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Abstract

Multiple redundant acoustic cues can contribute to the perception of a single phonemic contrast. This study investigated the
effect of spectral degradation on the discriminability and perceptual saliency of acoustic cues for identification of word-final
fricative voicing in “loss” versus “laws”, and possible changes that occurred when low-frequency acoustic cues were
restored. Three acoustic cues that contribute to the word-final /s/-/z/ contrast (first formant frequency [FI] offset,
vowel-consonant duration ratio, and consonant voicing duration) were systematically varied in synthesized words. A dis-
crimination task measured listeners’ ability to discriminate differences among stimuli within a single cue dimension.
A categorization task examined the extent to which listeners make use of a given cue to label a syllable as “loss” versus
“laws” when multiple cues are available. Normal-hearing listeners were presented with stimuli that were either unprocessed,
processed with an eight-channel noise-band vocoder to approximate spectral degradation in cochlear implants, or low-pass
filtered. Listeners were tested in four listening conditions: unprocessed, vocoder, low-pass, and a combined vocoder + low-
pass condition that simulated bimodal hearing. Results showed a negative impact of spectral degradation on Fl cue discrim-
ination and a trading relation between spectral and temporal cues in which listeners relied more heavily on the temporal cues
for “loss-laws” identification when spectral cues were degraded. Furthermore, the addition of low-frequency fine-structure
cues in simulated bimodal hearing increased the perceptual saliency of the Fl cue for “loss-laws” identification compared
with vocoded speech. Findings suggest an interplay between the quality of sensory input and cue importance.
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impairment (Revoile, Pickett, Holden, & Talkin, 1982) or
a cochlear implant (CI) (Winn, Chatterjee, & Idsardi,
2012). Further, as the spectral quality of the signal
decreases, listeners tend to rely more strongly on temporal
cues than spectral cues for the perception of English phon-
emes (e.g., Nie, Barco, & Zeng, 2006; Xu, Thompson, &
Pfingst, 2005) and Mandarin lexical tones (Xu & Pfingst,
2003), although this pattern may reverse in conditions of
noise and limited audible bandwidth (Winn, Chatterjee, &
Idsardi, 2013). The weighting of individual acoustic cues
may also vary with listeners’ age (e.g., Mayo, Scobbie,
Hewlitt, & Waters, 2003; Nittrouer, 1996; 2005;
Nittrouer & Studdert-Kennedy, 1987; Wardrip-Fruin &
Peach, 1984) and language experience (e.g., Broersma,
2005; 2010; Miyawaki et al., 1975; Strange, 1992;
Underbakke, Polka, Gottfried, & Strange, 1988).

CI processing preserves the slowly varying temporal
envelope information in the speech signal (i.e., cues
related to amplitude changes over time) but provides
only a coarse representation of the spectral envelope.
Thus, it offers a unique opportunity to examine how lis-
teners change their weighting strategies to emphasize the
more reliable cues received through the CI over cues that
are less reliable. Reduced spectral resolution could cause
listeners to shift their cue weighting toward other acous-
tic dimensions (e.g., the temporal dimension) that, while
not weighted strongly by normal-hearing listeners, are
transmitted more robustly through the CI and thus are
relatively more informative with CI listening (Hedrick &
Carney, 1997; Iverson, 2003; Iverson, Smith, & Evan,
2003; Moberly, Lowenstein, & Nittrouer, 2016; Winn
et al., 2012; Winn & Litovsky, 2015). This effect was
demonstrated by Winn et al. (2012), who studied percep-
tual cue weights for two spectral resolution conditions
(four and eight channels) using a noise channel vocoder.
When spectral resolution was reduced, listeners tended to
rely more strongly on temporal cues (e.g., vowel dur-
ation) than spectral cues (e.g., formant frequency) for
identification of both consonant and vowel features.

Recent work by Moberly et al. (2014, 2016) demon-
strated the importance of cue weighting strategy on
speech recognition performance in adult CI users. An
initial study systematically examined the relationship
between sensitivity and cue importance for the /ba/-/
wa/ contrast (Moberly et al., 2014). The /ba/-/wa/ con-
tinuum was manipulated in both time-varying spectral
structure (formant rise time) and temporal structure
(amplitude rise time). Subjects labeled each synthesized
stimulus as /ba/ or /wa/ and completed a same or differ-
ent discrimination task. Perceptual saliency for the two
cue dimensions was found to vary across subjects; how-
ever, listeners’ weighting of formant rise time was
related, to some extent, to their sensitivity to spectral
structure. This finding suggested that sensitivity to the
spectral cue is a requisite for weighting the formant rise

time strongly. A similar relationship between sensitivity
and perceptual saliency, however, was not observed for
the temporal dimension. Importantly, Moberly et al.
found that sensitivity to spectral structure did not predict
speech recognition performance with monosyllabic
words, whereas subjects’ weighting of spectrally based
cues explained a significant proportion of variance in
word recognition. This led them to emphasize the
importance of cue-weighting strategies for phonemic
contrast perception. In other words, absolute sensitivity
is not sufficient in the linguistic domain; listeners must
prioritize some dimensions when they perform sound
categorization. These general findings were confirmed
by later experiments with different phonemic contrasts
(Moberly et al., 2016; Winn & Litovsky, 2015), further
implicating the importance of weighting strategies on
speech recognition.

