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Generation of Pseudo-CT 
using High-Degree Polynomial 
Regression on Dual-Contrast Pelvic 
MRI Data
Samuel C. Leu1, Zhibin Huang1,2 & Ziwei Lin1 ✉

Increasing interests in using magnetic resonance imaging only in radiation therapy require methods 
for predicting the computed tomography numbers from MRI data. Here we propose a simple voxel 
method to generate the pseudo-CT (pCT) image using dual-contrast pelvic MRI data. The method is 
first trained with the CT data and dual-contrast MRI data (two sets of MRI with different sequences) of 
multiple patients, where the anatomical structures in the images after deformable image registration 
are segmented into several regions, and after MRI intensity normalizations a regression analysis is used 
to determine a two-variable polynomial function for each region to relate a voxel’s two MRI intensity 
values to its CT number. We first evaluate the accuracy via the Hounsfield unit (HU) difference between 
the pseudo-CT and reference-CT (rCT) images and obtain the average mean absolute error as 40.3 ± 2.9 
HU from leave-one-out-cross-validation (LOOCV) across all six patients, which is better than most 
previous results and comparable to another study using the more complicated atlas-based method. 
We also perform a dosimetric evaluation of the treatment plans based on pCT and rCT images and find 
the average passing rate within 2% dose difference to be 95.4% in point-to-point dose comparisons. 
Therefore, our method shows encouraging results in predicting the CT numbers. This polynomial 
method needs less computer storage than the interpolation method and can be readily extended to the 
case of more than two MRI sequences.

The workflow of conventional radiation therapy (RT) uses computed tomography (CT) images to create the treat-
ment plan and to position the patient at treatment. Magnetic resonance imaging (MRI) is also often used to pro-
vide precise delineation of RT target volumes due to its superior soft tissue contrast1. When these two modalities 
are both used, the workflow then necessitates an additional step of registering the images of the two modalities: 
MRI and CT2. Recently, the concept of MRI-Linac using magnetic resonance imaging only in radiation therapy, 
i.e., MRI-only RT, has become more popular, because MRI-only RT has the benefits of improving the workflow 
and removing systematic errors in registering MRI and CT images3,4.

However, in MRI-only RT there is a problem in creating treatment plans with the MRI images because of the 
lack of CT images or the electron density information. To address this problem, various methods of generating 
CT images, called pseudo-CT (pCT), have been investigated5–7. Existing methods in deriving a pseudo-CT from 
MR images may be classified into different categories. They include the classification into segmentation-based, 
intensity-based, atlas-based, and hybrid methods7, or the classification into segmentation-, atlas-, patch-, and 
learning-based methods8, or the classification into bulk density assignment, atlas-based, and voxel-based meth-
ods9. These methods have produced mean absolute error (MAE) values ranging from 85 HU10 to 137 HU11 for the 
brain and from 36.5 HU12 to 74.3 HU13 for the prostate (pelvis region), for example.

Among these methods, atlas-based methods12,14–17 align an MRI atlas, which has been derived from an MRI 
database pre-registered to the corresponding reference-CT (rCT) images, to the target patient’s MRI images 
through registration. The atlas thus contains pre-determined correlations between the MRI voxels and the varia-
bles of interest such as the CT number or organ type. The same registration (with the translational, rotational, and 
deformable information) that maps the MRI atlas to the target patient’s MRI images is then applied to the atlas 
CT images to create the target patient’ pCT images. This approach is popular because of its potential in producing 
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reliable pCT images with conventional MRI images. However, it requires accurate deformable image registration 
between the atlas and the target patient’s magnetic resonance (MR) images, which can be difficult, especially 
when large anatomical variations or pathological differences exist. This problem can be partially overcome by 
using multiple atlases or the hybrid method that combines the atlas method with other methods to increase the 
overall strength and reduce the overall weakness18–20.

Learning-based methods employ model-fitting or statistical learning techniques to generate a mapping func-
tion that correlates the MRI information to the corresponding CT numbers9,21–28. Deep learning is a machine 
learning technique that is useful for processing low-level noisy data such as medical images. Currently, a main 
deep learning technique used in the field of radiation oncology is the deep convolutional neural network that 
is based on the U-net architecture24,26,28. An advantage of learning-based approaches is that they can take into 
account neighborhood voxels23,26.

Voxel-based methods9,11,13,23,29–35, such as the bulk-density method36,37, mainly translate the voxel intensity 
information in the MRI images to CT numbers and pCT images. In general, a voxel-based method is specific 
to the MRI sequence(s) that the model is trained on but does not need the target patient anatomy to closely 
match the training patients. In contrast, atlas-based methods for generating the pCT do not depend on the MRI 
sequence(s) but depend on the patient anatomy, where a major difference between the target patient anatomy and 
the patient database population may result in inaccurate pCT images.

