ORIGINAL PAPER

Vol. 25 no. 15 2009, pages 1856-1861
doi:10.10983/bioinformatics/btp350

Genome analysis

UTGB toolkit for personalized genome browsers
Taro L. Saito'?, Jun Yoshimura'-2, Shin Sasaki', Budrul Ahsan', Atsushi Sasaki,
Reginaldo Kuroshu'! and Shinichi Morishita'-2*

"Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-15
Kashiwanoha, Kashiwa City, Chiba 277-0882 and 2Japan Science and Technology Agency (JST),

Tokyo 102-8666, Japan

Received on March 24, 2009; revised on May 27, 2009; accepted on May 30, 2009

Advance Access publication June 3, 2009
Associate Editor: Alfonso Valencia

ABSTRACT

The advent of high-throughput DNA sequencers has increased
the pace of collecting enormous amounts of genomic information,
yielding billions of nucleotides on a weekly basis. This advance
represents an improvement of two orders of magnitude over
traditional Sanger sequencers in terms of the number of nucleotides
per unit time, allowing even small groups of researchers to obtain
huge volumes of genomic data over fairly short period. Consequently,
a pressing need exists for the development of personalized genome
browsers for analyzing these immense amounts of locally stored
data. The UTGB (University of Tokyo Genome Browser) Toolkit is
designed to meet three major requirements for personalization of
genome browsers: easy installation of the system with minimum
efforts, browsing locally stored data and rapid interactive design
of web interfaces tailored to individual needs. The UTGB Toolkit is
licensed under an open source license.

Availability: The software is freely available at http://utgenome.org/.
Contact: moris@cb.k.u-tokyo.ac.jp

1 INTRODUCTION

Browsing genomic information has been central to life science
analysis since large-scale genomes became available for many
species including mammals, invertebrates, plants and insects. To
support the task of analyzing genomic information, two categories of
genome databases are available. The first category includes generic
genome database species maintained by large organizations, such
as Ensembl (Hubbard er al., 2009), UCSC (Kuhn et al., 2009)
and NCBI (Wheeler et al., 2007). The other category includes
species-specific genome databases, such as SGD (Hong et al., 2007),
FlyBase (Wilson et al., 2008) and Wormbase (Rogers et al., 2007),
which utilize general-purpose genome browsers, such as GBrowse
(Stein et al., 2002). Both types of genome browser represent
centralized resources because of the high cost of building and
maintaining web database servers. Due to the limited number of
experts available to maintain the servers, updates of these centralized
web servers are likely to be slow, which is tolerated because the
amount of genomic data output by Sanger sequencers is relatively
small, yielding on the order of ~10 million nt per week.

*To whom correspondence should be addressed.

Today, however, the rate at which genome information is produced
has outperformed the pace of centralized web browser maintenance.
Indeed, the recent advent of high-throughput DNA sequencers
(e.g. Solexa/Illumina, SOLiD/ABI and 454/Roche) allows even
small groups of people to collect huge amount of genomic
data in a fairly short period, billions of nucleotides per week,
requiring the data analysis to be done as quickly as possible.
In particular, generating tracks for investigating personalized data
becomes a crucial step in conducting specific analysis. The UCSC
Genome Browser, for example, offers the function of managing
custom tracks that upload and display personal data in local
disks to the UCSC Genome Browser together with well-annotated
existing tracks. These functions in traditional genome browsers
are useful but suffer from three major drawbacks. First, the
users have to upload their novel and confidential data to the
server, though they want to keep these datasets in their local files
before publication. Second, although anonymization of the data is
partially supported by UCSC, uploading large volumes of data (e.g.
1 GB of Solexa reads data) to the remote web server still needs
enourmous amount of time. In order to avoid the costs of data
uploads, installing a private version of these genome browsers is
desirable; however, the task is extremely hard for non-programming
biologists because it demands expertise in programming. Third,
personalization of web interface is limited and time consuming,
though personalizing web interface through a variety of
rearrangements is an important step toward finding new ideas. For
example, Affymetrix developed the Integrated Genome Browser
(IGB) (Affymetrix, http://www.affymetrix.com/partners_programs/
programs/developer/tools/affytools.affx.) for integrating various
types of biological data provided by DAS (Distributed Annotation
System) (Dowell ef al., 2001) servers.