In recent years, combined electric-acoustic stimula-
tion with a CI, one in ear and low-frequency residual
hearing in the other, known as bimodal hearing, has
become more prevalent due to the relaxation of CI can-
didacy criteria. As mentioned earlier, CIs provide coarse
spectral envelope cues, which have been demonstrated to
be similar to four to eight functional spectral channels
across a broad frequency range (Fishman, Shannon, &
Slattery, 1997; Friesen, Shannon, Baskent, & Wang,
2001; Stickney, Zeng, Litovsky, & Assmann, 2004). In
bimodal stimulation, the addition of low-frequency resi-
dual hearing improves spectral resolution in the low-
frequency range, for example, below 1,000 Hz for a typ-
ical bimodal listener. It has been shown that bimodal
stimulation improves performance for perceptual tasks
that require fine spectral resolution, such as speech rec-
ognition in noise, tone recognition, and melody recogni-
tion (e.g., Dorman & Gifford, 2010; Dorman, Gifford,
Spahr, & McKarns, 2008; Kong, Stickney, & Zeng, 2005;
Li, Zhang, Galvin, & Fu, 2014). Further, it has been shown
that low-frequency fine-structure cues enhance the percep-
tion of consonant voicing and manner of articulation fea-
tures, and first formant (F1) frequency for vowels (Brown
& Bacon, 2009a, 2009b; Carroll, Tiaden, & Zeng, 2011;
Ching, van Wanrooy, & Dillon, 2007; Kong & Braida,
2011; Kong & Carolyn, 2007; Neuman & Svirsky, 2013;
Sheffield & Zeng, 2012; Visram, Azadpour, Kluk, &
McKay, 2012; Zhang, Dorman, & Spahr, 2010).

The purpose of the present study is to examine the
effect of spectral degradation and the addition of low-
frequency fine-structure cues on listeners’ discriminability
and perceptual weighting of spectral and temporal cues
that signal word-final voicing in “loss” versus “laws.”

The key research questions addressed by the study are

1. How does spectral degradation via channel vocoding
affect the discriminability and perceptual weighting
of the spectral and temporal cues that signal the
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final consonant voicing for a “loss-laws” distinction.
Specifically, is the perceptual weighting of spectral
and temporal cues influenced by the discriminability
of those cues?

2. Is there a change in listeners’ reliance on different
temporal or spectral cues when unprocessed low-
frequency speech information is restored (bimodal
stimulation) as compared with vocoder-alone
stimulation?

We test the hypothesis that the availability of fine-
structure cues enhances the discriminability as well as
the perceptual saliency of the low-frequency formant
cues (i.e., F1 offset). Simulations of CI and bimodal
hearing, which allows for a better control of the degree
of spectral resolution and audibility for the low-pass sti-
muli, were used to probe the basic theoretical question of
the systematic shift of weighting strategies from natural
speech to vocoded speech and to the enhanced spectral
resolution in the low-frequency region. In this experi-
ment, normal-hearing listeners performed a categoriza-
tion task for the minimal pair of “loss” and “laws” where
the pronunciation of these words only differs in the voi-
cing of the final fricative consonant, with a voiceless con-
sonant /s/ and voiced consonant /z/, respectively. The
/s/-/z/ contrast provides a good opportunity to investi-
gate the potential change of weighting strategies with
enhanced low-frequency spectral cues. Three cue dimen-
sions for this contrast were manipulated, including the
F1 offset of the vowel, vowel-to-consonant duration
ratio, and the duration of low-frequency modulation
(glottal voicing) within the final consonant (as done in
the study by Winn et al., 2012). Both the vowel duration
and the low-frequency formant transition cue should be
preserved with the inclusion of the low-frequency fine-
structure information. To examine the relationship
between perceptual weights and sensitivity to the acous-
tic cues, each listener performed a discrimination task
using a three-interval forced-choice paradigm for each
cue dimension.

Methods
Subjects

A total of 10 normal-hearing listeners aged between 20
and 26 years participated in this study. All were mono-
lingual native speakers of American English. Each
listener passed a hearing screening at 20dB HL
(125-8000 Hz) in both ears.

Stimuli

A total of 75 stimuli were constructed using modified
natural recordings of the words “loss” and “laws” from

Table I. Acoustic Parameter Levels Defining the Three Factors
for the Stimuli.

I: /s/-like 2 3 4 5: /z/-like
FI (Hz) 621 531 447 368 294
VCR 0.7 1.36 204 270 325
I: /s/-like 2 3: /z/-like
CVoicing (ms) 0 30 50

Note. VCR: vowel-consonant duration ratio; Fl: first formant frequency;
CVoicing:.

the study by Winn et al. (2012). The stimulus set varied
in three cue dimensions: vowel-offset F1 transition
(“F17), vowel-consonant duration ratio (“VCR”), and
presence of low-frequency voicing during consonant fri-
cation (“CVoicing”). There were five levels of the Fl
offset cue, five levels of the VCR cue, and three levels
of the CVoicing cue. Table 1 shows the value of each
level for each cue dimension.

