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ABSTRACT: Systems analysis of chromatin has been constrained by complex
patterns and dynamics of histone post-translational modifications (PTMs),
which represent major challenges for both mass spectrometry (MS) and
immuno-based approaches (e.g., chromatin immuno-precipitation, ChIP). Here
we present a proof-of-concept study demonstrating that crosstalk among PTMs
and their functional significance can be revealed via systematic bioinformatic
and proteomic analysis of steady-state histone PTM levels from cells under
various perturbations. Using high resolution tandem MS, we quantified 53
modification states from all core histones and their conserved variants in the
unicellular eukaryotic model organism Tetrahymena. By correlating histone
PTM patterns across 15 different conditions, including various physiological
states and mutations of key histone modifying enzymes, we identified 5 specific
chromatin states with characteristic covarying histone PTMs and associated
them with distinctive functions in replication, transcription, and DNA repair. In
addition to providing a detailed picture on histone PTM crosstalk at global levels, this work has established a novel bioinformatic
and proteomic approach, which can be adapted to other organisms and readily scaled up to allow increased resolution of
chromatin states.

KEYWORDS: posttranslational modification, mass spectrometry, histone code, histone H3 lysine 27 methylation,
histone methyltransferase, histone demethylase, ubiquitin E3 ligase, chromatin states

■ INTRODUCTION

Nuclear DNA is packaged into chromatin with histones and
other substoichiometric protein components. Necessitated by
its involvement in essentially all aspects of DNA transactions,
including replication, transcription, and repair,1 chromatin is a
very complex molecular system, with numerous associated
proteins and even more posttranslational modifications (PTM).
Of particular interest are a large number of histone PTMs,
which combinatorially regulate diverse nuclear functions, as
outlined by the histone code hypothesis.2,3 Histone PTMs are
specifically recognized by effectors connecting to downstream
pathways,4 and their addition and removal by histone
modifying enzymes are crucial for chromatin functions.5

Histone PTMs are often not independent. In its simplest
form, specific residues (e.g., lysine) may be alternatively
modified by several types of PTMs (e.g., acetylation,
methylation, glycosylation, ubiquitinylation, and formylation),
making these PTMs mutually exclusive at particular positions of
proteins.6,7 Positive and negative correlations among PTMs at
different residues within a histone (cis) and even across
different histones (trans), generally referred to as crosstalk,
have also been revealed by analyzing substrate specificities of

histone modifying enzymes and genome-wide distribution
patterns of histone PTMs.6−10 The cis- and trans-crosstalk
reflects communication within and between nucleosomes
mediated by effectors and histone modifying enzymes. These
communication networks result in discrete chromatin states,
which enable selective nuclear functions.
Characterizing this crosstalk is challenging, given the long

and still growing list of PTMs, as well as their cognate enzymes
and effectors. This is further compounded by the astronom-
ically large probability space generated by combinatorial
patterns of modifications. Systems biology approaches that
extract correlative patterns of histone PTMs (as well as
chromatin associated proteins) in their genomic distribution
greatly simplify the problem and have gained popularity due to
the increasing availability of microarray and deep-sequencing
based techniques for massively parallel queries (exemplified by
the ENCODE and modENCODE projects, see the Discussion
section). Nonetheless, our ability to model crosstalk is still
hampered by the scope of data sets, which are limited
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predominantly to those candidate PTMs specifically recognized
by available antibodies. Here we test an alternative systems
biology approach, which characterizes histone PTMs whose
global levels change in correlative ways in response to internal
and external perturbations, based upon accurate MS
quantification (Figure 1). Our results demonstrate that this
unbiased and highly scalable search for clusters of crosstalking
histone PTMs can effectively reveal hidden chromatin features
and provide important clues to their biological functions.

