduced model and the obtained results can be applied

in different areas of biology and medicine. Real phenomena, by

their nature, are multifactorial. One of the advantages of the

proposed model is that it provides a general understanding of an

organ’s growth dynamics in relation to many other factors. In

other words, it allows seeing the overall, often dynamically

changing, picture. For instance, in liver transplantation the

patient’s safety and fast recovery are priorities. Although there

were successful transplantations when donors were left with only

about 30% of their original liver volume [28,29], in other

instances, donors with a substantially bigger part of livers died, so

it is a combination of different factors that secures positive

outcome. In [28], the authors list diverse reasons for rejecting

donors, which confirms this fact. So, any additional information

can potentially be useful if it is correctly interpreted.

We found that in the case of dogs there is apparently a stable

relative size of a regenerating liver, equal to roughly 54% of the

grown organ, when the normal growth begins. In case of humans,

a similar effect most likely exists, so that finding such a value for

people would allow having a reliable quantitative parameter related

to successful recovery. We were also able to evaluate the

percentage of liver mass actively involved in proliferation below

this threshold depending on the phase of growth. This is also a

valuable parameter which serves as a good indicator of the

metabolic stress the liver transplants (or the liver remnants in

donors) are subjected to, since at this critical stage of growth the

Figure 6. Change of the growth ratio for growing right and left
liver lobes. The effect is due to changing liver geometry during
growth. Scenarios are presented when initial lobe volumes are different
and when they are the same.
doi:10.1371/journal.pone.0099275.g006

Figure 5. Growth of remaining left liver lobes in human donors.
A – male donors; B – female donors.
doi:10.1371/journal.pone.0099275.g005
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liver has to support both the metabolic needs of an organism and,

at the same time, its own growth.

Another discovered result useful for clinical and other applica-

tions relates to the close relationship between the size of a growing

liver and its biochemical properties. What is even more important,

we were able to introduce a quantitative parameter, the growth

ratio, which quantifies such a relationship through the amount of

produced biomass. In fact, the found relationship unambiguously

works in both directions, that is, once we know the current size of a

growing liver, we can make predictions about the composition of

biochemical reactions. Inversely, once we know certain specific

biochemical characteristics, we can evaluate the relative size of a

growing liver compared to its final size, which would be a nice

noninvasive inexpensive method for controlling the recovery

process. Such a possibility is confirmed by observations from [24]

with regard to ornithine decarbohylase, whose concentration

depends on the phase of growth. Since biochemical reactions do

not proceed in isolation, but are tightly interrelated to each other

within the same biochemical machinery, this approach looks

promising, since knowledge of the content of several substances

fundamentally allows restoring the overall composition of biochem-

ical reactions.

Close values of biomass increase rates, which we obtained for

dogs, present another observation worthy of attention, since if it is

valid for people, it allows introducing a quantitative reference

value, to which the recovery process may refer to.

Abilities of livers to regenerate depend on their metabolic

capacity, which is indirectly evidenced by results obtained in

referenced works. We already briefly discussed that the metabolic

capacity of female livers is noticeably higher than that of male

livers, of which the smaller final size of livers in females [28] is one

of the effects. Such a sexual distinction is an important factor to be

taken seriously in clinical practice. It means that a female donor

can be safely left with a smaller part of liver than a male donor.

For male donors, the size of liver remnants is more critical for

successful recovery, all other factors being equal.

The mere fact that the liver size and its metabolic capacity

interrelate also provides interesting possibilities. Of course, lifestyle

influences metabolic requirements, and accordingly affects liver

size. However, when all other factors are equal, a smaller liver

would mean higher metabolic capacity. So that maybe a small

liver is not a so restrictive factor for transplantation purposes,

although in the study [28] ‘‘inadequate liver volume’’ contributed

to 19.5% of donor rejections.

Of course, the considered examples by no means exhaust

possible clinical and other applications of the presented model and

obtained results. This is a general model, which is based on a

fundamental law of nature, so that it can be used for a very wide

range of purposes. In this section, we just scratched the surface

discussing examples of possible applications.

Conclusions

Based on the earlier discovered general growth law, presented in

[17], we proposed a macroscopic model for volumetric growth of

organs that accounts for quantitative characteristics of growth and

for the geometric shape of the organ. We exemplified the use of

the resulting model by applying it to modeling growth of

transplanted livers and to identifying characteristics of growing

livers in dogs and humans. We validated the model by comparison

with available experimental data from the literature on growth of

liver transplants in dogs and liver grafts and remnants in humans.

In the case of dogs, we modeled growth of whole livers, so that we

have had a proportional increase of the whole organ, whose shape

thus did not change during growth. In the case of humans, we

modeled growth of liver grafts obtained from donors as a result of

hepatectomy, and liver remnants in donors, so that the liver has

been changing its geometric form during growth.

We made the following observations:

1. A dood agreement between experimental data and the

theoretically predicted growth curves for growing livers, liver

grafts, and liver remnants was discovered.

2. We were able to determine the time point when a liver switches

from partial growth to a normal, evolutionarily developed,

growth (i.e., the joining point) in dogs. This result can be used

for optimizing the size of liver transplants and the fraction of

liver left in the donor.

3. The portion of the liver in dogs that participates in

regeneration from the very beginning was found.

4. We found the functional dependence of the conversion of

‘‘passive’’ (with regard to growth) liver parts to ‘‘active’’,

growing parts in dogs.

5. We discovered apparently stable relationships between the size

of a fully grown liver and the time point when the liver switches

to normal regeneration (in case of large resections, to a full

regeneration).

6. In dogs, the rates of liver growth before the joining point are

similar.

7. In humans, the fact that left-lobe liver remnants grow faster

than right-lobe remnants is partially due to differences in their

geometry. We qualitatively described this effect and found that

it may account for about 10% of the difference in growth rates,

depending on the initial volume of liver graft relative to the

whole liver.

Although we focused on modeling growth of livers, the present

method can potentially also be applied to modeling growth of

other organs or whole organisms.

Our results show that the growth equation, which is the

mathematical representation of the general growth law, is an

adequate quantitative and phenomenological tool for many

practical applications and theoretical studies. It accurately

describes the dynamics of organ growth in quantitative terms,

and it allows hypothesizing about the mechanisms underlying

many effects observed in experimental studies.

The proposed method can be used for quantitative estimation of

the optimal size of liver transplants from the perspective of patient

safety and recovery time. The present method also allows

optimizing the shape of transplants, and provides quantitative

indications for nutrient supply in safe and fast recovery.

A related method, also based on the general growth law, for

finding metabolic characteristics of organisms and their constitu-

ents (cells, organs, etc.) has been developed and experimentally

verified using data on liver and liver transplants. It allows finding

rates of nutrient consumption for growth and maintenance, and

the total amount of nutrients required for growth. These studies

are presented in a second article.
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