In this study, we investigate a voxel method that uses two MRI image sets acquired using different MRI 
sequences together with two-variable polynomial fitting functions to create pseudo-CT images. This method is 
validated by leave-one-out-cross-validation (LOOCV)8,10,11,16,18,22, applied to a sample of six patients. We evaluate 
our method via MAE between the pCT and rCT images and also by comparing the dose distributions of simu-
lated RT plans created on the pCT and rCT images.

Methods
Patient groups.  Patients with carcinoma of the cervix were prospectively studied with serial MRI and CT 
scans during RT on an IRB-approved imaging protocol granted by the University & Medical Center Institutional 
Review Board (UMCIRB) of the East Carolina University (ECU). Informed consents were obtained from patients 
with all identifier information removed. Collection of data and methods were carried out in accordance with 
the guidelines and regulations of UMCIRB. We selected 6 female patient cervical image datasets. The 6 datasets 
selected for this study have none of the following: significant visible artifacts, considerable co-registration errors, 
or large rotational transformation for aligning the MRI and CT images. This study has no effect on the treatment 
of these patients.

Specifically, the six patients in this study were staged clinically with the International Federation of Gynecology 
and Obstetrics criteria38, including physical examinations, chest radiograph, tumor biopsy, complete blood count, 
serum chemistries, intravenous pyelogram, and abdominal-pelvic computed tomography. There were 2 patients 
in Stage IB, 2 in Stage IIA, and 2 in Stage IVB (inguinal metastasis). Median age was 55 years (range 25–89). Two 
MRI scans were acquired on a Siemens Magneton Espree 1.5 T scanner. The T1-weighted MR sequence (MR1) 
was a fast low angle shot with different repetition time TR, an echo time TE = 4.53 ms, a flip angle FA = 70°, a 
matrix size of 320 × 320, and a voxel size of 0.81 × 0.81 × 5.0 mm3. The T2-weighted MR sequence (MR2) was a 
turbo spin echo with different repetition time TR, an echo time TE = 87 ms, a similar flip angle FA, a matrix size 
of 320 × 320, and a voxel size of 0.81 × 0.81 × 5.0 mm3. Both T1-weighted (T1w) and T2-weighted (T2w) MRI 
sets have more than 30 images per scan. In addition, a whole body CT scan using 120 kVp, various mAs values, 
a matrix size of 512 × 512 × 326, and a voxel size of 0.97 × 0.97 × 4.0 mm3 was acquired for each patient on a 
Siemens Biograph CT within one month of the acquisition of MRI. The detailed acquisition parameters for the 
MRI and CT scans of each patient are given in Supplementary Table S1.

Pre-processing.  We register the CT image set with the deformable setting in multi-modality registration on 
Velocity (Varian Medical Systems) using the MR1 image set as the reference image; the same is done to register the 
MR2 image set. The CT dataset is resampled to the same resolution as the MRI dataset: axial image dimension of 
320 × 320 with the voxel size at ≈ 0.81 × 0.81 × 5.0 mm3. Because the MRI images of a given sequence have dif-
ferent image contrasts for different patients, MRI images were normalized8,9,27,34,35,39,40. Specifically, for the MRI 
datasets acquired with the same MRI sequence, e.g. MR1, we first find the average intensity value for all patients 
and that for a given patient, then their ratio is used as the patient-specific correction factor to multiply the voxel 
MR1 intensity values of this given patient, so that the average MR1 intensity values for all patients become the 
same. In addition, a binary mask is created by using a voxel intensity threshold combined with the edge detection 
function in MATLAB to eliminate air voxels and cover only the imaged subject to reduce the computational bur-
den and improve the pCT accuracy11,40–42. Air voxels are set to a value of −1000 HU.

Segmentation.  The imaged anatomical structure of each patient is manually segmented with masks into 
three regions: bony, soft, and mixed regions. An example of the three regions superimposed on an MRI image is 
shown Fig. 1A. The bony region contains the cortical and cancellous bone tissues, while the soft region contains 
all soft tissues. For the bony region, a mask is defined at the edge of the cortical bone with approximately 1 mm 
margin left out. A margin of approximately 2–3 mm surrounding the bony tissue is not included within the soft 
region. Margins are generated automatically by expansion or reduction of the mask. The mixed region represents 
the region between the above two margins. Then voxels within the same region are grouped together for deter-
mining the prediction model for the region.

When necessary, an excluded region, as shown in Fig. 1B, is drawn to select misaligned anatomical structures 
due in large part to changes during the elapse time between MRI and CT acquisitions. To obtain the correct 
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correlation between MRI intensity values and the CT number of each voxel, voxels from the excluded region are 
not included in the training data used to determine or evaluate our prediction model.