Speech stimuli were created by manipulating natural
speech sounds using a modification of the procedure
described by Winn and Litovsky (2015). A natural rec-
ording of “laws” spoken by a native speaker of North
American English was used as a template for modifica-
tion. It was decomposed into source and filter param-
eters using the linear predictive coding (LPC)
estimation and inverse filtering method available in the
Praat software (Boersma & Weenink, 2014). Four form-
ants were estimated below 3700Hz, resulting in a
7400 Hz sampling frequency for LPC estimation. The
LPC object was converted into a FormantGrid object,
which was systematically modified to yield five levels of
F1 offset frequency (ranging from 294 Hz for [Vz] to
621 Hz for [Vs]) that were equally spaced in Bark fre-
quency, using the formula provided by Traunmiiller
(1990); all other formants were left at the same level as
that from the original sound. The formant manipulation
was applied only to the final 20% of the vowel, as fol-
lows: FormantGrid points in the final 20% were deleted,
and a single point was inserted at vowel offset; upon
conversion from FormantGrid to Formant object in
Praat, linear interpolation was applied every 10ms to
slope the formant frequency from its steady-state value
of 590 to its target value in the continuum. The resulting
altered FormantGrid was convolved with the residual
glottal source sound to yield a sound with modified
formant trajectories. This sound was upsampled and
low-pass (LP) filtered below 2000 Hz (with symmetrical
1500 Hz filter rolloff implemented using inverse fast
Fourier transform) and added to the high-pass energy
(above 2000 Hz with the aforementioned rolloff) from
the original sound. The resulting composite sounds
thus had modified first formants, with no modification
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Table 2. Cutoff Frequencies for Vocoder Processing.

Cutoff frequencies (Hz) for each analysis or synthesis filter for an eight-channel vocoder

| 2 3 4

5

6 7 8

141-289 289-508 508-834 834-1316

13162032

2032-3093 30934666 4666-7000

of upper formants, and preserved all energy above
2000 Hz. This procedure deviated from that used in the
study by Winn et al. (2012), which used just two levels of
F1, created by either preserving or truncating the vowel
before the [z] transition.

Following vowel formant manipulation, vowel dur-
ation was altered in a five-step continuum that was loga-
rithmically spaced between 175ms (for [s]) and 325ms
(for [z]). All fricative energy was excised from stimuli
following this step, so that controlled fricatives could
be appended to the vocalic portion.

Fricatives were generated by combining 0, 30, or
50ms of the onset of voiced [z] segments with the com-
plete [s] segment. The resulting mixes were then trun-
cated to create a five-step continuum that was
logarithmically spaced between 250ms (for [s]) and
100 ms (for [z]). Following truncation, a cosine-shaped
falling amplitude contour was applied to the final 50 ms
of the sound. The presence of low-frequency voicing
energy for [z] altered the spectrum of the [s] segments
with which it was blended but was considered here to
be a primarily temporal cue, as it did not change the
spectrum of the frication noise itself because it contrib-
uted temporal (amplitude) modulations and because it
was manipulated in terms of its duration.

The concatenation of the vocalic and fricative por-
tions of the stimuli yielded vowel:consonant duration
ratios spanning a range from 0.7 to 3.25, consistent
with those used by Winn et al. (2012), which were
based on values from natural productions reported by
House (1961) and Stevens, Blumstein, Glicksman,
Burton, and Kurowski (1992) and used by Flege and
Hillenbrand (1985) in prior experiments.

The final set of vocalic and fricative segments were
combined in five corresponding pairs using a 10-ms
cross-fading concatenation using Praat, yielding a total
of 75 stimuli that varied on three cue dimensions (FI,
VCR, and CVoicing).

Signal Processing

All 75 synthesized speech stimuli underwent two separate
types of signal processing: noise-band channel vocoding
to simulate the temporal-envelope based CI speech pro-
cessing and LP filtering to simulate residual acoustic
hearing in bimodal stimulation.

Noise-band channel vocoding. An eight-channel noise-band
vocoder was used to approximate the effective spectral
resolution available to a typical CI user in a quiet listen-
ing condition (Fishman et al., 1997). Vocoder processing
steps were similar to those described by Shannon, Zeng,
Kamath, Wygonski, and Ekelid (1995) and Winn et al.
(2012). First, the broadband speech stimulus (141 to
7000 Hz) was bandpass filtered into eight logarithmically
spaced frequency bands (Greenwood, 1990; see cutoff
frequencies of each frequency band in Table 2). The
slowly varying temporal envelope within each frequency
band was extracted using the Hilbert transform and then
LP filtered with a 400-Hz cutoff frequency. The temporal
envelope extracted from each frequency band was used
to modulate white noise, which was then filtered by the
same bandpass filter used to generate the frequency band
in the analysis stage. All bands were then summed to
produce the final vocoded speech.