■ MATERIALS AND METHODS

Cell Growth, 15N Metabolic Labeling, and Histone
Preparation

Histone modifying enzyme knockout strains were derived from
wild-type Tetrahymena CU428 cells. Their potential modifica-
tion sites are listed in Supplementary Table 1. All knockout
strains were verified by quantitative PCR.
All media, procedures, and protocols used for cell growth,

15N uniform labeling, and histone separation and purification
were as previously described.11 For actively growing cells, all
strains were grown in 1× SPP medium at 30 °C with gentle
shaking to logarithmic phase (2 × 105/mL). For starvation,
growing cells were collected and washed once with 10 mM
Tris, pH 7.4, and then starved in the Tris buffer for 24 h at 30
°C. Conjugation was initiated by mixing equal numbers of cells
with different mating types, after 24 h starvation at 30 °C. Cells

were collected 4 h after the initiation of conjugation, with
∼80% pairing efficiency.
Crude histones were acid-extracted and prepared from

macronuclei prior to HPLC purification. A C8 reversed-phase
column was used to separate individual histones. LC fractions
were evaluated by 15% SDS-PAGE, and identical histone
fractions from multiple runs were subsequently combined.
Concentrations of core histones were determined by the
Bradford method. The general strategy and experimental design
are illustrated in Figure 1.

Quantitative Analysis of Histone PTMs by Mass
Spectrometry

Histone samples were analyzed in biological duplicates or
triplicates. Detailed sample information is listed in Supple-
mentary Table 2. Propionylation, trypsinization, and nanoLC−
MS analysis of histone samples were all performed as previously
described.11,12 Raw data processing, database searching, and
peptide quantification were all performed in Mascot Distiller
(Matrix Sciences, Version 2.4 for distiller and Version 2.2.07 for
search engine). In performing the database searching, an in-
house Tetrahymena database was created from NCBI on 5/25/
2010 with a total of 51,502 sequence entries. The ion tolerance
was 10 ppm for MS1 and 0.8 Da for MS2. N-terminal
propionylation was considered a fixed modification. Variable
modifications were Acetylation (Protein N-terminus, K),
Methylation (Protein N-terminus, KR), Propionylation (K,
unmodified or monomethylated). Five missed cleavages were

Figure 1. Overall workflow. Wild-type or knockout cells collected under growing, starving, or conjugating conditions were unlabeled, while one wild-
type cell line was 15N-metabolically labeled. Histones from all cell lines were acid extracted and separated by C8 reversed-phase HPLC. Each type of
core histones was equally mixed with the same type of 15N-labeled core histones, which served as global internal standards. Protein digests were
analyzed by nanoflow liquid chromatography coupled with a high-resolution LTQ Orbitrap-XL mass spectrometer. A PTM quantification matrix
reflecting perturbed chromatin profiles was generated. Multivariate statistical models were employed to reveal hidden chromatin features and PTM
crosstalk.

Journal of Proteome Research Article

dx.doi.org/10.1021/pr5001829 | J. Proteome Res. 2014, 13, 3330−33373331



allowed for trypsin digestion due to the high number of lysyl
residue modifications in histones from PTMs or propionyla-
tion. The following peptides from core histones were selected
for normalization on the basis of their stable ratios and low
variations in all strains: TASSKQVSR, GQASQDL, FLKHGR
in H2A; IALESSKLVR, RTLSSR in H2B; FRPGTVALR,
VTIMTKDMQLAR, YQKSTDLLIR in H3; and ISSFIYDDSR,
RKTVTAMDVVYALKR in H4. We assumed that the levels of
those peptides were consistently unchanged and their ratios
(L/H) were very close to 1 in all experiments. All biological and
technical replicates were combined for database searching and
peptide quantification in order to minimize the proteomics
missing data problem. Thus, the final ratio is the average ratio
of all replicates. Furthermore, PTMs were all averaged over the
same modification found in multiple charge states, different
propionylation degrees, or multiple peptides. All spectra
assigned with PTMs were manually validated on the basis of
the same criteria we published previously.11,13

The data sets associated with this study are deposited in
PeptideAtlas (http://www.peptideatlas.org/) with Identifier:
PASS00506 and Password: MD4544qct.
Multivariate Statistical Analysis of Histone PTM Data

Clustering analysis and factor analysis (FA) were performed
with routines written in the statistical programming language R
(http://www.r-project.org/). All normalized PTM ratios were
base-2 log transformed. For clustering analysis, the Partitioning
Around Medoids (PAM) algorithm, a robust version of the K-
means clustering statistical technique, or Ward’s hierarchical
clustering method was used to search for functionally related
histone modifications. More details are provided in the
appendix “R code” in Supporting Information. Factor analysis
is a model based version of Principal Component Analysis
whose essential purpose is to describe the relationships
between variables based on a data covariance matrix. The
primary concern in the FA model is whether the observed
variables can be reduced to a lower number of unobserved
underlying variables called common factors based on the data
correlation structure. In detail, it is assumed that X is a p-variate
random vector and each observation satisfies the following
equation:

∑ λ μ= +
=

X Fj
k

K

jk k j
1

where λ are factor loadings, Fk are common factors, and μj are
errors. Alternatively in matrix notation, X = ΛF + U. In this
model, F and U are independent and are multivariate normal
both with expectations equal to zero. The number of factors
was estimated by PCA screeplot according to the following
rules: (1) number of eigenvalues greater than one and (2) % of
variance explained by factors. The largest fractional change in
the variance occurred between 5 and 6 factors.

■ RESULTS

Global Analysis of Histone PTMs in Perturbed Chromatin
States

Our study was performed in Tetrahymena, a well established
unicellular eukaryotic model organism for research in
epigenetics and chromatin biology.14 As external perturbations,
we examined Tetrahymena cells under three different
physiological conditions: (1) mid log phase growth, featuring
active replication and transcription; (2) starvation, featuring

replication arrest and an alternate transcription profile; and (3)
early conjugation (the sexual phase of Tetrahymena life cycle,
induced by mixing starved cells of two different mating types),
featuring meiosis and an alternate transcription profile. As
internal perturbations, we examined Tetrahymena mutants
affecting five key genes encoding conserved histone modifying
enzymes. In this study we focused primarily on genes
potentially affecting histone H3 methylation, including two
histone methyltransferases (TXR1, TTHERM_00256950 and
EZL2, TTHERM_00300320), two histone demethylases
( J M J 1 , T T H E R M _ 0 0 1 8 5 6 4 0 a n d J M J 2 ,
TTHERM_00467690), and a ubiquitin E3 ligase (RIN1,
TTHERM_00263030) (Supplementary Table 1). We have
previously shown that the primary products for EZL2,
homologous to E(z) in the Polycomb Repressive Complex 2
(PRC2) of metazoa,15 are H3K27me2 and H3K27me3,11 while
TXR1 predominantly produces H3K27me1.11,16 JMJ1 and
JMJ2 are both jumonji family lysine demethylases, closely
related to the JMJD3 (specific for H3K27 demethylation) and
JMJD2 (H3K9/H3K36 demethylation) subfamily proteins in
metazoa, respectively.17 JMJ1 expression is highly induced in
Tetrahymena early conjugating cells.18 JMJ2 is suspected to
functionally overlap with JMJ1, due to the simultaneous
accumulation of H3K27 and H3K9 methylation during
conjugation.19 RIN1 is required for histone H2A mono-
ubiquitylation (H2AK123ub1), playing a role equivalent to that
of ring-finger proteins in Polycomb Repressive Complex 1
(PRC1) of metazoa.20 In metazoa, PRC1 and PRC2 often play
redundant (and possibly synergistic) roles in transcriptional
repression, and there is significant overlap in their genomic
distribution.21

To simplify the experiment, the mutants were further divided
into two groups (Supplementary Figure 1). In the group
containing ΔTXR1, ΔEZL2, and ΔRIN1, we collected samples
only from vegetatively growing and starved cells, as these
mutants do not affect normal conjugation progression and can
yield viable progeny (S.G. and Y.L., unpublished observations).
In the group containing ΔJMJ1, ΔJMJ2, and ΔJMJ1/ΔJMJ2
(double KO), we collected samples only from vegetatively
growing and conjugating cells, as it is during conjugation that
these two genes are highly expressed and defects of the mutants
are predominantly manifested.18