We developed the (University of Tokyo Genome Browser) UTGB
Toolkit to provide solutions to these three major requirements:
browsing locally stored data, ease of system installation with
minimum effort and custom web interface design. Installing the
UTGB Toolkit locally on one’s own computer is quite easy
for inexperienced users because the system can be installed
with a few steps, and also avoids uploading confidential data
to the remote server. Furthermore, the UTGB Toolkit packages
ready-to-use functions, such as a stand-alone web server, HTML
rendering functionality, database engines, into one component
so that these functions can be made available at private sites

© 2009 The Author(s)

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/
by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

UTGB toolkit for personalized genome browsers

A
-
< resize
removal drag
and
drop
D UTGB Mavigator

medaka [varsion1 0 | REESE scaffoldd
kG 3463050 3464050 | reverse [ESRR

Keyword |

oK 511K 023K 1535 204X

l Search] keyword help

3070K | 358K 40940 4606K S1IA 5629

ErsembiPredGens

3463100 3463200 3463300 (3463400 3463500 3963600 3463700 3463800 (3463900 34690

medaka_salewa_new dayl

| ErsoRL 00000106 — Structure of gene
£ 2048 LI -~
s T i - ~ Frequency of
s . - transcription
B start sites

Nucleosome position
Genetic variation

=0 Repeatscape(25bph

SN T

{

Specificity of short reads

it

By s

U 01 lilIlIlIIi-III_IlﬂllmlIIILIIII-II-'

Repeat masker

Fig. 1. Rapid creation of tailored interface. (A) A number of tracks in a UTGB genome browser. A long track with a large amount of information can be
resized to a shorter track interactively using the scroll bar, which allows the user to browse the content of the original long track. It is also quite easy to
eliminate tracks irrelevant to a particular analysis. (B) The resulting tracks can be reordered to facilitate the further analysis. (C) Tracks can be rearranged
using the interactive drag-and-drop interface. (D) A genome browser tailored to the analysis of nucleosome positioning surrounding transcriptional start sites
and its effect on genetic variation. The track for specificity of short reads is useful in assessing the uniqueness of short-read alignments on the genome. It

takes <1 min to perform all the steps.

immediately after the installation. Figure 1 shows how the
UTGB Toolkit facilitates personalization of the web interface
in the study of epigenomics. Studying epigenomics involves
searching for meaningful combinations from a variety of genome-
wide data resources such as DNA methylation, nucleosome
positions, transcription start sites, gene expression and evolutionary
conservation (Kasahara er al., 2007; Sasaki et al., 2009), which
can now be observed via high-throughput sequencers. Our toolkit
makes it quite easy to develop a genome browser with drag-and-drop
functions for rearranging, juxtaposing and resizing relevant tracks
side-by-side interactively to highlight how epigenetic controls are
responsible for gene expression and evolution.

2 METHODS

2.1 Genome browser interface

To enhance the portability of the system, the UTGB Toolkit is implemented
in Java, a portable programming language, such that its machine codes run

on top of the Java Virtual Machine. Thus, the UTGB Toolkit is executable
on most commonly available platforms, including Mac OS X, Windows,
Linux, Solaris and FreeBSD. In addition, UTGB Toolkit is designed such
that the browser interface runs on most common web browsers, such as IE,
Safari, Firefox and Opera, although it is still necessary to settle discrepancies
between these web browsers. To achieve this goal, the interface is compiled
into JavaScript code via the Google Web Toolkit (GWT) compiler, which
is capable of subsuming the differences between JavaScript engines in the
individual web browsers.