LP filtering. To preserve the fine spectral and timing infor-
mation in the low frequencies, speech stimuli were LP
filtered using the Hann filter procedure in the Praat soft-
ware. The filter had a pass band from 0 to 750 Hz with a
symmetrical 250 Hz smoothing bandwidth, resulting in
100% energy at 625Hz, 50% energy at 750Hz, and
0% energy at 875 Hz.

Procedures

Test conditions. Each subject was tested with the unpro-
cessed full-spectrum speech, vocoder speech alone, LP
speech alone, and vocoder 4+ LP speech where the voco-
der speech was presented to one ear and the LP speech to
the other. The unprocessed speech condition served as
the baseline condition for individual normal-hearing lis-
teners’ weighting of cues for the “loss”-“laws” contrast.

Stimulus presentation and loudness balance. All stimuli were
presented from a LynxTwo sound card using 16-bit reso-
lution at a 44.1-kHz sampling rate, routed to a Tucker-
Davis headphone buffer (Tucker Davis Technology,
Alachua, FL) and transmitted through Sennheiser HD
600 headphones to the listener, who was seated inside a
sound-attenuated room.

The unprocessed and vocoder speech stimuli were pre-
sented at a root-mean-square level of 68 dBA, a listening



Kong et al.

level indicated by our subjects to be comfortable.
Unprocessed speech was presented to both ears and
vocoded speech was present monaurally.

The presentation level for the LP speech stimuli was
determined using a loudness balancing procedure, in
which LP speech in one ear was adjusted to have the
same loudness as vocoded speech in the opposite ear.
This step was important because the benefit achieved
with bimodal hearing can be influenced by the perceived
loudness of the low-frequency acoustic cues, with the lar-
gest benefit achieved when the acoustic signals are
balanced in loudness with the CI signal (Dorman, et al.,
2014). In addition, listeners may have a bias toward the
louder signal; thus, equating the loudness between the
vocoded and LP speech minimizes the effect of loudness
on the listener’s weighting strategies. A single speech
stimulus was used for the loudness balancing task.
First, the vocoded stimulus was presented alone five
times at a fixed level of 68 dBA. Then, the LP speech
was presented alone in the opposite ear five times, at
the same level as the vocoded stimulus. The listener was
asked to indicate how the perceived loudness of the LP
speech compared with the vocoded speech. In our subject
group, all subjects either indicated that the LP speech had
the same loudness as the vocoded speech or the LP speech
sounded softer. We then used a bracketing technique in
which the level of the LP speech was increased in steps of
1dB, and the comparison between vocoded and LP
speech was repeated at each new LP level. When the sub-
ject indicated that the LP speech was perceived as being
louder than the vocoded speech, the level of LP speech
was decreased in 1 dB steps until it was perceived as being
softer. This procedure was completed three times to
determine the equal-loudness level of the LP speech
stimulus. To further confirm that the stimuli were loud-
ness balanced across ears, both the vocoded and LP
speech were presented simultaneously to allow for
direct comparison. For the majority of the subjects, the
final presentation level of the LP speech was 70 dBA, that
is, 2dB higher than the level of the vocoded speech.

Half the subjects received vocoded stimuli in the left
ear and LP stimuli in the right ear; the other half received
stimuli in the opposite configuration. Before the main
experiment, a categorization task was used to confirm
that each subject could correctly label the extreme
unprocessed tokens of “loss” and “laws”. During the
main experiment, each subject was tested with the unpro-
cessed speech first. The order of the processed listening
conditions (i.e., vocoder alone, LP alone, and
vocoder + LP) was randomized across subjects. Each
subject performed two tasks in each listening condi-
tion—a categorization and a discrimination task. Half
of the subjects were tested with the categorization task
first followed by the discrimination task, and the other
half performed the tasks in the reverse order.

Discrimination task. Discrimination testing was performed
for each of the three cue dimensions (F1, VCR, and
CVoicing) in each of three listening conditions: unpro-
cessed, vocoder alone, and LP alone. A three-interval
two-alternative forced-choice paradigm was used. The
first interval was the standard and subjects were asked
to detect which of the second or third interval sounds
differed from the first interval sound.

Stimuli used for the discrimination task were
extracted from the synthesized “loss-laws” stimuli. F1
offset was extracted from the vowel portion of the sti-
muli; VCR was extracted from both the vowel and the
final consonant portion of the stimuli; CVoicing was
extracted from the final consonant portion of the stimuli.
For the discrimination task, acoustical information
varied only in one cue dimension while holding the
other cue dimensions constant within each test trial. F1
offset discrimination was performed separately at two
levels of VCR (Levels 1 and 5) while fixing CVoicing at
Level 1. VCR discrimination was performed at Level 1 of
F1 offset and Level 1 of CVoicing. CVoicing discrimin-
ation was performed at Level 1 of F1 offset and Level 1
of VCR.! Each discrimination task was performed for
the unprocessed, vocoder alone, and LP alone condi-
tions, except for CVoicing, in which the LP alone con-
dition was not tested because the voiceless final
consonant lacked energy in the low frequencies.

