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Mitochondrial dysfunction plays a primary role in neurodevelopmental anomalies 
and neurodegeneration of Down syndrome (DS) subjects. For this reason, targeting 
mitochondrial key genes, such as PGC-1α/PPARGC1A, is emerging as a good therapeutic 
approach to attenuate cognitive disability in DS. After demonstrating the efficacy of the 
biguanide metformin (a PGC-1α activator) in a cell model of DS, we extended the study to 
other molecules that regulate the PGC-1α pathway acting on PPAR genes. We, therefore, 
treated trisomic fetal fibroblasts with different doses of pioglitazone (PGZ) and evaluated 
the effects on mitochondrial dynamics and function. Treatment with PGZ significantly 
increased mRNA and protein levels of PGC-1α. Mitochondrial network was fully restored 
by PGZ administration affecting the fission-fusion mitochondrial machinery. Specifically, 
optic atrophy 1 (OPA1) and mitofusin 1 (MFN1) were upregulated while dynamin-related 
protein 1 (DRP1) was downregulated. These effects, together with a significant increase 
of basal ATP content and oxygen consumption rate, and a significant decrease of reactive 
oxygen species (ROS) production, provide strong evidence of an overall improvement 
of mitochondria bioenergetics in trisomic cells. In conclusion, we demonstrate that PGZ 
is able to improve mitochondrial phenotype even at low concentrations (0.5 μM). We 
also speculate that a combination of drugs that target mitochondrial function might be 
advantageous, offering potentially higher efficacy and lower individual drug dosage.

Keywords: Down syndrome/therapy, pioglitazone, energy metabolism, oxidative stress, mitochondrial dysfunction, 
mitochondrial dynamics

INTRODUCTION

Over the last years, several drugs and nutraceuticals have been tested, mostly in the Ts65Dn mouse 
model of Down syndrome (DS), aimed at rescuing or attenuating deficits in learning and memory. 
More than 20 molecules have been successfully identified to restore hippocampal deficits in adult mice 
(Gardiner, 2015). The results of these preclinical trials suggest that the amelioration or prevention of 
cognitive deficits in people with DS may be possible, thus paving the way to clinical trials many of 
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which are still in progress. Leitmotiv of these investigations was 
that improving cognitive function would have enormous beneficial 
consequences for individuals with DS, increasing their potential to 
participate in society more fully and independently.

In human DS cells we and others have documented 
an  impairment of mitochondrial function with decreased 
mitochondrial redox activity and decreased levels of mitochondrial 
electron transport enzymes, altered mitochondrial morphology 
and increased fragmentation (Piccoli et al., 2013).

Several studies demonstrated that mitochondrial dysfunction 
plays an important primary role in both altered neurodevelopment 
and neurodegeneration (Khacho and Slack, 2018). This evidence 
strongly supports the hypothesis that a mitochondria targeted 
therapy might attenuate cognitive disability in DS.

Among the molecular mechanisms responsible for 
mitochondrial dysfunction in DS, we found that the dosage-related 
over-expression of a corepressor mapping to the chromosome 21 
(Hsa21), namely NRIP1, inhibits the activity of the transcriptional 
activator PGC-1α (Izzo et al., 2014), a gene that orchestrates 
mitochondrial biogenesis and function (Scarpulla et al., 2012). 
Indeed, PGC-1α activity is decreased in cells and tissues of DS 
individuals (Conti et al., 2007; Piccoli et al., 2013; Izzo et al., 2014), 
as well as in brain tissues from Alzheimer’s disease (AD) patients 
(Petrozzi et al., 2007), suggesting that similar molecular pathways 
are involved in DS and AD neurodegeneration (Coskun and 
Busciglio, 2012).

PGC-1α is a modulator of mitochondrial phenotype, its activity 
might be targeted through either PGC-1α activators, successfully 
tested in mouse models for other diseases (Lagouge et al., 2006; 
Dong et al., 2007), or agonists of the peroxisome proliferator-
activated receptors (PPARs), which have demonstrated to 
attenuate mitochondrial dysfunction in AD mouse models 
(Nicolakakis et al., 2008; Johri et al., 2012).