2.2 Portable web server for quickly browsing local
resources

UTGB Toolkit contains a portable web server so that the genome browser can
be launched from the user’s personal computer. To avoid manual installation
of the web server program (e.g. Apache), the UTGB Toolkit has an embedded
Tomcat web server engine. The Tomcat server in the UTGB Toolkit works
as a stand-alone web server that is not resident on the system. UTGB Shell
launches an instance of Tomcat with the ‘utgb server’ command, and then
deploys the genome-browser program on the local Tomcat server.

1857

T.L.Saito et al.

The portable web server is useful not only for avoiding the installation
process, but also for browsing locally stored data resources without losing
data privacy. With the web server running on the user machine, no need
exists to upload confidential data, such as personal genomic data, to a remote
database center. Although anonymization of the data is supported in the
UCSC genome browser, the cost of uploading large volumes of data is still
prohibitive. As a solution to this problem, the user can utilize the UTGB
running on the local machine to simultaneously display local tracks, whose
data are kept on the local hard disk, and publicly available tracks.

2.3 Ensuring portability via the embedded database
engine

The database management system (DBMS) is an essential component of the
genome browser used to provide genomic data for drawing tracks. However,
its installation and setup are quite complicated tasks even for database
experts. To avoid problems in setting up database engines, we embedded
the SQLite (http://www.sqlite.org/) database engine into the UTGB Toolkit.
Connections to other DBMS, such as MySQL, PostgreSQL, are also
supported in the UTGB Toolkit through JDBC (Java Database Connection)
(http://java.sun.com/products/jdbe/). However, unlike these DBMS that use
several files to store the database contents, SQLite is portable in that it uses a
single file with a universal format, which can work across several operating
systems.

To make the DBMS available in any OS environment, we developed an
SQLite JDBC connection library, which packs natively compiled SQLite
binaries (SQLite is written in C) for operating systems such as Windows,
Mac OS and Linux. To support other operating systems for which the SQLite
binary is not available, our SQLite JDBC library also contains a pure Java
SQLite database engine, which works in any environment that supports
Java. Therefore, even if the computer has no DBMS, running the UTGB
browser with database support is possible. In addition, with the embedded
SQLite database engine, we can easily port the genome browser to other OS
environments; e.g. we can make a clone of the genome browser simply by
copying the browser code and database files. This portability of the genome
browser is a novel feature made possible by the UTGB Toolkit.

2.4 Server-side programming support

The UTGB Toolkit is designed to accommodate various requirements of
data visualization, as visualization for genomic data tends to be different for
each scientific study. Standard graphical representations provided by existing
database centers do not always fulfill user needs. The UTGB Toolkit allows
developers to use their own data visualization programs, e.g. CGI-based
graphic image generators, HTML content renderer. Although many variations
in data visualization exist, a common implementation pattern is used in
writing web-based graphic generation programs. For example, a typical
pattern of server-side graphic drawing is as follows: the web server receives
a user request from the browser, and then issues a query to the database.
The results of the query are translated to class objects (e.g. gene objects),
and finally, image data for visualizing these gene objects are returned to the
browser. This pattern contains three major processes: web request handling,
database connection and database object mapping. Here, we describe libraries
for supporting implementation of these common tasks, and how the UTGB
Toolkit eases server-side programming.

2.4.1 Web Action The web request handler in the UTGB Toolkit is called
a web action, which is a Java class for receiving HTTP requests. Web
actions in the UTGB Toolkit enable developers to rapidly begin coding
web interfaces; the ‘utgb action’ command in UTGB Shell generates a
web action instantly. Each web action is directly mapped to a web server
URL. For example, a web action named ‘sequence’ corresponds to the
URL, http://(server_base_url)/sequence. Parameter values attached to the
URL (e.g. ‘sequence?name=chrl&start=100) are passed to the web action,
and these values are automatically assigned to corresponding variables in the

web action class. Data types of the request parameters, such as integer and
string, are detected automatically from the class definitions of web action
class, and parameter values in the URL, which are merely a string type, are
automatically converted into appropriate data types. Individual web actions
correspond to the genome browser web API. With the web action mechanism,
it is possible to avoid writing repetitive code for request handling and data
type conversion.