To quantify chromatin modifications, core histones were
acid-extracted from Tetrahymena macronuclei, purified by
reversed-phase HPLC, mixed with equal amounts of 15N-
labeled counterparts as the internal control for quantification,
and subjected to tandem mass spectrometry.11 Sequence
coverage was effective (H2A: 61%, H2B: 68%, H3: 76%, and
H4: 97%), especially in the PTM-rich N-terminal domains
(100%), with a low false discovery rate (FDR < 1%). Histone
variants were also observed along with the major histones,
including H2A.1, H2A.X; H2B.1, H2B.2; and H3, H3.3, H3.4
(Supplementary Figure 2). Overall, we quantified the bulk
levels of 53 histone modification states with relatively small
experimental errors (9.8% average coefficients of variance)
(Figure 2, Supplementary Table 2), which account for 40
individual PTMs and their unmodified counterparts, as well as
local combinations in a single tryptic peptide. All of these
modifications and their tandem spectra have been manually
validated in our previous studies.13 Generally, the average ratios
of these modification states in each condition are fairly close to
zero after data normalization and log2 transformation
(unchanged), while the outliers in the boxplot represent the
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significantly affected PTMs, as expected of perturbation studies
(Supplementary Figure 3).
Main Factors Modulating Histone PTMs

In order to identify histone modification patterns associated
with the systematic perturbations (permutations of different
physiological conditions and mutants, 15 total), we performed

FA based on the data summarized in Supplementary Table 2.
To uncover the optimal number of common factors, we
systematically manipulated the number of factors and analyzed
the effects on the PCA scree plot (Figure 3a). Fitting our data
with a 2-factor model (Supplementary Figure 4) captured only
44.6% of data variance (the variance shared with other variables
via common factors). Many variables were found to have large
errors or uniquenesses (i.e., the variance not shared with other
variables). Further analysis showed that the 5-factor model
captured about 84.5% of the cumulative variance (Figure 3b),
while a further increase in the number of factors resulted in
dramatically diminished return in terms of captured variance
(Figure 3a). Close examination shows that the 5-factor model
fits the data quite well and has fairly small uniqueness values,
indicating that the 5-factor model is optimal for variable
reduction under this set of conditions.
We next analyzed factor loadings for the 5-factor model,

which represent how well variables are correlated with each of
the 5 factors. Those loadings with large values (high
correlation) can often provide clues to the biological
significance of individual factors (Figure 3b). Factor 1, for
example, has large factor loadings for the mid-log phase growth
conditions in genetic backgrounds other than ΔEZL2 and
ΔTXR1. As a major component capturing variance, Factor 1
may represent cell growth as a condition defining patterns of
histone PTMs. Factor 3 has large factor loadings for ΔEZL2,
which likely reflects the roles played by EZL2 in regulating
H3K27me2/H3K27me3 and transcriptional repression in
Tetrahymena. Factor 4 has large factor loadings for ΔTXR1,
which likely reflects the roles played by TXR1 in regulating
H3K27me1 and DNA replication in Tetrahymena.11,16 The
biological significance of the remaining factors 2 and 5 is less
obvious. We speculate that Factor 5 with large loadings for
ΔJMJ1 in conjugation may reflect conjugation-induced
expression of JMJ1,18 even though we did not detect significant
changes of H3K27 methylation levels (Supplementary Table
2). Factor 2 features large factor loadings for the starvation and
conjugation conditions in genetic backgrounds other than
ΔEZL2, ΔTXR1, and ΔJMJ1, implying starvation-defined
patterns of histone PTMs.

Functional Clustering of Histone PTM Patterns

We next explored the extent of crosstalk among histone PTMs
using clustering analysis of the 53 quantifiable modification
states in 15 conditions (external and internal perturbations). A
top-down clustering method (Partitioning Around Medoids
(PAM) algorithm) and a bottom-up approach (Ward’s
hierarchical clustering algorithm) were used to correlate
PTMs that respond in similar ways to perturbations. These
cohorts of histone PTMs are likely to be connected by crosstalk
and functionally related. Both methods partitioned the data into
5 clusters with acceptable silhouette coefficients, a statistical
method that measures cluster quality according to cluster
homogeneity and separation (Supplementary Figure 5).
Common PTMs and clusters identified by both methods are
shown in Figure 4. Note that identification of the same number
of clusters as factors (5, see section above) using these methods
is most likely coincidental. Cluster 1 represents hyper-
acetylation events in N-terminal tails of histones H2A, H3.
and H4, which were predominantly up-regulated in the growth
conditions and down-regulated in the starvation and con-
jugation conditions. Cluster 3 contains mostly unacetylated
peptides (in H3K23me1, acetylation is further blocked by