We have recently evaluated a PGC-1α activator, the biguanide 
metformin, in a DS cell model (Izzo et al., 2017b). Metformin, 
commonly used in clinical practice in type 2 diabetes as well as 
in polycystic ovary syndrome and insulin resistance, activates 
PGC-1α via AMPK and SIRT1 post-translational modifications. 
We demonstrated that metformin induces both the expression 
and the activity of PGC-1α in human trisomic fibroblasts, 
promoting mitochondrial biogenesis (Izzo et al., 2017b).

Even though metformin is a very promising molecule, the 
use of different drugs acting on same targets through different 
pathways could be eligible as alternative or synergistic approach. 
For this reason, in this study, we considered drugs that may 
regulate mitochondrial function by activating PGC-1α pathway 
through the activation of PPARs. Three PPARs have been 
identified (α/γ/δ), which are ligand-modulated nuclear receptors 
that regulate gene expression programs of metabolic pathways 
(Michalik et al., 2006). PPAR-γ has proven to be a promising 
target for treatment of central nervous system diseases. Agonists 
of this receptor showed to be effective in ameliorating disease-
related symptoms in animal models (Corona and Duchen, 
2015). Both PGC-1α activators and PPAR-γ agonists regulate the 
expression of several target genes involved in neuronal survival and 
neuroprotection by inhibiting mitochondrial dysfunction, oxidative 
stress, proteosomal dysfunction, autophagy, neuroinflammation 

and apoptosis (Chaturvedi and Beal, 2008; Landreth et al., 2008; 
Corona and Duchen, 2016).

Among the PPAR agonists, pioglitazone (PGZ) (ATC code 
A10BG03), belonging to thiazolidinediones (TZD) (ATC code 
A10BG), selectively stimulates PPAR-γ (Landreth et al., 2008). 
PGZ increases the phosphorylation of AMPK and, as consequence, 
the expression of PGC-1α and of multiple genes involved in 
mitochondrial function (Coletta et al., 2009). This drug attenuates 
mitochondrial dysfunction in animal models of central nervous 
system injury improving mitochondrial ATP production and 
oxygen consumption (Nicolakakis et al., 2008; Escribano et al., 
2009; Sauerbeck et al., 2011), prevents the loss of dopaminergic 
neurons (Breidert et al., 2002) and reduces iNOS induction and 
oxidative stress in mouse models of Parkinson’s disease (PD) 
(Hunter et al., 2008). PGZ is known to normalize hyperglycemia-
induced intracellular ROS and mtROS production (Fujisawa et al., 
2009). It restores brain ATP levels (Garcia-Bueno et al., 2007) and 
increases mitochondrial DNA content, oxygen consumption rate 
(OCR), PGC-1α and TFAM levels in human adipose tissue and 
in the neuronal-NT2 cell line (Bogacka et al., 2005; Ghosh et al., 
2007). In order to test if PGZ is able to counteract mitochondrial 
dysfunction in DS, we treated trisomic fetal fibroblasts (DS-HFFs) 
with different doses of PGZ to evaluate the effects on mitochondrial 
function and morphology.

MATERIALS AND METHODS

Ethics Statement
Four cultures of human fetal fibroblasts, from fetuses with 
trisomy of Hsa21 at 18–22 gestational weeks, were obtained from 
the “Telethon Bank of Fetal Biological Samples” at the University 
of Naples. All experimental protocols were approved by the local 
Institutional Ethics Committee.

Samples
Fibroblasts were cultured in T25 flasks (BD Falcon) with 
Chang medium B + C (Irvine Scientific) supplemented with 1% 
penicillin/streptomycin (Gibco) at 37 °C in a 5% CO2 atmosphere. 
All analyses described throughout this study were carried out at 
cell culture passages 4–5.

Analysis of karyotype was performed according to standard 
methods (Genesio et al., 2011).

Pioglitazone Treatment
PGZ (Cayman Chemical) was dissolved in dimethyl sulfoxide 
(DMSO) to a stock solution of 5 mM and added to the cell 
growth medium at the final indicated concentrations. Fresh PGZ 
was added every 24 h for 72 h. In untreated control cells an equal 
volume of DMSO was added every 24 h.