Modeling relation between two MRI intensity values and CT Number.  The voxel method is based 
on the assumption that a relationship exists between a voxel’s CT number and MRI intensity value on average, at 
least for voxels of the same tissue type. However, voxels with the same MRI intensity value, even of the same tissue 
type, may have very different CT numbers. Therefore, our strategy is to have a second set of MRI images acquired 
with different MRI sequences, so that voxels with the same MRI intensity value (in the first set) but very different 
CT numbers may have different MRI intensity values in the second set, which will allow us to distinguish those 
voxels and map them to their corresponding CT numbers.

For each region of the segmented anatomical structures (bony, soft and mixed regions), all the voxels in the 
same region are grouped together as the training data to determine the prediction model for the region. The data 
from each voxel consists of its CT-value, the normalized intensity value S1 from the MR1 image set, and the nor-
malized intensity value S2 from the MR2 image set. The prediction model is trained to map a voxel’s two MRI 
intensities to its CT number on the Hounsfield unit (HU) scale for each region. In this study, we used a 
two-variable nth-degree polynomial function that depends on a voxel’s two MRI intensity values to predict the 
voxel’s expected CT number:
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In practice, the MRI data of each region are separated into different MR1 and MR2 intensity value bins to 
reduce the computational burden and noise. An equal number of bins (Nbin) for MR1 and MR2 is used, while the 
bin width is determined based on the maximum normalized MR1 and MR2 intensity values (1,420 and 37,100 
respectively in this study). As a result, every voxel is associated with two bin indices, e.g., i for the MR1 bin and j 
for the MR2 bin, or i j( , ). Inside a given i j( , ) bin in these two dimensions, there can be multiple voxels with a range 
of CT numbers. We can define the average CT number of the bin as
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where Ni j,  is the number of voxels within the i-th MR1 bin and j-th MR2 bin, and CTi j k, ,  denotes the CT number of 
the −k  th voxel within this bin. We use equation (1) to perform a regression analysis on the training data of each 
region to determine the coefficients ci i,1 2

 in the polynomial, then pCT S S( , )1 2  best describes the average CT num-
ber CTi j,  as a function of the MRI intensity values S1 and S2. The regression analysis is performed by using the 
‘NonlinearModelFit’ function in Mathematica (Wolfram, Champaign, United States). Note that a weighting factor 
based on the number of data points within a bin is used in the regression analysis. The 3-dimensional plots and 
contour plots of the polynomial function pCT S S( , )1 2  for each region of Cycle1 are provided in Supplementary 
Figures S1–S3 and S4–S6, respectively. We have also put the Mathematica source code of the pCT regression 
analysis along with example input files and the output file for the calculated polynomial coefficients at http://
myweb.ecu.edu/linz/pCT/.

Figure 1.  (A) Segmentation of the three regions superimposed on an MRI image: bony region (white), 
soft region (light blue), and mixed region (dark blue). (B) Example of a CT image (magenta) overlay on a 
corresponding MRI image (green) with the excluded region shown inside the red contours.
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Generation of pCT.  To generate pseudo-CT images for a target patient, we first segment the anatomical 
structures on the MR1 and MR2 images of the target patient into the same types of regions: bony, soft, and mixed 
regions. For each region, the corresponding function from equation (1) is then applied to each voxel to map its S1 
and S2 MRI intensity values to an expected CT number. Note that we restrict the predicted CT number to -1000 
HU and 2000 HU. The pseudo-CT images are then obtained for the target patient after the CT number is gener-
ated for all the voxels. The total time to convert a whole pelvic MRI scan is within approximately 3 minutes using 
a Mac Pro (mid-2012) desktop with 2 × 2.4 GHz 6-Core Intel Xeon processor and 16 GB (8 × 2 GB) 1333 MHz 
DDR3 ECC memory.

To evaluate the accuracy of our method, we apply LOOCV for the six patients. There are six cycles, where five 
patients are used as the training data to determine the coefficients ci i,1 2

 in equation (1) for each region and then 
the prediction model is applied to the remaining (target) patient.

Mean absolute error.  To evaluate the quality of the generated pCT images from our model, we use the mean 
absolute error as defined below:
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where N  is the total number of body voxels (except voxels from the excluded region) of the target patient, pCTk 
and rCTk denote respectively the CT number from the generated pCT and the rCT for voxel k. The MAE thus 
measures the voxel-wise average error. When evaluated for each region, N  in equation (3) then represents the 
total number of body voxels in that region of the target patient.