Figure 2. Identification and quantification of 53 histone modification
states in all cell lines. We identified 40 individual histone marks and
quantified 53 modification states in all phenotypes from individual
core histones averaged over replicates, multiple charge states, different
propionylation degrees, or multiple tryptic cleavage sites.
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monomethylation), which are predominantly up-regulated in
the starvation and conjugation conditions and down-regulated
in the growth conditions. The presence of these two clusters is
consistent with reduction in global acetylation levels and
transcription levels upon starvation,22 as well as the direct
connection between histone acetylation and gene activation.23

Cluster 4 represents monomethylation events on K27 and K36
of histone H3, which are dramatically reduced in ΔTXR1.
Cluster 5 represents di- and trimethylation events on K27 of
histone H3, which are dramatically reduced in ΔEZL2. The
presence of these two clusters validates the division of labor
between TXR1 and EZL2. Cluster 2 contains certain histone

Figure 3. Factor analysis of histone modifications reveals 5 hidden chromatin features. (a) A PCA screeplot of the data correlation matrix was used
to determine how many factors are required for the FA model based on the following rules: (1) number of eigenvalues greater than one; (2) percent
of variance explained by first several factors. (b) Details of 5-factor model from R software: FA model identified 5 chromatin features known as
“growth”, “replication”, “transcription”, and two other factors with less clear biological significance. The first 5 factors account for up to 84.5% of
variance and most factors have low uniqueness. The loadings with large numbers are identified with red numbers. Note: Factor loadings are very
similar to regression coefficients in the Generalized Linear Model. They represent how well variables are correlated with each of the factors. The
loadings with large numbers usually provide meaningful interpretations of factors.
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PTMs or unmodified counterparts that were mostly unaffected
by our perturbations. They include acetylated and unacetylated
H2A N-terminal domain, as well as the less conserved H2B C-
terminal acetylation events. We speculate that their insensitivity
to perturbations may be attributed to having other roles not
queried in this study, their small impact on chromatin structure
and functions, or their high occurrence in bulk histones.
The histone code hypothesis posits that chromatin structure

and functions are determined by various patterns of histone
modifications.2,3 These crosstalking PTM subgroups identified
in our study are consistent with the combinatorial nature
properties implied by the histone code hypothesis. The results
also brought some specific insights on histone modifications:
(1) The great contrast between cluster 1 and 2 suggests that
acetylation, particularly at high degrees (triple- or tetra-
acetylated forms) in the N-terminal domains, plays more
important roles in chromatin functions than the single
acetylated N-terminal tails or multiple acetylations at the
histone C-terminal tails. (2) Changes in degrees of lysine
methylation (mono, di, and tri), exemplified by Clusters 4 and
5 (as well as Factors 3 and 4 in FA), can have significantly
different biological outcomes. In this context, two conserved
pathways have been identified in multiple evolutionarily distant
species.11,13,15 The first is the E(Z)/EZH2-mediated pathway
associated with transcription by controlling the di- and
trimethylation levels of H3K27.15,19 The second ATXR5/
ATXR6-related pathway regulates DNA replication by control-
ling the monomethylation levels of H3K27.11,16,24,25

■ DISCUSSION

Chromatin has been traditionally demarcated into two
structurally and functionally antagonistic states, euchromatin
and heterochromatin.26 This simple concept is being challenged
by rapid progress in the field of epigenetics and chromatin
biology. Based upon analyses of genomic distribution data of
histone PTMs and chromatin-associated proteins, multiple
chromatin states, in numbers ranging from a few to a few
dozen, have very recently been revealed in diverse eukaryotes
including C. elegans, Drosophila, mammals, and Arabidop-
sis.27−31 All of these studies point to a more fine-grained
classification of principal chromatin states, while the exact
number may vary depending on species, observables, data
properties, statistical methods, and criteria for resolving states.
Using completely different methodologies and strategies

from these recent studies, we performed mass spectrometry
based quantitative proteomics analysis of 40 histone
modifications individually or combinatorially across 15 cell
states to generate a high-quality data set reflecting the
perturbed histone modification patterns. This work represents
the most comprehensive exploration of histone PTMs in
Tetrahymena, a well-established model organism for studying
epigenetics and chromatin biology.14 We assume that knockout
of key histone modifying enzymes and changes in growth
conditions will be reflected in perturbations to histone PTM
patterns and chromatin structures, which are underlain by a
limited number of chromatin classes and certain key hidden
features. Through this proof of concept study, we demonstrate