RNA Extraction and Quantitative RT-PCR
Total RNA from each sample was extracted using TRIzol reagent 
(Gibco/BRL Life Technologies, Inc., Gaithersburg, MD) and 
was reverse-transcribed using the iScript cDNA Synthesis kit 
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(Bio-Rad Laboratories, Inc., Hercules, CA, USA). Quantitative 
real time polymerase chain reaction (qRT-PCR) was performed 
using SsoAdvanced universal SYBR Green supermix on a Bio-
Rad iCycler CFX96 Touch Real-Time PCR Detection System 
according to the manufacturer’s protocols. Primer pairs (MWG 
Biotech, Ebersberg, Germany) were designed using the Primer 
3 software (http://bioinfo.ut.ee/primer3-0.4.0/primer3; last 
accessed date 2015) to obtain amplicons ranging from 100 to 
150 base pairs. Primer efficiency was tested generating standard 
curves for each gene. QRT-PCR results are presented as relative 
mRNA levels normalized against reference control values. The 
GAPDH housekeeping gene was chosen as reference gene.

Western Blotting
Western blotting was performed as previously described (Izzo et 
al., 2017b). Protein extracts, separated by sodium dodecyl sulphate 
- polyacrylamide gel electrophoresis (SDS-PAGE) and transferred 
onto Nitrocellulose membranes, were incubated with the following 
specific primary antibodies: anti-CASPASE 3 (Cell Signaling 
Technology), anti-PGC-1α (Calbiochem), anti-GAPDH (Cell 
Signaling Technology), anti-Actin (Sigma), anti-MFN1 (Santa Cruz 
Biotechnology), anti-MFN2 (Santa Cruz Biotechnology), anti-OPA1 
(Santa Cruz Biotechnology), and anti-DRP1 (Cell Signaling). Primary 
antibodies were detected with the appropriate HRP-conjugated 
secondary antibodies (Santa Cruz Biotechnology or GE-Healthcare) 
and revealed by chemiluminescence (Pierce) using digital imaging 
on a Bio-Rad ChemiDoc XRS apparatus or Fuji X-ray film.

Analysis of Mitochondrial Network 
Architecture
Cells, seeded at a density of 50,000 per well onto 25-mm glass 
coverslips, were allowed to grow for 24 h and then infected with 
mitochondria-targeted green fluorescent protein (GFP) inserted 
into an adenoviral vector (Ad-mtGFP Ex/Em: 495/515) as 
previously described (Izzo et al., 2017b). Protein expression was 
then allowed for 72 h in the presence or absence of PGZ.

The efficiency of infection was comparable in treated and 
untreated trisomic cells both in terms of percentage of GFP positive 
cells (about 80%) and of intensity of fluorescent GFP signal.

Single cells were imaged, by using the same settings for 
treated and untreated cells, with a Nikon Swept Field Confocal 
microscope (Nikon Instruments Inc.) equipped with a CFI 
Plan Apo VC60XH objective and an Andor DU885 EM-CCD 
camera, which was controlled by NIS Elements 3.2. Fifty-
one-plane z-stacks were acquired with voxel dimensions of 
133 × 133 × 200 nm (X × Y × Z). The mitochondrial network was 
then described in numbers of objects, total volume and object 
volume using the 3D object counter available in the software Fiji 
(http://www.fiji.sc) (Schindelin et al., 2012). 3D rendering was 
obtained with the 3D Viewer plugin.

Measurement of ATP by Luciferase Assay
The cells were plated on 12-mm-diameter glass coverslips for 
single-sample luminescence measurements and incubated for 
24 h. Then they were infected with a VR1012-based construct 

as previously described (Porcelli et al., 2001) and treated 
with PGZ or DMSO for further 72 h. Basal ATP content was 
calculated according to luminescent values of the plateau 
generated after luciferin addition. Efficiency of luciferase 
transduction in treated cells and untreated trisomic cells was 
determined by immunoblot assay as previously described (Izzo 
et al., 2014).