Optimization of parameters in the prediction model.  We determine the optimal value of two key 
parameters in our prediction model: the polynomial degree n, and the number of MRI bins Nbin. From Fig. 2A, 
we see an overall decreasing trend in the average MAE value as the polynomial degree n increases (with Nbin = 
200). In particular, the model’s prediction improves as degree n increases to ∼n 20, and further increase of n 
changes the average MAE by no more than ∼1%. Therefore, we use =n 30 as the optimal value for the polyno-
mial degree in equation (1). The effect of the number of MRI bins on the MAE values is shown in Fig. 2B. 
Although the MAE has a non-monotonous dependence on Nbin from ~10 to ~25, the average MAE values are 
the lowest for Nbin >40 and shows little further decrease with Nbin. Since the computing burden of using Nbin 
of 200 versus Nbin of 40 is similarly small, and a polynomial function with a higher Nbin should better correlate 
the MR intensities to the CT number when the number of patients gets bigger in future studies, we choose to use 
Nbin = 200.

In addition, not all i j( , ) bins are filled, i.e., have voxels from the training data and thus have corresponding CT 
numbers. This often causes the polynomial function to rapidly deteriorate in the MRI region with empty bins. To 
improve the stability of the regression analysis, we fill the empty i j( , ) bins with CT numbers, thus all MRI i j( , ) 
bins have corresponding CT numbers before the regression analysis. In particular, we assign an empty bin with 
the CT number of the filled bin with the smallest distance. For example, for an empty bin with the MR1 bin num-
ber ie and MR2 bin number je, its distance from a filled bin with the MR1 bin number i and MR2 bin number j is 
calculated as

Figure 2.  (A) Mean absolute error versus the polynomial degree n with Nbin = 200. (B) Mean absolute error 
versus the number of MRI bins (Nbin) with the polynomial degree =n 30.
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The HU-value of the filled bin with the smallest distance d is then assigned to the empty bin. If the smallest 
distance corresponds to multiple filled bins, then the average HU-value of those multiple bins is assigned to the 
empty bin. For our regression analysis, the weighting factor assigned to an empty bin is 10% of that of the nearest 
filled bin.

Results
Accuracy of the pCT image.  An example of the pCT image is shown in Fig. 3 with the axial view of the 
patient’s MRI (MR1 and MR2) and CT images at the same slice. We see that the pCT image (Fig. 3D) closely 
matches the rCT (Fig. 3C). Noticeable structural differences are predominantly in the soft tissues, specifically the 
bladder and bowel. Similar differences are also observed between the rCT (Fig. 3C) and MRI images (Fig. 3A,B). 
Other minor differences are observed at the muscle-fat tissue and bony-tissue interfaces. These can be mostly 
attributed to the extended duration between the acquisition times of MRI and CT images. Therefore, the region 
with major structural differences (e.g. bladder and bowel due to daily changes) between the CT and MRI images 
are segmented as the excluded region and omitted in determining the prediction model or the MAE calculations.

Table 1 presents the MAE values for the overall patient volume and for each segmented (bony, soft, mixed) 
region of each LOOCV cycle as well as the average value for all six cycles. We obtained an average MAE of 40.3 ± 
2.9 HU for the overall volume in the images, while the raw MAE values for the bony, soft, and mixed regions are 
102.7 ± 9.9 HU, 24.6 ± 1.0 HU, and 143.5 ± 9.2 HU, respectively. The weighted MAE value for a region is deter-
mined by multiplying the raw MAE value by the percent of voxels in that region, thus the sum of the weighted 
MAE values of the three regions equals the overall MAE value. We find that the bone-tissue interface has the most 

Figure 3.  Axial views of the (A) MR1, (B) MR2, (C) reference-CT, and (D) generated pCT image at a given 
location of a target patient.
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noticeable differences, because there the deviations between MRI and reference-CT images are the highest due to 
registration errors. The high raw MAE values for the mixed region in Table 1 support this observation, since the 
mixed region consists mainly of the bone-tissue interface. Also, because the bony region and the mixed region 
account for only a small percentage (9% and 7% respectively) of all the voxels in the imaged volume, their contri-
butions to the overall MAE (i.e., their weighted MAE values) are lower than that from the soft region.

Comparison of dosimetric calculations using pCT and rCT.  To further assess the accuracy of the 
pCT image volume, we compare dosimetric calculations of treatment plans based on the pCT and the rCT. 
External beam pelvic radiotherapy with cisplatin and brachytherapy is the standard of care for patients with 
advanced cervical malignancy. The typical geometrical setup for cervical cancer is 4-field box technique, namely 
anterior-posterior (AP), posterior-Anterior (PA), right-lateral (RLAT) and left-lateral (LLAT) fields. A modified 
setup is a 3-field technique including RLAT, LLAT and AP, which can be used to reduce dose to rectum. In this 
study we use the 3-field treatment plan created with the Eclipse treatment planning system (Varian Medical 
System, Palo Alto, CA, USA), where the planning target volume (PTV) is the cervix. We then draw contours for 
the left and right femur heads, bladder, bowel, and rectum on the treatment planning system. For the excluded 
regions (mainly the bladder and bowel) where the CT and MR images differ significantly, the CT numbers for the 
bladder and bowel are overridden and assigned as 5 HU and 45 HU, respectively (for both the pCT and rCT). The 
center of the PTV is prescribed a dose of 56 Gy and for simplicity all three beams are equally weighted. The treat-
ment plan is first generated on the rCT images and then mapped directly to the pCT images. Dose distributions 
of rCT and pCT treatment plans are calculated on the treatment planning system.