Figure 4. Five functionally related histone PTM subgroups. Common PTMs and clusters identified by both PAM and Ward’s hierarchical clustering
algorithm. Cluster 1: N-terminal acetylation of H2A, H3 and H4. Cluster 2: Some unchanged levels of PTMs and unmodified forms. Cluster 3:
PTMs in this group are H3:K23Me1 and unacetylated forms in H3.3. Cluster 4: Monomethylation of H3K27 and K36. Cluster 5: Di/trimethylation
of K27. Note: For clustering analysis, dissimilarity matrix is used as input in PAM, and Euclidean distance is measured in hierarchical clustering.
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that high-thoughput quantitative MS analysis of steady-state
bulk histones in different cell states, integrated with systems
biology analysis, can identify correlated changes in histone
PTM patterns and associate them with discrete biological
functions. In our current experimental setup, our FA model
reveals that 5 major factors have dominant effects on histone
PTMs, attributable to both internal and external perturbations,
while our clustering analyses demonstrate dynamic correlation
among histone PTMs in different cell states, which are
organized into 5 major clusters. Importantly, knowledge and
insight can be readily extracted from these 5 clusters of histone
PTMs, to guide further biological experiments. Positive
correlation between hyper-acetylation and the growth condition
(Factor 1 and Cluster 1) validates this general feature of
transcriptionally active chromatin. Inversely, hypo-acetylation is
connected with the starved condition (Factor 2 and Cluster 3),
though to a lesser degree. Division of labor between TXR1 and
EZL2 is demonstrated by their assignment to different factors
(4 and 3, respectively) and clusters (4 and 5, respectively),
which is consistent with their distinct products (H3K27me1
and H3K27me2/3, respectively) and specialized roles (repli-
cation and transcription, respectively).11,16 Our study also
suggests that RIN1, as well as the H2A monoubiquitylation
catalyzed by it, is most likely functionally independent from
H3K27 methylation, due to the minor effect, if any, of its
deletion on other histone PTMs. This is further supported by
our observation that H3K27 methylation levels were not
affected in ΔRIN1, while H2AK123ub1 levels were not affected
in ΔTXR1 and ΔEZL2 (S.G., Z.W., M.A.G., Y.L., unpublished
results). Our data also provide evidence for a significant impact
of JMJ1 during conjugation (Factor 5), as well as a relatively
minor impact for JMJ2. This is further supported by the
moderate heterochromatin spreading phenotype observed in
conjugating progeny of ΔJMJ1, but not ΔJMJ2 cells (S.G. and
Y.L., unpublished results). Overall, our data are consistent with
a dynamic, combinatorial code linking histone PTMs to
biological functions.
It is obvious that localized changes of histone PTMs may not

be reflected at global levels, an issue that can be particularly
prominent for highly abundant histone PTMs. Some
perturbations may cause changes in distribution patterns of
certain histone PTMs, without affecting their global levels.
These limitations and caveats should be kept in perspective
when employing this approach. In many ways, our approach is
complementary to the genome-wide distribution studies (such
as ChIP-seq), which can specifically resolve genomic
dsitribution patterns of any given histone PTMs and chromatin
associated proteins, with appropriate antibodies or tags. For
both approaches, additional information about the mutant
phenotype, gene ontology, and genetic/proteomic networks are
needed to fully interpret biological functions.
Our study demonstrates the feasibility of this novel approach

and provides important leads for further experiments. It is
worth noting that the number of chromatin states or epigenetic
features resolved by our analyses will be significantly increased,
as the MS coverage of histone PTMs are further expanded and,
more importantly, additional internal and external perturba-
tions are included. The quantitative MS-based PTM
perturbation study has the advantage of being unbiased,
comprehensive, scalable, and readily adaptable to other model
systems. It meets a mounting demand for dissecting crosstalk
between protein PTMs and understanding their biological
functions, as protein PTM data increase exponentially with

improvement in MS instrumentation and bioinformatics
algorithms.
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