Measurement of ROS on Single-Cell
Cells were seeded on glass coverslips and incubated with 
PGZ or DMSO for 72 h and then incubated with 2′,7′- 
dichlorodihydrofluorescein diacetate (DCFH-DA, 17.5 µM) 
as previously described (Petrozziello et al., 2017). For DCF 
fluorescence analysis, each coverslip was placed into a perfusion 
chamber (Medical System, Co. Greenvale, NY, USA) mounted 
onto a Zeiss Axiovert 200 microscope (Carl Zeiss, Germany) 
equipped with MicroMax 512BFT cooled CCD camera (Princeton 
Instruments, Trenton, NJ, USA). Each coverslip was exposed 
at 485-nm excitation for 10 s and the emitted light was passed 
through a 530-nm barrier filter.

Mitochondria Bioenergetics 
Measurements
Real-time measurements of OCR were made using an XFe-96 
Extracellular Flux Analyzer (Seahorse Bioscience, Billerica, MA, 
USA). Cells were plated in XFe-96 plates (Seahorse Bioscience) 
at the concentration of 25,000 cells/well. Cells were counted before 
and after the experiments. OCR was measured in XFe media 
(non-buffered Dulbecco’s modified eagle medium (DMEM) 
medium containing 10 mM glucose, 2 mM L-glutamine and 1 mM 
sodium pyruvate) under basal conditions and in response to 5 
μM oligomycin, 1.5 μM of carbonyl cyanide-4-(trifluoromethoxy) 
phenylhydrazone (FCCP) and 1 μM of Antimycin-A and Rotenone 
(all from Sigma-Aldrich) as previously described (Izzo et al., 
2017b). Each sample was plated at least in triplicate.

Statistical Procedures
Unless otherwise indicated, all assays were performed 
independently and in triplicate. Statistical analysis was 
performed using GraphPad Prism software vers.5.0 (GraphPad 
Software, La Jolla California USA, http://www.graphpad.
com). Student’s t test was applied to evaluate the statistical 
significance of differences measured throughout the data sets 
presented. The threshold for statistical significance (p-value) 
was set at 0.05.

RESULTS

In order to understand the impact of PGZ on mitochondrial 
function we exposed DS-HFF cells to different concentrations 
of the drug for 72 h. According to PGZ half maximal effective 
concentration [EC50 = ~500–600 nM for both human and murine 
PPAR-γ activation (Sakamoto et al., 2000; Willson et al., 2000)]  
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and previous reports in which the effects of others TZDs 
were analyzed (Hofer et al., 2014), we tested four increasing 
PGZ  concentrations between 0.25 and 2 μM in DS-HFFs. 
Higher  doses were not tested because they exert inhibitory 
effects on the mitochondrial respiratory chain (Garcia-Ruiz 
et al., 2013).

PGZ is Not Toxic in Trisomic Cells 
and Induces PGC-1α Expression
To evaluate the potential toxicity of PGZ in trisomic cells, we 
evaluated the cell growth by MTT assay, the live/dead cell viability 
using the Trypan Blue dye exclusion test and the caspase activity 
by Western blot after 72 h of treatment at the intermediate and 
the highest concentrations (0.5 and 2 μM).

MTT assay is a sensitive indicator of the cellular metabolic 
activity being dependent on mitochondrial respiration (Mosmann, 
1983). No significant variation in cell viability was found after 
exposure to the drug at both concentrations in comparison with 
trisomic cells treated with solvent only (Figure S1A). To exactly 
determine the number of viable cells after treatment, we used 
Trypan Blue dye. We found that the percentage of dead cells 
for each condition was around 2% in PGZ treated trisomic cells 
and controls, indicating that PGZ does not induce cellular death 
(Figure S1B). In addition, we evaluated in these cells the activity 
of Caspase 3, one of the most relevant biochemical markers of 
cell death. We did not find cleavage of caspase 3 in any of the 
conditions (Figure S1C). PGZ significantly increased the PGC-1α 
protein levels starting from 0.25 μM (Figure 1A, B). Consistently, 
PGC-1α mRNA levels were significantly increased in trisomic 
cells after PGZ treatment (Figure 1C).