We compare the dose value of each voxel from the pCT and rCT dose distributions. A voxel that has a dose 
difference within the tolerance of | |2%  is considered as passing the criterion. Passing voxels within the imaged 
volume are tabulated (not including the air voxels), and a passing rate is calculated. Table 2 shows the passing rate 
results, where the average passing rate is 95.4% in the point-to-point dose comparisons between the pCT and rCT 
treatment plans. When the pCT image is close to rCT, the dose distributions in a small region of interest would be 
very close to each other, which difference can be measured through the gamma index. Note that our 
point-to-point dose comparison method is similar to the gamma dose distribution comparison method except for 
the distance to agreement (DTA) value. In fact, our comparison method corresponds to using DTA = 0 and is 
thus stricter than the usual gamma index.

Sources of the pCT uncertainties.  Here we investigate in more detail the sources that contribute to the 
finite MAE between the generated pCT and the reference-CT images. The rCT image, pCT image, and the image 
of their absolute difference (|rCT-pCT | ) at four different slices for patient 1 are provided in Supplementary 
Figures S7–S10. In general, the MAE has two main contributions: one from the imperfect fitting of the average CT 
number CTi j,  as a function of the MRI bin numbers i j( , ) with equation (1), the other from the intrinsic fluctuation 
or spread of the CT numbers at given MRI bin numbers i j( , ) around the mean value CTi j, .

Instead of MAE, it is simpler for this purpose to examine the root-mean-squared (rms) difference between 
pseudo-CT and reference-CT:

Mean Absolute Error (HU)

Overall

Bony Region Soft Region Mixed Region

Raw (Weighted) Raw (Weighted) Raw (Weighted)

Cycle1 44.4 118.5 (12.1) 25.8 (21.1) 138.3 (11.2)

Cycle2 42.7 100.2 (8.1) 25.6 (20.9) 134.3 (13.8)

Cycle3 40.9 104.0 (9.6) 24.8 (20.8) 151.8 (10.4)

Cycle4 38.7 105.6 (9.5) 23.0 (19.5) 157.0 (9.6)

Cycle5 38.1 99.7 (8.8) 24.6 (20.9) 135.8 (8.5)

Cycle6 36.7 88.0 (8.0) 23.9 (20.4) 143.6 (8.3)

Average 40.3 ± 2.9 102.7 ± 
9.9 (9.4 ± 1.5) 24.6 ± 

1.0 (20.6 ± 0.6) 143.5 ± 
9.2 (10.3 ± 2.0)

Table 1.  MAE values between pseudo-CT and reference-CT for the overall patient volume and for each 
segmented (bony, soft, and mixed) region of each LOOCV cycle and their average values for all six cycles. The 
weighted MAE value of a region is the raw MAE value multiplied by the percent of voxels in that region among 
all voxels.

Cycle1 Cycle2 Cycle3 Cycle4 Cycle5 Cycle6 Average

Passing rate 95.7% 94.8% 95.8% 96.2% 95.7% 94.2% (95.4 ± 
0.7)%

Table 2.  Passing rates (i.e., with a dose difference less than 2%) from the point-to-point dose comparisons 
between the pseudo-CT and reference-CT treatment plans.
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where N  is the total number of voxels in the imaged volume (not including the voxels in the excluded region), and 
k is voxel index. When evaluated for each region, N  in the above equation then represents the total number of 
body voxels in that region in the imaged volume. The σpCT values are presented in Table 3. Note that as expected 
σpCT is always higher than (or equal to) the corresponding raw MAE value, which can be verified by comparing 
Tables 1 and 3. Also, the largest values are observed for bony and mixed regions, consistent with the fact that their 
raw MAE values shown in Table 1 are higher than that of the soft region.

To evaluate the goodness of fit of the polynomial equation (1), we can calculate the mean absolute error and 
the rms difference between the predicted pCT S S( , )1 2  from equation (1) and the averaged CT number CTi j,  in the 
reference-CT training data for each segmented region:
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i j, 1 ,  gives the total number of voxels in the imaged volume for that region. In the above equa-
tion, ≡ ( )pCT pCT S S,i j, 1 2  is the predicted CT number for the MRI bin i j( , ), where S1 and S2 here represents the 
central intensity value of the i-th MR1 bin and the j-th MR2 bin, respectively. Table 4 shows the MAEfit and σfit 
values for each cycle and their average values. We can see that the fit is better for the soft region than for the other 
two regions.