2.4.2 Database connection The second core component is database
connection support. In general, web database development with Java requires
a database server installation and complex configuration files. Inclusion
of the embedded SQLite database engine removes the requirement for
database installation, and connections to SQLite databases or other DBMS
are immediately available within the web action codes. UTGB Toolkit
supports both local SQLite database files and remote databases connected
through JDBC. These databases can be used by specifying their system types
and database location (file names or URLSs) in the config/track-config.xml
file.

2.4.3 Object database mapping Relational database engines serve table-
formatted data, and an impedance mismatch occurs between table data and
their memory representations in computer programs. To use the database
data in a program, it is necessary to convert the table data into a more
usable format, such as array or class objects in main memory. The UTGB
Toolkit provides the BeanUtil library, which supports translation of table
data into class objects. Similar to the web action handling, table format data
are converted to appropriate class objects by investigating the Java class
definitions. Our matching algorithm translates the table data to a set of class
objects by comparing column names in the table data and parameter names
in the class definition. The matching algorithm automatically converts the
data types between table and class objects using the reflection mechanism
in the Java language, which provides the information of parameter names
and types in the class definitions. Thus, no manual mapping configuration is
required to bind table data to class objects.

2.5 Importing biological data

The UTGB Toolkit supports visualiztion of commonly used biological
data formats, such as BED, DAS (Dowell et al., 2001), etc. To create
a track for displaying biological features mapped onto the genome, the
user has to specify the data files to load (see the documentation at
http://utgenome.org/toolkit/ for details). The UTGB parses these biological
data files in a stream manner and generates graphics that display the features
in the region specified in the genome browser. Access to DAS data is also
supported in the UTGB Toolkit for utilizing existing biological data resources
in conjunction with the user’s own tracks. We are continuing the effort of
improving the UTGB Toolkit to support other biological data formats, such
as AGP, GFF, PSL, AXT (alignment data), etc.

3 RESULTS
3.1 UTGB framework for browsing various data
sources

A notable feature of the UTGB Toolkit is its framework design
for integrating multiple web resources (Figure 2). The interface
of the UTGB browser consists of tracks, which display individual
data resources. To manipulate a set of tracks at the same time,
we provide the notion of the track group, which holds variables
that are shared between multiple tracks. For example, the user can
relocate the window positions of several tracks by changing their
track group state, e.g. by clicking the scroll button. The genome
browsers generated by using the UTGB Toolkit can display both
public and private data sources on a local machine simultaneously.

1858

UTGB toolkit for personalized genome browsers

Web Browser JavaScript codes generated

from Java programs

Track
generat

Track Content |« L Track
generates ‘
Track Content <—

Track Group

generates
Track Content (e

group paremters:
- start = 1000, end = 2500
- sequence_length ={(db query)

interactive
communication

interactive
communication |

HTML/Text/XML | Web Resorces

GET/POST (HTTP) Requests

Web Server
Web Resource [«f===3« Web Resources
Adapters

Data Resources

Databases
| Jveb Server PostgreSQL, MySQL,

Database < N SQLite, etc.
‘ Query API Data Files

Interactive communication via AJAX between browser and web servers

Track Content

Arbitrary web contents, including HTML, texts, images, etc.

Fig. 2. Illustration of the UTGB framework. The UTGB framework has a two-sided design, client- (browser) and server-side code. For the client side, the
UTGB Toolkit generates a web browser interface that consists of a set of tracks. Individual tracks communicate with the web servers, and produce track
contents from the received data in the form of, for example, graphics or table data. Track groups, which manage a set of tracks, hold common parameters
shared among tracks, such as window location on the genome sequence. On the server side, arbitrary web data sources (e.g. HTML, text, XML, database
query results, etc.) can be used to generate track contents using mini-browser (iframe) tracks or web resource adapters. Advanced users can implement tracks
in Java, which are compiled into JavaScript code, to provide a more sophisticated user interface.