Three test blocks were completed for each cue dimen-
sion, with three pairs of contrasts within each block.
Each contrast pair was tested 20 times, resulting in 60
trials per block. Each of the three contrasts compared
two levels (low vs. mid), (mid vs. high), and (low vs.
high) across the continuum for each cue dimension.
For example, the contrasts for F1 offset discrimination
were [294 vs. 447], [447 vs. 621], and [294 vs. 621].
Percent correct discrimination was calculated on the
basis of 60 test trials (3 blocks x 20 trials per block)
for each paired contrast.

Categorization task. The categorization task was per-
formed in all four listening conditions (unprocessed,
vocoder alone, LP alone, and vocoder+ LP).
Procedures were similar to those used in Winn et al.
(2012). The 75 synthesized stimuli were presented in
random order. Each token was presented once and sub-
jects were asked to select one of the two words, “loss” or
“laws,” displayed on a computer screen. Five blocks of
stimuli were tested for each listening condition, resulting
in a total of 375 trials per listening condition per subject.

Analysis

Listeners’ binary responses (“loss” or “laws”) in the cat-
egorization task were fit using a generalized linear (logis-
tic) mixed-effects model (GLMM) in the R software
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interface (R Development Core Team, 2010), using the
Ime4 package (Bates, Maechler, Bolker, & Walker,
2014). The binomial analysis used the logit linking func-
tion, and parameter levels were centered relative to the
mean, since the R GLM call function sets “0” as the
default level while estimating other parameters. The stat-
istical model included main effects of the three cue
dimensions, listening condition, and the interactions
between acoustic cues and listening condition (i.e., how
the influence of the cues changed across the different
conditions of unprocessed or vocoder or LP or
vocoder 4+ LP). This model includes random intercepts
of subject, condition, and subject by condition, and by-
subject random slopes of F1 and VCR. No cue-by-cue
interactions were included, as phonetic cue trading (c.f.
Repp, 1982) tends to emerge at central (i.e., ambiguous)
levels of cues rather than scaling linearly with cue value,
as would be assumed by a linear model. Expression of
the model is as follows:

Voiced ~ condition + F1 + VCR + CVoicing
+ F1: condition + VCR : condition
+ CVoicing : condition + (1|subject) 4 (1|condition)
+ (1]|subject : condition) + (F1|subject)
+ (VCR|subject)

Results
Discrimination Task
A repeated-measures analysis-of-variance was performed

independently on RAU scores in each cue dimension.

VCR discrimination. Figure 1 (left panel) shows percent cor-
rect discrimination for VCR for each listening condition

and contrast. The patterns of results were similar across
listening conditions. The two main effects, listening con-
dition: F(2,18)=4.15, p=.041; contrast: F(2,18)=
290.91, p<.0001, were significant. The interaction
effect was not significant, F(4,36)=2.29, p>.05. For
each listening condition, discrimination performance
for the [2.04 vs. 3.25] contrast was significantly poorer
than that for the other two contrasts (p < .001). Listening
condition did not produce a significant difference in per-
formance for any contrast, except for the [2.04 vs. 3.25]
contrast where the LP condition produced poorer per-
formance than the vocoder condition by 7.5 percentage
points, #(9)=2.94, p=.017.

FI offset discrimination. A three-factor analysis was per-
formed to determine the effect of listening condition,
contrast, and VCR on F1 discrimination performance.
The main effects of listening condition, F(2,18)=7.00,
p=.023, and contrast, F(2,18)=191.00, p <.0001, were
significant, but the main effect of VCR, F(1,9)=0.57,
p=.49, did not reach significance. The two-way inter-
action (listening condition x contrast) was significant,
F(4, 36)=48.45, p <.0001, but other interactions were
not (p > .05).

Subsequent analyses were performed at each level of
listening condition and contrast with scores averaged
across the two levels of VCR. Figure 1 (middle panel)
shows the percent correct discrimination scores for each
listening and contrast condition, averaged across the two
levels of VCR. A significant effect of listening condition
was found for all three contrast pairs (p =.005). Pairwise
comparisons for the simple effect at each level of contrast
(with Bonferroni correction where alpha=0.05/3=
0.017) showed a significant difference between the
unprocessed and vocoder conditions, and between the
vocoder and LP conditions. Discrimination scores in

P . Low vs Mid
. VCR F1 CVoicing B Low vs High
2100 |- - - = 1 Mid vs High
= =
£ s
£ 80 - - = T
) =3 i
2 =at
o 60 - -
-
o
g
5 40 - -
o
c
o 20 - -
2 DNT
)
o 0 |
Unproc Vocoder LP Unproc Vocoder LP Unproc Vocoder LP
Listening Condition