Another contribution to the MAE of the generated pCT comes from the fact that voxels at the same MRI bin 
numbers i j( , ) do not have exactly the same CT number, although they average to the mean value CTi j, . For this, 
we can calculate for each region the mean absolute error and the rms difference between individual voxel’s 
reference-CT number and the averaged value CTi j,  at the same MRI bin i j( , ) as
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where N = ∑ = Ni j
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i j, 1 ,  and k is voxel index within the MRI bin i j( , ). These values are shown in Table 5. We see 
that the values for the bony region and the mixed region are much higher than that of the soft region, similar to 
Table 3.

σpCT  (HU)

Overall Bony Region Soft Region Mixed Region

Cycle1 86.1 160.0 48.4 188.1

Cycle2 80.7 133.7 46.0 180.6

Cycle3 79.4 142.5 41.1 209.0

Cycle4 80.4 147.8 43.6 216.5

Cycle5 69.0 128.1 39.3 179.3

Cycle6 70.0 118.2 41.7 192.7

Average 77.6 ± 6.7 138.4 ± 14.9 43.3 ± 3.4 194.4 ± 15.3

Table 3.  σpCT values between pseudo-CT and reference-CT for the overall patient volume and for each 
segmented region of each LOOCV cycle and their average values for all six cycles.

MAEfit (HU) σfit (HU)

Bony Region Soft Region Mixed Region Bony Region Soft Region Mixed Region

Cycle1 10.4 2.0 16.6 21.5 5.3 31.6

Cycle2 11.0 2.1 17.3 22.6 4.5 33.3

Cycle3 10.4 2.1 16.0 20.0 5.4 31.3

Cycle4 10.5 2.1 15.8 21.4 5.5 29.8

Cycle5 11.3 2.1 16.5 23.2 5.7 32.4

Cycle6 10.9 2.1 15.9 23.3 5.4 31.7

Average 10.8 ± 0.4 2.1 ± 0.0 16.3 ± 0.6 22.0 ± 1.3 5.3 ± 0.4 31.7 ± 1.2

Table 4.  MAEfit and σfit values for fitting the mean reference-CT numbers with equation (1) for the overall 
patient volume and for each segmented region of each LOOCV cycle and their average values for all six cycles.
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We also find that the AEM rCT or σrCT values are much higher than the corresponding AEM fit or σfit values for 
the same region. Furthermore, if the uncertainties from these two sources were independent, one would expect 
the following relation for each region:

σ σ σ= + . (8)pCT rCT fit
2 2 2

From Tables 3–5, we indeed see that the average σpCT value of each region is higher than the corresponding 
average value of σrCT or σfit, and the above relation is approximately satisfied even quantitatively. Similar features 
can also be observed for the MAE values from Tables 1, 4 and 5. Specifically, the average raw MAE value of each 
region is higher than the corresponding average value of AEM rCT or AEM fit, with 

AE AEM MrCT fit, and the 
relation ≈ +AE AE AEM M MrCT fit

2 2 2  holds approximately. Therefore, we conclude that the intrinsic fluctuation 
of the reference-CT numbers for voxels with similar MRI intensity values, not the fitting procedure from the 
regression analysis, is the dominant source to the uncertainty of the generated pCT images.

Discussions
We have presented a voxel method that uses two sets of MRI images acquired with different MRI sequences to 
generate the pCT images. This method is straightforward to implement and extend. For example, this method 
can be easily generalized to use more than two sets of MRI contrast data, where equation (1) would just include 
additional independent MRI variables. Our method differs from earlier pCT works11,13,23,29–35, mainly in the use 
of high-degree polynomials with more than one MRI variables together with the use of deformable image regis-
tration and MRI intensity normalizations.

Using multiple MRI sets with different sequences allows for improved delineation and identification of voxels 
with different CT numbers and thus leads to better accuracy of the pCT. Table 6 compares our MAE values with 
those using only one set of MRI image (MR1 or MR2), including the corresponding two-sided p-values from the 
paired t-test to compare the ‘Current Method’ to the single-MRI methods. The small p-values (p < 0.001 and 
p = 0.0026) suggest that our method of using dual-contrast MRI data improves the pCT accuracy.

We note that the use of multiple MR sequence parameters has been explored earlier and the advantage of using 
more than one MRI sequence has been pointed out8,30. Aouadi et al.16 used a patch-based method for the brain 
and also combined T1- and T2-weighted MRI intensities to have an enhanced description of tissue properties. 