3.2 Fast and flexible genome browser interface revision

The interface of the UTGB genome browser displays a list of tracks,
each of which can be dragged to a different location, allowing
the user to customize the browser interface online. The track
interface of the UTGB Toolkit is implemented using JavaScript
technology, which can dynamically rewrite HTML components in
the browser window, so track relocation can be performed without
accessing HTML pages on the server. This feature greatly reduces
user frustration when employing traditional genome browsers that
reload the entire pages after the track relocation. Reloading of track
contents is independent for each track in the browser. Therefore,
even if the response time of the server providing a track contents is
slow, other track contents served by other servers can be displayed
immediately after the arrival of the data. Therefore, the users can
continue to relocate sequence positions on the UTGB genome
browser seamlessly, eliminating the latency caused by the slowest
server to display tracks.

3.3 UTGSB shell for quick genome browser development

To facilitate rapid genome browser development, we developed
the UTGB Shell, a command-line user interface of the UTGB
Toolkit. Figure 3 shows the overview of the UTGB Toolkit and
what can be done with the UTGB Shell. The UTGB Shell has
several user commands that support development of a personalized
genome browser. For example, the ‘utgb create’ command creates
a new genome browser in a few seconds, and the ‘utgb server’
command launches a web server on the local machine, which
enables immediate use of the genome browser. For developers,
track programs that use, for example, database searches, data
visualization, can be implemented with minimal programming effort

because ‘utgb create’ command generates a genome browser code
that already has features such as database connection support, a rich
user interface and standard track implementations.

3.4 Stand-alone and web mode

Genome browsers generated by the UTGB Toolkit work in two
modes, stand-alone and web modes. In the stand-alone mode, the
genome browser runs as a user program on the local computer,
so a privileged account is not required to run the genome browser
program. This stand-alone mode is useful in testing the behavior of
the browser before publishing. The web mode is for publishing the
genome browser on a server machine. The browser code is sent to the
Tomcat engine, which is a standard web server program for running
web applications written in Java. With ‘utgb deploy’ command in the
UTGB Shell, we can immediately deploy the genome browser on
the Tomcat server. Even if the server machine already is running
another web server, such as Apache, these server programs can
coexist by bypassing HTTP requests received by the Apache server
to the Tomcat engine through the proxy module, and users can use
the genome browser contents as if they were served by the Apache
web server. Detailed information regarding such settings is available
from http://utgenome.org/.

3.5 Personalization of genome browser

Maintenance of biological databases consists of data conversions
to accommodate site-specific data formats, and data submission to
appropriate sites. In general, however, this process is not suited
to visualizing the huge amounts of data that are now common in
the era of large-scale genome analysis. In addition, site-specific
data formats and their graphical representations may not be ready

1859

T.L.Saito et al.

@ T Fuitlle:
(o) et | it b 8
w!_.m conbuxt patc e

Pt oo
Fazugn

The et semver siaied

Web Server

W Generate graphics

URL query parameters:
species=human
revision=hg17
target=chri
start=6455428

Launch a local web server

Class Gene {
long start;

Server-side
Program

long end; .
String strand; B]
String name;
CDS cds; Ing query
}List<E><on> exon; “Lresults to objects
P e
Class definition o |
Web action DB |
request &
i SQL query

" SQLite JDBC

Generate code templates

Fig. 3. Overview of the UTGB Toolkit. The UTGB Toolkit supports development of personalized genome browsers in various ways. The UTGB Shell
generates code templates for handling web requests from the genome browser interface (web action), database access support through SQLite JDBC and
mapping support from SQL query results to the specified class objects (BeanUtil). Developers can generate track graphics by using the library included in
the UTGB Toolkit or their own programs. The generated graphics (or arbitrary HTML contents) can be displayed as track contents in the genome browser
interface. To browse both of the locally and remotely stored data, these steps can be performed in a local user machine by launching a local web server from

the UTGB Shell.

or extendable to publish a variety of research results. The UTGB
Toolkit tackles these problems by providing a web browser interface
to display tracks hosted by multiple web servers in a single window.
A set of standard tracks supporting visualization of data resources
is already available. The framework design of the UTGB Toolkit
provides users with flexibility to browse their own data using both
preinstalled and their own visualization programs. To enhance the
user experience, we also incorporated the modern web application
technologies, such as the Google Web Toolkit (GWT), AJAX and
client-side graphic drawing into our toolkit. These technologies
make several features of UTGB, such as drag-and-drops, flexible
resizing and smooth scrolling, available to both users and web
application developers.