PGZ Affects the Mitochondrial Network 
Architecture by Modulating the Fission/
Fusion Machinery
To gauge if PGZ affects mitochondrial morphology in trisomic 
cells, we expressed a mitochondria-targeted GFP in DS-HFFs and 
measured mitochondrial number and mitochondrial volume in 
PGZ-treated versus untreated cells. At confocal microscopy analysis 
PGZ-treated cells exhibited a less fragmented mitochondrial 
network with elongated and branched mitochondria (Figure 2B, 
C) when compared with untreated trisomic cells (Figure  2A), 
thus resembling to those observed in euploid cells (Izzo et al., 
2017b). In detail, treated trisomic cells showed on average a 
lower number of mitochondria (Figure 2D) and an increase of 
individual mitochondrial volume (Figure 2F) when compared 
with untreated trisomic cells. Total volume was significantly 
increased only at 2 μM PGZ concentration (Figure 2E). Overall 
mitochondrial network was restored by PGZ administration in a 
dose-dependent manner.

To further investigate molecular bases of the increased 
connectivity mediated by PGZ, the expression level of genes 
responsible for mitochondrial fusion (OPA1, MFN1, and MFN2) 
and fission (DRP1) was assessed. The treatment with PGZ 
significantly upregulated OPA1 expression at both 0.5 and 2 μM 
concentrations and MFN1 expression at 2 μM concentration 

(Figure 3A). No variation of MFN2 gene expression was found, 
while the mRNA of DRP1 was significantly decreased.

At the protein level, only OPA1 expression was significantly 
increased in treated cells (Figure 3B). Neither mitofusins 
nor DRP1 showed significant variation at the protein level 
(Figure 3C–E).

FIGURE 1 | Pioglitazone (PGZ) induces PGC-1α expression in DS-HFFs. 
(A) Representative immunoblotting of PGC-1α in trisomic cells after 72 h of 
exposure to PGZ compared with untreated trisomic cells (-). Actin was used 
as a loading control. (B) Densitometric analysis of three different experiments 
is shown. Results are expressed as relative mean values ± SEM from three 
trisomic samples treated with PGZ, compared with untreated trisomic cells 
(set to 1, dashed line). (C) Relative PGC-1α mRNA expression by qRT-PCR 
upon normalization to a reference gene (GAPDH). For each trisomic sample, 
values represent the average measurements from two qRT-PCR experiments. 
Results are expressed as relative mean values ± SEM from four trisomic 
samples treated with PGZ, compared with untreated DS cells (set equal to 1, 
dashed line). *p ≤ 0.05 for comparison with untreated cells.
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Bioenergetics of Trisomic Cells Is 
Improved by PGZ Treatment
Since ATP content was previously found to be decreased 
in trisomic cells (Izzo et al., 2017b), using a mitochondria 
targeted luciferase we measured the ATP content in treated 
and untreated trisomic cells. A 60% increase in basal ATP 
content, calculated by the luminescence values of the plateau 
generated after the addition of luciferin, was detected in 
trisomic cells treated at 0.5 and 2 μM PGZ doses (Figure 4A). 
The luciferase transduction, determined by immunoblot assay, 
was comparable between treated and untreated trisomic cells 
(data not shown).

As trisomic cells display an increased ROS production with a 
larger redox imbalance when compared with euploid cells (Piccoli 
et al., 2013), we investigated the effects of PGZ on intracellular 
ROS in trisomic cells using the redox-sensitive probe DCFH-DA. 
Since ROS measurement by DCFH is affected by the duration 
and intensity of light excitation, the time of exposure at 485 nm 
was fixed at 10 s for all the samples.

DCF associated fluorescence was significantly decreased in 
trisomic cells after treatment with 0.5 and 2 μM PGZ for 72 h in 
a dose-dependent fashion (Figure 4B).

All together these results demonstrated an increase of 
mitochondrial bioenergetics in treated cells, which is significant 
already at low concentration of the drug. As confirmation of these 
data we directly measured Basal OCR, ATP-linked respiration, 
and maximal respiration by XFe-96 Extracellular Flux Analyzer 
(Seahorse Bioscience). Cells exposed to 0.5 μM PGZ showed 
significant increase of all the parameters when compared with 
untreated cells (Figure 5A, B).