MAErCT (HU) σrCT  (HU)

Bony Region Soft Region Mixed Region Bony Region Soft Region Mixed Region

Cycle1 95.3 23.4 138.0 128.4 40.2 187.5

Cycle2 97.6 23.7 141.3 132.5 40.3 190.6

Cycle3 97.6 23.7 133.3 131.9 41.4 183.6

Cycle4 96.8 24.1 133.3 129.9 41.0 182.7

Cycle5 98.8 23.6 138.1 134.4 42.5 189.3

Cycle6 100.3 23.9 135.1 135.3 41.2 186.8

Average 97.7 ± 1.7 23.7 ± 0.2 136.5 ± 3.2 132.1 ± 2.6 41.1 ± 0.8 186.7 ± 3.1

Table 5.  MAErCT and σrCT values for the spread of CT numbers in the same MRI bin for the overall patient 
volume and for each segmented region of each LOOCV cycle and their average values for all six cycles.

Mean Absolute Error (HU)

Current 
Method

Only 
MR1

Only 
MR2 Interpolation

Without 
Segmentation

Without Using 
Excluded Region

LOOCV

3 + 1

Cycle1 44.4 48.2 55.6 44.5 66.0 45.3 48.5

Cycle2 42.7 47.3 64.4 42.9 65.3 47.4

Cycle3 40.9 46.1 81.5 41.1 61.9 43.1 40.7

Cycle4 38.7 44.1 64.6 38.8 60.8 47.4 39.7

Cycle5 38.1 41.7 53.2 38.3 64.7 40.8

Cycle6 36.7 40.8 66.4 36.9 59.5 41.0 37.2

Average 40.3 ± 
2.9

44.7 ± 
3.0

64.3 ± 
10.0 40.4 ± 2.9 63.0 ± 2.7 44.1 ± 2.9 41.5 ± 4.9

p-value <0.001 0.0026 <0.001 <0.001 0.017 0.25

Table 6.  MAE values from our method using two MRI sets with segmentation, in comparison with those using 
only one MRI set, using the interpolation method, using two MRI sets but without segmentation, without 
using the excluded region, and using only 4-patient datasets. The p-value is the two-sided value determined by 
performing a paired t-test between a given method and the ‘Current Method’ for sample size 6 (except that the 
sample size is 4 for the t-test of ‘LOOCV 3 + 1’).
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Burgos et al.17 used an atlas-based method to generate pCT images, where each subject had a T1w MR image, 
T2w MR image, and a CT image for pelvis acquired on the same day. Note that a disadvantage of the atlas method 
is that it will be unable to extrapolate to a feasible pCT image without pre-existing templates for other anatomic 
areas or an atypical anatomy. Speier et al.34 investigated the generation of pCT images from T1w and T2w MRI 
images for the brain including a voxel-based method that used a localized lookup table, where the lookup table 
algorithm relied on segmentation and regionalization steps in the data preprocessing. Pileggi et al.35 used T1w 
and T2w MR for brain to generate a pCT for proton therapy treatment, where a voxel-based lookup table was 
generated by binning HU in matrixes of 10 × 10 MR intensity units together with rigid image registration. Koike 
et al.9 described a method to generate pCT images from T1w, T2w and fluid-attenuated inversion recovery MR 
images using an adversarial network for the head region. Zhong et al.8 used a patch-based approach and reported 
a MAE of 97.72 ± 15.78 HU for combined T1w and T2w training but 113.73 ± 16.86 HU for only T1w, showing 
an improvement in the pCT accuracy from using both T1w and T2w MR sets.

In addition to using a polynomial to calculate the average CT number as a continuous function of the two MRI 
variables, we have also used an interpolation method that is similar to using a lookup table. We first use the center 
points of all the MR1-MR2 bins to divide the MR1-MR2 plane into ~Nbin2 number of cells. Then we calculate the 
average CT number of an arbitrary point in the MR2-MR2 plane by using a bilinear interpolation of the average 
CT numbers of the four neighboring center points. Table 6 shows that the MAE values from this interpolation 
method are only slightly higher than those from our current method. The p-value (p < 0.001) is small because the 
paired MAE differences between the interpolation method and our current method from Table 6 (0.1, 0.2, 0.2, 
0.1, 0.2, and 0.2 HU, respectively) all have the same sign and are close in magnitude, even though the mean MAE 
difference is very small (~0.17 HU). We note that, compared to using a lookup table34,35, using a continuous pol-
ynomial function to represent the complicated relation between the MR values and the corresponding CT value 
has an advantage in that the computer storage of such a polynomial function needs less space since only the coef-
ficients are needed. This advantage in storage will be even greater if more than two MRI sequences or contrasts 
will be used. We also note that other methods, such as probability functions19,30, the gaussian mixture regression 
model11,22, and weighted summation13,33, have also been used in other studies to calculate the CT number from 
the input MRI data.