Figure 1. Discrimination results for three acoustic cues for each contrast and listening condition. DNT = Did not test.
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Figure 2. Categorization functions for three acoustic cues across four listening conditions.
the vocoder alone condition were significantly poorer Table 3. Results of Generalized Linear Mixed-Effects Model.
than those in the unprocessed and LP conditions . -
(p <.001) for two out of the three contrasts [447 vs. Vocoder (default) condition Estimate SE z P
621] and [294 vs. 621]. For the remaining contrast [294 Intercept 0984 0389 2530 .0lI*
vs. 447], vocoder alone performance was better than per- VCR 10276 0590 17.426 <.00]%*kk
formance in the unprocessed and LP conditions (p < .01). Fl 1087 0455 2388 .0I7*
The unprocessed and LP conditions were not signifi- CVoicing 0386 0.144 2674 007"
cantly dilfferent for any contrzlis.ts » > .0.5).. . Vocoder + Low-pass
Wlthlp egch hstenmg condition, discrimination scores Intercept 0501 0290 1727 084
were significantly different across the contrasts VCR 1068 0478 2236 025
(p <.005). .PalrW1se comparisons  were performed for El 1535 0261 5891 <.00|%*
contrasts in each listening condition (alpha=0.017 .
. . CVoicing 0.182 0.210 0.866 .386
after Bonferroni correction). In general, the unprocessed
and LP conditions showed similar patterns of results, in Unlprocessed full-spectrum 0394 0286 1377 leg
which the discrimination scores reached at 100% correct ntercept e ’ T ' s
for the [447 vs. 621 Hz] and [294 vs. 621 Hz] contrasts, VCR —2042 0392 =521l <'°°'***
and performance dropped significantly by 20 to 30 per- Fi 1.020 0235 4344 <.00I
centage points for the [294 vs. 447Hz] contrast. CVoicing —0472 0.193 —2445 .014*
However, the pattern of results was different in the voco- Low-pass
der condition compared with the unprocessed and LP Intercept 0.697 0290 2404 .0l6*
conditions. For the vocoder condition, the [294 vs. VCR —0.776 0425 —1.827 .068
621 Hz] and [294 vs. 447 Hz] contrasts were discriminated Fl —1.121 0235 —4.760 <.00|%**
better than the [447 vs. 621 Hz| contrast. CVoicing 0.327 0202 1.621  .105

CVoicing. Figure 1 (right panel) shows percent correct dis-
crimination for CVoicing for each contrast in the unpro-
cessed and vocoder conditions. Performance for
consonant voicing discrimination was similar across
these two listening conditions. The two main effects,
listening condition: F(1,9)=35.20, p <.0001; contrast:
F(2,18)=34.21, p<.0001, and the interaction,
F(2,18)=11.05, p=.002, were all significant. For each
listening condition, the contrast [0 vs. 50ms] had the
highest discrimination score (p <.017). The unprocessed
condition was significantly better than the vocoder con-
dition for the contrasts [0 vs. 30ms] and [0 vs. 50 ms]
(p <.01), but not for the [30 vs. 50 ms] contrast.

Note. VCR: vowel-consonant duration ratio; Fl: first formant frequency;
CVoicing: consonant voicing.

*significance of the asterisks is indicated by the p-values (numbers right
next to the asterisks).

Cue-Weighting or Categorization Task

Figure 2 shows the categorization functions for each
level of the VCR (left), F1 (middle), and CVoicing
(right) cues for all listening conditions, averaged across
the levels of the other two cues. Results of this GLMM
are shown in Table 3.

The vocoder condition was the default for the
GLMM, meaning that all other conditions were
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compared for significant differences relative to the voco-
der condition. All main effects of acoustic cues (F1,
VCR, and CVoicing) reached significance (VCR
p<.001; CVoicing p<.01; F1 p<.05) in the vocoder
condition. Among the three cue dimensions, VCR had
the largest effect overall and CVoicing had a very
small effect.

In the unprocessed full-spectrum speech condition,
there was significantly greater reliance on FI
(p <.001), significantly less reliance upon VCR
(p <.001), and significantly less reliance upon consonant
voicing duration (p <.05) compared with the vocoder
condition. In other words, the better spectral resolution
resulted in more reliance on spectral cues and less reli-
ance on temporal cues, consistent with the results of
Winn et al. (2012).

The important comparison was between the vocoder
and vocoder + LP conditions. This comparison was
designed to elucidate the changes in cue-weighting strat-
egy that occur when unprocessed low-frequency energy is
added to a broadband degraded stimulus, akin to adding
low-frequency hearing to a CI. In this condition, listeners
made significantly greater use of F1 (p <.001) and also
more use of VCR (p <.05) than in the vocoder alone
condition, suggesting more consistent categorization of
cues in both the spectral and temporal domains. While
the benefit of F1 perception was predictable, the
increased weighting of VCR was not explicitly predicted.
It is likely that the additional low-passed acoustic energy
helped to more clearly define vowel duration and

distinguish the vowel from the consonant, thereby yield-
ing better access to this acoustic cue.

Responses in the LP condition were generally more
heavily biased toward “voiced” perceptions (p < .05 for
the main effect of this condition on the intercept), while
no other condition differed significantly from the voco-
der condition in this respect. The only other significant
change in categorization in the LP condition was that the
F1 cue was used less (p <.001).