DISCUSSION

Although the phenotype of DS is complex, intellectual disability 
and an early development of AD neuropathology occur in almost 
all the individuals affected by DS (Gardiner, 2015). Increasing 
evidence indicates that mitochondrial dysfunction, observed 

FIGURE 2 | Pioglitazone restores mitochondrial network organization in DS-HFFs. Representative images of the mitochondrial network in (A) untreated (-) 
and trisomic cells treated with (B) 0.5 µM and (C) 2 µM PGZ. 3D reconstruction of Z planes acquired by using the same settings with voxel dimensions of 133 × 
133 × 200 nm (X × Y × Z). Box and whisker plots represent the number of mitochondria (D), the mitochondrial total volume (E) and the individual mitochondrial 
volume (F) measured in PGZ-treated trisomic cells and untreated cells (-).The plots show measurements from fifty randomly selected cells from four samples 
analyzed in each experimental condition. P-values of comparison between untreated and treated cells are indicated on plots.
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FIGURE 3 | Pioglitazone modulates the expression of mitochondrial fission-fusion genes in DS-HFFs. (A) Relative OPA1, MFN1, MFN2, and DRP1 mRNA 
expression after 72 h of treatment with PGZ (0.5 and 2 μM) measured by qRT-PCR upon normalization to a reference gene (GAPDH). For each trisomic sample, 
values represent the average determination for 2 qRT-PCR experiments. Results are expressed as relative mean values ± SEM of cell cultures from four trisomic 
samples treated with PGZ, compared with untreated DS cells (set equal to 1 = dashed line). Representative immunoblotting of (B) OPA1, (C) MFN1, (D) MFN2, and 
(E) DRP1 after 72 h of treatment with PGZ and densitometric analysis of four different experiments are shown. GAPDH was measured as a loading control. Results 
are expressed as mean values ± SEM from trisomic samples treated with PGZ and from untreated cells. *p ≤ 0.05 for comparison with untreated cells.
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in DS, contributes to generating these phenotypic traits, as 
mitochondrial dynamics and metabolism play an important role 
in both fetal and adult neurogenesis (Beckervordersandforth et al., 
2017; Khacho and Slack, 2018). Accordingly, DS is associated with 
impairment in several structural/cognitive domains. Fetuses with 
DS exhibit a reduced number of neurons and a relative increase 
in the number of astrocytes. The brains of fetuses with DS show 
weight (Guihard-Costa et al., 2006) and volume reduction in 
various hippocampal structures (Guidi et al., 2008) and in the 
cerebellum (Guidi et al., 2011). Developmental defects in the 
dentate gyrus, altered dendritic spine morphology and reduced 
spine and synaptic density have also been observed (Guidi et al., 
2018). These last features have been associated with the astrocyte-
secreted thrombospondin 1 (Torres et al., 2018). Recent studies also 
demonstrated an important role of PGC-1α and of its targets in the 
formation and maintenance of hippocampal dendritic spines and 
synapses (Cheng et al., 2012). Impaired PGC-1α activity is emerging 
as a common underlying cause of mitochondrial dysfunction 
in neurodegenerative diseases such as AD, PD and Huntington 
disease (Correira, 2018). Pgc-1α (-/-) mice showed a decreased 
mitochondrial number and respiratory capacity and vacuolar 
lesions in the central nervous system (Leone et al., 2005). All these 

evidences support the hypothesis that targeting mitochondrial 
dysfunction in DS could help to counteract cognitive impairment 
and that pharmacologically induced transcriptional activation of 
the PGC-1α pathway is expected to exert neuroprotective effects.

In a previous study we successfully tested the biguanide 
metformin as PGC-1α activator and mitochondrial “benefactor” 
in a cell model of DS. Metformin enhanced OCR and ATP 
production promoting overall mitochondrial activity and 
biogenesis. The treatment also reversed the fragmentation of 
mitochondria observed in DS and increased the expression of 
genes of the fission/fusion machinery, namely OPA1 and MFN2 
and caused a remodelling of mitochondrial cristae, thus correcting 
the anomalies observed by electron microscopy in trisomic 
cells (Izzo et al., 2017b). In the clinical practice, metformin is a 
well-tolerated drug but some side effects may occur (Krentz 
et al., 1994; Belcher et al., 2005), suggesting that alternative or 
synergistic possibilities may help to reduce even these mild side 

FIGURE 4 | Pioglitazone improves bioenergetics and reduces ROS 
production in DS-HFFs. (A) Arbitrary units of luciferase intensity indicating 
basal ATP content intrisomic cells, untreated (-) and treated with 0.5 or 
2 μM PGZ for 72 h. (B) Arbitrary units of DCF fluorescence incubated with 
DCFH-DA probe in trisomic cells, untreated (-) and treated with 0.5 or 
2 μM PGZ for 72 h. The bars show mean values ± SEM from four trisomic 
samples. *p ≤ 0.05; **p ≤ 0.01 for comparison with untreated cells.