3.6 Efficiency of client-side resource integration

The Ensembl’s Genome Browser (Hubbard et al., 2009) is composed
of a single set of image data integrating images of several tracks
using server-side programs. However, this architecture suffers from
a major drawback: when the user clicks a browser button to move
the location to display, the genome browser must redraw the whole
contents already shown on the page. This type of implementation,
which we call server-side integration, is problematic as the server
program has to perform similar database queries and repeatedly
draw graphics even for slight window relocation. Without a caching
mechanism, this type of implementation cannot work efficiently. The
major reason why the Ensembl Genome Browser merges images is
that the HTTP protocol is stateless; i.e. the browser cannot remember
the presented HTML data when the user clicks a link and moves to
the next page. To display the next page, the browser must retrieve

the entire contents again from the server as stateless web browsers
do not allow partial updating of the genome tracks.

With recent advances in browser technology, it has become
possible to change the HTML contents dynamically after loading
HTML and image data using the JavaScript language. Several
other technologies are available for drawing graphical contents in
the browser, such as Flash, Adobe Air and Microsoft Silverlight.
However, these extensions of the web browser sometimes do not
work; e.g. if the browser does not have the required plug-ins to
run these extensions or if plug-in installation is not allowed for non-
privileged users. Therefore, we chose JavaScript which is commonly
supported in most modern web browsers, including Internet Explorer
(IE), Firefox, Safari and Opera. These browsers already have an
embedded JavaScript engine, and therefore no additional installation
process is required. Scripts written in JavaScript language can update
the displayed browser content in situ, and enable the web browsers
to remember the state of the web page. Therefore, modern web
browsers already have the capability to partially modify displayed
content while retaining necessary information in memory on the
browser (client) side. The UTGB Toolkit fully utilizes this browser
(client)-side memory to preserve track contents, which enables the
genome browser to support drag-and-drop and resizing of tracks
without reloading.

The utilization of client-side memory has attracted a great deal of
attention not only for the genome browsers, but also for developing
general web applications. In September 2008, Google launched
a new web browser, Google Chrome. This browser has its own
implementation of the JavaScript engine called V8 with major
performance improvements in the JavaScript garbage collection
mechanism, which efficiently reuses browser-side memory. The

1860

UTGB toolkit for personalized genome browsers

open-source web browser Firefox 3 is also continuing to develop
the JavaScript engine, and has achieved faster performance than the
previous version, Firefox 2. This trend of improving the JavaScript
engine lends marked support for client-side resource integration.

3.7 Server-side and client-side graphic drawing

With regard to graphical visualization of genomic data, the UTGB
Toolkit provides several ready-to-use graphical representations, such
as drawing genes and graph representations. In the UTGB Toolkit,
these visualization supports are available in server-side code, and
we are continuing to develop other types of data visualization. The
UTGB Toolkit also supports browser-side graphic drawing with
the canvas tag, which will be a standard of browser-side graphic
drawing in HTML 5, the next version of HTML. Several web
browsers, including Google Chrome, Firefox, Safari and Opera,
support drawing graphics with the canvas tag, with IE being the
only major browser not providing support for this tag (as of 2008).
However, IE can draw graphics using Vector Markup Language
(VML), which has similar functionality to canvas for drawing
graphics. A team at Google has developed GWT Canvas, a graphic
drawing library, which hides differences between VML in IE and the
canvas tag, so developers can draw graphics in both IE and other
browsers that support this tag. The UTGB Toolkit uses GWT Canvas
to draw custom user tracks.