The perceptual weights (expressed as GLMM factor
estimates) for all three cues and all four listening con-
ditions are shown in Figure 3. Compared with unpro-
cessed speech, a trading relation was identified for
vocoded speech, in which a decrease in the perceptual
weight for the spectral cue (F1) was associated with a
significant increase in weights for the temporal cues; the
GLMM produced negative coefficients for the inter-
action of the unprocessed condition with the simple
effects of both VCR and CVoicing, which reflect less
use of those cues in the unprocessed condition com-
pared with the vocoder condition (the default compari-
son). The opposite pattern (positive interaction
coefficient) emerged for the F1 cue, reflecting increased
weighting for the unprocessed condition. However, the
cue-trading effect between spectral and temporal cues
was less clear for the vocoder+LP speech. In this
case, a higher perceptual weight for the spectral cue
did not result in lower weights for the temporal cues,
compared with the weights observed for unprocessed
speech or vocoded speech.

VCR

F1 CVoicing
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Figure 3. Perceptual weights of all three cues and all four listening conditions, expressed as factor estimates from the GLMM group
model. These scores reflect the log odds change in perception resulting from change in one unit of the cue (i.e., change in 1.0 in VC ratio,
or | Hz FI frequency, or | ms consonant voicing duration), and thus reflect cue weight within the context of the range of values taken by

each cue domain.
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Individual Differences

Figure 4 shows the relationship between individuals’ dis-
crimination performance for each cue and their reliance
upon the cue in the categorization task. As a group, the
average F1 offset discrimination performance was better
for the unprocessed condition than for the vocoder con-
dition, #9)=3.98, p=.003]. An examination of the cat-
egorization functions and cue weights from individual
subjects showed that there were large individual differ-
ences in the weighting of the F1 cue, even for the unpro-
cessed condition. While all subjects achieved >80%
correct F1 discrimination performance for the unpro-
cessed stimuli, two-thirds of the subjects showed an
increase proportion of labeling “laws” with decreasing
F1 offset frequency and one-third showed a flat response
function (F1 logistic coefficient <0.001). However, as
shown in Figure 4 (middle panel), cue weights did not
significantly correlate with individual subjects’ discrim-
ination scores for any of the listening conditions (unproc:
=07, p=".17; vocoder: =13, p=.05; LP: =00,
p=.96). An interesting finding is that while F1 discrim-
ination ability was generally good in the LP condition
(similar to that for the unprocessed speech), categoriza-
tion functions were highly variable, including some that
were the reverse of what would be expected of a typical
listener based on previous acoustic and perceptual stu-
dies. This observation is illustrated as individual cue
weight estimates left of the “0” mark in the middle
panel of Figure 4.

Weighting of VCR was uniformly high across listen-
ing conditions, and did not show a significant relation-
ship with cue discriminability (Figure 4, left panel). In
contrast, CVoicing weighting was uniformly low across
listening conditions, and showed a peculiar apparent
relationship that reversed direction when the condition
was changed between unprocessed and vocoded speech
(Figure 4, right panel).

Discussion

The present study investigated the effect of spectral reso-
lution on perceptual weighting strategies in simulated
cochlear-implant and bimodal hearing. Specifically, it
examined how the perceptual saliency of a spectrally
based cue (the F1 offset cue for “loss-laws” identifica-
tion) was affected when low-frequency fine-structure
information was available (i.e., unprocessed speech and
vocoder + LP speech). A discrimination task for each of
the three cue dimensions (F1, VCR, and CVoicing) pro-
vided information on the reliability of cues presented
alone in the unprocessed, vocoder, and LP speech con-
ditions. A categorization task for stimuli in the “loss-
laws” continuum varied cues simultaneously, allowing
us to probe listeners’ weighting strategies in different lis-
tening conditions.

Our general findings are as follows: (a) There was a
tradeoff between spectral and temporal cues for “loss-
laws” identification for spectrally degraded speech, (b)
there was an effect of cue reliability on perceptual

VCR F1 CVoicing
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Figure 4. Relationship between cue weight (x axis) and average performance for cue level discrimination (y axis). Cue weights are

expressed as factor estimates from the group GLMM.
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weighting strategies for broadband speech, and (c) there
was considerable variation in the weighting strategies
used by individual listeners and differences were not
explained by the listeners’ sensitivity to the cue
dimensions.

Effect of Spectral Resolution on the Cue-Trading
Relation for “Loss-Laws” ldentification

Consistent with findings of Winn et al. (2012), listeners
showed less use of spectral cues (i.e., F1), but greater use
of temporal cues (i.e., VCR) for spectrally degraded
speech (vocoder) compared with unprocessed speech.
Despite the individual differences in the cue weights,
the GLMM showed that the effect of F1 offset was smal-
ler, and the effect of VCR was greater, in the vocoder
condition than in the unprocessed condition. As a group,
there was a trading relation of down-weighting of spec-
tral cues (for F1) accompanied by significant up-weight-
ing of temporal cues (notably VCR) for vocoded speech.