FIGURE 5 | Pioglitazone improves mitochondrial respiratory function. 
(A) OCR measurement in trisomic cells after 72 h of exposure to PGZ 
(0.5 μM) compared with untreated trisomic cells (-). Merged curves of 
mean values of OCR in cell cultures from four trisomic samples obtained 
in basal condition and after consecutive addition of oligomycin, FCCP and 
Antimycin-A/Rotenon. Each experiment was carried out at least in triplicate. 
(B) Indices of mitochondrial respiratory function (basal OCR, ATP-linked and 
maximal) were measured. Results are expressed as relative mean values ± 
SEM from four trisomic samples treated with PGZ, compared with untreated 
trisomic cells (set equal to 100 = dashed line). *p ≤ 0.05; **p ≤ 0.01 for 
comparison with untreated cells.
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effects. For this reason, we have tested in a cell model of DS the 
effects of a thiazolinedione, namely PGZ, a PPAR-γ agonist, which 
stimulates PGC-1α expression. PGZ plays a neuroprotective role 
in dopaminergic neurons in both in vitro and in vivo PD models 
(Wang et al., 2017), which was associated with PGC-1α induction 
and the regulation of proteins involved in mitochondria function 
(Wang et al., 2017). We intentionally used low doses of the drugs 
because both metformin and PGZ are known to inhibit respiratory 
complex I when used at high concentrations (Brunmair et al., 
2004; Ghosh et al., 2007; Garcia-Ruiz et al., 2013). Therefore, we 
tested the effects of doses that are possibly below those inhibiting 
the respiratory chain, as we previously did for metformin. These 
doses demonstrated to be non-toxic at all, as they did not affect cell 
viability in DS-HFFs exposed for 72 h to the drug and to enhance 
both expression and activity of PGC-1α in DS-HFFs. The data are 
compatible with the concept that the activation of PPAR-γ by PGZ 
induces PGC-1α expression (Villena, 2015).

Mitochondria are dynamic organelles, which readily adapt to 
changes in cellular energy demands through network remodeling 
by  continuous fusion and fission processes (Benard et al., 2007; 
Mishra and Chan, 2016). Mitochondrial fusion results in the 
formation of an interconnected mitochondrial network that allows 
the mixing and redistribution of proteins and mtDNA (Nunnari 
et al., 1997). In contrast, mitochondrial fission leads to mitochondria 
with a fragmented morphology, which facilitates the segregation of 
damaged mitochondria (Berman et al., 2008; Lee and Yoon, 2016). 
Regulating the equilibrium between mitochondrial fusion and fission 
is essential to maintain mitochondrial integrity and function through 
the balance between mitochondrial biogenesis and degradation. 
These processes are intricately linked to changes in network 
morphology and spatio-temporal positioning of mitochondria and 
to their function (Hodneland Nilsson et al., 2015). They are essential 
for neuronal processes such as synaptogenesis, Ca2+ buffering, axonal 
transport, and bioenergetics (Oettinghaus et al., 2016).