Similar to other studies10,29,31,43, setting masks to segment tissues is an important step in improving the pCT 
accuracy. The importance of segmentation can be seen from the ‘Without Segmentation’ column of Table 6, where 
MAE values obtained without segmentation (still with the same excluded region and using two MRI sets) are 
significantly higher. The small p-value (p < 0.001) from the paired t-test suggests that the inclusion of segmenta-
tion in the approach of deriving pCT improves its accuracy. Furthermore, we believe the implementation of an 
automated segmentation process33 to our method will not only further improve the efficiency but also further 
improve the accuracy and robustness of our method by ensuring better agreements in the region delineation 
between patients.

One issue of this study was that the MRI and CT patient data could not be acquired on the same day. This 
created uncertainties during the image registration process due to the rectal/bladder filling inconsistency between 
sessions and other setup inconsistencies. To address this issue, we have used a deformable image registration and 
the excluded region. The excluded region as shown in Fig. 1B contains mainly of organs, bowel and bladder that 
could have significant internal motion and anatomical differences on a daily basis44–46. When we include voxels in 
the excluded region by applying the corresponding fitting functions, we get the MAE values in the ‘Without Using 
Excluded Region’ column of Table 6. The small p-value (p = 0.017) from the paired t-test suggests that using an 
excluded region improves the pCT accuracy. The implementation of better alignment and a shorter duration 
between the acquisition of CT and MRI datasets into our method could help in reducing the size of the excluded 
region and thus improve the pCT accuracy. Note that the excluded region is not needed when applying the pre-
diction model to the actual MRI data to generate the pCT images of the target patient.

Since our datasets of 6 patients are rather limited, we investigate the effect of sample size by applying LOOCV 
for 4 out of the 6 datasets (i.e., assuming that we only have data for patient number 1, 3, 4, and 6). The ‘LOOCV 
3 + 1’ column of Table 6 shows the corresponding MAE values of using three training datasets and one dataset 
as the target patient in generating the pCT, which are close to the MAE values of our current ‘LOOCV 5 + 1’ 
method. We also conduct the paired t-test to compare the MAE values from ‘LOOCV 3 + 1’ with the corre-
sponding values from our ‘Current Method’ (i.e., the MAE values under ‘Current Method’ for Cycle1, 3, 4, and 
6). The rather large p-value (p = 0.25) indicates that there is insufficient evidence to conclude there is a significant 
difference between the MAE of ‘LOOCV 5 + 1’ and ‘LOOCV 3 + 1’. However, to bring our proposed method to 
implementation in the clinical routine, we would like to have more training patients (than five used in this study) 
and also have the MRI and CT data of a given patient acquired on the same day.

In the pre-processing, a deformable image registration12,19,47 is used to ensure that the anatomical position of 
each voxel between the MRI and the CT images matches and anatomical structures between the image modalities 
are aligned. Matching of anatomical positions is necessary in training our model to establish the relationship 
between the MRI voxel intensity values and the CT number while suppressing the noise from mismatched voxels. 
For generating the pCT for the target patient, however, a deformable registration will not be necessary, thus the 
geometric integrity of the target patient images is retained.

We could further improve this model by determining the optimal MRI sequences for acquiring the 
dual-contrast MRI data. We also recommend using the same MRI sequence parameters to acquire each set of 
the dual-contrast MRI data (for the training patients as well as the target patient); then the MRI intensities of 
different patients would be more consistent, which would further improve the pCT accuracy. Note that different 
anatomical locations (e.g., lung or head and neck) from the pelvic region used in this study could possibly require 
different optimal MRI sequences for the MRI acquisition, therefore extending the method into different anatom-
ical sites is warranted.
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In conclusion, we have developed a voxel-based method that uses two different MR sequence sets 
(dual-contrast MRI) to create pseudo-CT images, where after deformable image registration and MRI inten-
sity normalizations a regression analysis is used to determine the two-variable high-degree polynomial function 
for each segmented region. Using pelvic data from six patients, the HU values and dose distributions from the 
pseudo-CT are in close agreements with those from the reference-CT. Therefore, the pseudo-CT generation using 
a multi-variable polynomial prediction model with deformable image registration, anatomical segmentation and 
MRI intensity normalizations shows promising results for MRI-only radiation treatment planning. Our proposed 
polynomial method is easy to extend to more MRI sequences and saves computer storage. In addition, its accu-
racy can be further improved in the future by optimizing sequence parameters of the dual-contrast MRI or by 
using MRI data with more than two different sequences.

Data availability
All data generated and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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