The capability of drawing graphics in the browser has an impact
on genome browser design because it simplifies the role of the server;
the server machine has no need to generate graphics, but rather its
role is to serve data objects that represent genomic information such
as genes and CDS. The client (browser) receives these data objects
and draws their graphical representation on behalf of the server.
This two-sided genome browser design greatly reduces the workload
on the server machine and simplifies server-side programming; the
server needs only to perform database queries and publish the query
results.

3.8 Availability of the UTGB Toolkit

The UTGB Toolkit is freely available from the UTGB Project Page
(http://utgenome.org/). All source code is managed using the source
revision control system Subversion, so the latest code is made
available immediately. All of our source code is licensed under
the Apache License version 2.0, which is an open-source license
allowing free use and distribution for both personal and commercial
purposes. The Apache License is applied on a file basis; i.e. modified
source files must be licensed under the Apache License Version 2.0,
while users are free to apply any license they wish to source code
generated by the UTGB Toolkit and user-developed source code that
simply uses the UTGB Toolkit.

4 DISCUSSION

In general, database integration takes various forms: a portal,
compound and fully integrated. A portal collects links to

internal or external data sources (e.g. PubMed and ENCODEdb);
search engines, such as Google and Yahoo, also belong to
this category. The second type, compound, displays several
database contents at the same time in the browser window.
The interface of the UTGB can support this type of data
visualization. The IGB (Affymetrix, http://www.affymetrix.com/
partners_programs/programs/developer/tools/affytools.affx.) is also
a compoond browser and supports the integration of genome data
resources provided by DAS protocol using the Java-based GUL
Another example is iGoogle (http://www.google.co.jp/ig), a web
service consisting of user-customizable gadgets, sub windows that
can display, for example, news or a calendar. The third type
comprises fully integrated databases that merge several databases
into a single DBMS to support queries across these databases; this
type of integration is common in centralized database centers such
as NCBI and Ensembl.

These various types of database integration each have their
own benefits: portals can be used as directories to data resources,
compound browsers can collect resources provided by several
organizations and full integration is necessary to process queries
that cannot be evaluated without integration of databases. For
example, a query listing all SNPs surrounding user-selected genes
requires both SNP and gene locus databases. Without integration of
these databases, the user must click the browser buttons numerous
times to navigate through unintegrated database browsers. Our
UTGB framework is not restricted to a certain pattern of database
integration, and all of three of the above types can be used as back-
end databases. However, to achieve faster query performance and
maintenance of the integrated databases, further implementation
effort are required, for example, integrated query support, query
optimization and user-friendly database management interfaces.

Funding: Japan Science and Technology Agency (JST).

Conflict of Interest: none declared.

REFERENCES

Dowell,R. et al. (2001) The distributed annotation system. BMC Bioinformatics, 2, 7.

Hong,E.L. et al. (2007) Gene Ontology annotations at SGD: new data sources and
annotation methods. Nucleic Acids Res., 36, D577-D581.

Hubbard, T.J.P. et al. (2009) Ensembl 2009. Nucleic Acids Res., 37(Suppl.1),
D690-D697.

Kasahara,M. et al. (2007) The medaka draft genome and insights into vertebrate genome
evolution. Nature, 447, 714-719.

Kuhn,R.M. et al. (2009) The UCSC genome browser database: update 2009. Nucleic
Acids Res., 37, D755-D761.

Rogers,A. et al. (2007) Wormbase 2007. Nucleic Acids Res., 36, D612-D617.

Sasaki,S. et al. (2009) Chromatin-associated periodicity in genetic variation
downstream of transcriptional start sites. Science, 323, 401-404.

Stein,L.D. et al. (2002) The generic genome browser: a building block for a model
organism system database. Genome Res., 12, 1599-1610.

Wheeler,D.L.L. et al. (2007) Database resources of the national center for biotechnology
information. Nucleic Acids Res., 36, D13-D21.

Wilson,R.J. et al. (2008) Flybase: integration and improvements to query tools. Nucleic
Acids Res., 36, D588-D593.

1861