We previously demonstrated that DS-HFFs display a 
mitochondrial network more fragmented with a higher number 
of short and globular mitochondria and a smaller average 
mitochondrial volume when compared with euploid controls 
(Izzo et al., 2017b). Mitochondrial morphology is crucial for 
cellular physiology, as changes in mitochondrial shape have been 
linked to neurodegeneration, lifespan and cell death and highlights 
the importance of targeting therapeutically mitochondrial dynamics 
(Campello and Scorrano, 2010). In the present study, trisomic cells 
treated by PGZ showed a network promotion and a near complete 
rescue of mitochondrial morphology. Analysis of genes involved in 
fission and fusion processes demonstrated that fusion inducing genes, 
downregulated in DS-HFFs, were increased by PGZ administration, 
while the fission inducing DRP1 gene, over-expressed in trisomic 
cells (Valenti et al., 2017), was downregulated by PGZ treatment. 
Protein expression of this gene was too variable and yielded no 
statistical significance thus indicating that post-transcriptional 
regulating events may have occurred in the time frame that we have 
tested. PGZ increased fusion protein Opa1 and Mfn2 expressions 
and decreased fission protein Drp1 expression also in the remnant 
kidney of nephrectomized rats (Sun et al., 2017). A relationship 
between PGC-1α expression and mitochondrial fusion genes has 
been previously reported (Soriano et al., 2006; Rai et al., 2014) and 

silencing of PGC-1α in smooth muscle cells is known to increase 
mitochondrial fragmentation (Ryan et al., 2013). These results, 
together with the rescue of mitochondrial morphology observed in 
treated cells, can be considered a proof that mitochondrial dynamics, 
altered in trisomic cells, is restored by the treatment.

The functional purpose of mitochondrial biogenesis is to maintain 
mitochondrial quality and secure sufficient ATP production. We 
previously demonstrated in trisomic cells decreased ATP production, 
reduced oxygen consumption, increased ROS production and 
increased levels of intra-mitochondrial calcium (Piccoli et al., 2013). 
PGZ treatment induced a recovery of mitochondrial respiration in 
DS-HFFs. In agreement with this finding, the direct measure of the 
basal ATP content demonstrated that PGZ treatment was associated 
to a significant increase of ATP in treated DS-HFFs. We speculate 
that this increase may be also affected by the increase of the adenine 
nucleotide translocators ANT1/SLC25A4 and ANT2/SLC25A5, 
previously found upregulated in response to PGC-1α induction (Izzo 
et al., 2014). An inverse relationship between ANT1/SLC25A4 and 
the Hsa21 miRNA let-7c, which is upregulated in trisomic cells, has 
also been demonstrated (Izzo et al., 2017a). These data, together with 
a significant decrease of ROS production, provide strong evidence of 
a global improvement in energy metabolism and proof that PGZ is 
able to improve mitochondrial activity even at concentrations as low 
as 0.5 µM. This is important because higher doses deal with the risk 
of starting to inhibit mitochondrial complex I, as discussed above.

The complex neurological function is the result of many 
molecular, cellular and environmental events that are either initiated 
or completed before birth and must be coordinated at precisely the 
right time (Bartesaghi et al., 2015). This suggests that the overall 
impact of the neurological deficits in DS may be lessened if the 
initial pathologic changes in the brain are prevented from occurring. 
Permanent brain alterations of DS originate during fetal life in 
which the first window of opportunity for cognitive improvement 
occurs. Early prenatal diagnosis offers a temporal window to have 
a positive impact on brain development and to improve postnatal 
cognitive outcome in affected individuals. Only a few approaches 
(Epigallocatechine gallate, NAP/SAL, fluoxetine, and apigenin) have 
been used to treat mice in utero; some of these showed therapeutic 
effects that persisted to adulthood (Nakano-Kobayashi et al., 2017). 
Unfortunately, there is not enough information about safety of PGZ 
administration during pregnancy, even though no fetal malformation 
has been reported in the few monitored cases. Poor or discordant 
outcomes, controversial results of preclinical evaluations in mice and 
different degrees of rescue of neurogenesis obtained with previously 
tested antioxidants and nutraceutics (Izzo et al., 2018) suggest that 
combination of drugs may be both necessary and advantageous. 
Drug combinations offer potentially higher efficacy with lower 
individual drug dosage and have been considered to be beneficial in 
the treatment and management of other chronic medical conditions 
(Taylor, 2004; Muayqil and Camicioli, 2012). Different combinations 
of PGZ and metformin are already available in the clinical practice 
to improve glycemic control in patients with type 2 diabetes, with 
side effects similar to those that occur in mono-therapy. However, 
we suppose that the doses we need to govern mitochondrial  
dysfunction in DS could be lower than those commonly used for 
diabetes therapy. Further experiments will be needed to assess the 
smallest effective doses in a combinatory drug therapy.
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