Unlike the trade-off between spectral and temporal
cue weighting for vocoded speech, both types of cues
were used more strongly in the simulated bimodal hear-
ing condition (cf. Figure 3), where low-frequency fine-
structure information was added to the vocoded
speech. It has been suggested that low-frequency fine-
structure cues provide greater perceptual saliency in
both the spectral dimension (music perception: e.g.,
Dorman et al., 2008; Kong et al., 2005; voicing and F1
cue recognition for speech perception: Ching et al., 2007;
Kong & Braida, 2011; Sheffield & Zeng, 2012; Zhang
et al., 2010) and temporal dimension (speech segmenta-
tion: Dorman & Gifford, 2010; Kong, Donaldson, &
Somarowthu, 2015; Most, Harel, Shpak, & Luntz,
2011; Spitzer, Liss, Spahr, Dorman, & Lansford, 2009),
allowing listeners to focus on both types of cues simul-
taneously. The presence of extra low-frequency acoustic
information could also more clearly define the segmental
boundaries between the vowel and consonant (impacting
VCR), and more effectively transit low-frequency glottal
voicing (impacting CVoicing). However, the weighting of
these two cues (VCR and CVoicing) did not vary dra-
matically across listening conditions.

Relationship Between Discriminability and Perceptual
Saliency for FI Offset Cue for “Loss-Laws”
Identification

When comparing different listening conditions, we
observed a relationship between perceptual acuity and
perceptual weighting for the F1 offset cue for “loss-
laws” identification for broadband speech. Both the F1
discrimination score and the weighting of the F1 offset
cue for “loss-laws” identification were lower for vocoded
stimuli than for the unprocessed stimuli. This finding

suggests that reliance on the F1 cue is reduced when
the cue becomes less discriminable due to spectral deg-
radation in the vocoder condition.

However, weighting strategies varied across subjects,
especially for F1 offset cue. Although the majority of the
subjects utilized the F1 cue for identification of “loss-
laws” in the unprocessed speech condition, 3 out of 10
subjects did not. The three individuals who did not use
the F1 cue in the unprocessed condition also did not use
this cue in the vocoder condition. A similar proportion
of subjects (two out of eleven) tested by Winn et al.
(2012) showed negligible weighting of this cue. The
inter-subject variability observed in the present study
did not seem to be related to the discriminability of the
F1 cue for any listening condition (cf. Figure 4). This
finding is consistent with the lack of a clear relationship
on an individual basis between cue importance and per-
ceptual sensitivity to the cue for other phonemic con-
trasts, as reported by Moberly et al. (2014, 2016).

With the addition of low-frequency fine-structure cues,
the F1 z-score increased for the vocoder + LP condition
compared with the vocoder alone (see Table 3), likely
owing to the improved F1 discrimination provided by
the LP ear. The increased weighting of the F1 offset cue
in the vocoder + LP condition (compared with vocoder
alone or LP alone) suggests (a) that listeners were able to
integrate the vocoder and LP signals across ears and (b)
that fine-structure information increases the perceptual
saliency of the spectral cue. As discussed by Moberly
et al. (2014; 2016), sensitivity to the spectral cue is a
requisite for weighting this cue strongly. The additional
low-frequency fine-structure cue provided by the LP ear,
in this case, enhanced the listeners’ F1 sensitivity to a level
where it could be used for the identification of consonant
voicing contrasts such as the one tested here.

An unexpected finding was that listeners relied more
heavily on the VCR cue in the LP condition, even though
LP speech preserves considerable F1 information.
Weighting of the F1 offset cue was significantly weaker
in the LP condition compared with the vocoder condi-
tion. Thus, it appears that F1 information is used more
heavily in the context of a broadband signal. This could
be related to the notion of how perceptual weighting
strategies are influenced by language experience (i.e.,
broadband signal) to which the normal-hearing listeners
are accustomed. Taken together, the vocoder + LP and
LP alone data suggest that sensitivity to the spectral cue
is necessary but not sufficient for spectral weighting
(Moberly et al., 2014).

Effect of Stimulus Manipulations on the Importance
of Individual Cues

Although the patterns of results for the unprocessed and
vocoder conditions were similar between the current
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Figure 5. Categorization functions for three acoustic cues across four listening conditions when the VCR cue was restricted to only

three levels.

study and that by Winn et al. (2012), VCR cues were
used more heavily and the other cues were less salient
in the present study. For example, for the listeners tested
by Winn et al. (2012), the proportion of stimuli labeled
“laws” changed from 0.20 to 0.70 as F1 offset decreased
from 635 to 450 Hz. A similar change in F1 offset (621 to
447 Hz) resulted in a smaller change in “laws” response,
from 0.4 to 0.6, in the current study. This could reflect, in
part, differences in the stimulus sets used in the two stu-
dies. First, Winn et al. used only two levels for the F1
offset cue, as compared with five levels in the current
study. The increased number of levels in this somewhat
less salient cue dimension may have further lessened the
use of this cue by our listeners. Second, vowel and con-
sonant durations were linked in the current stimulus set
(VCR cue), unlike the orthogonal manipulation used by
Winn et al.; mutual reinforcement of the durational cue
between the vowel and the final consonant may have led
to stronger weighting of the VCR cue in the present
study. Also, the values and the number of VCR selected
in the current study may have biased listeners toward the
VCR cue, in which three out of the five VCR levels
resulted in 80% to 90% identification of “laws.” It
seems less likely that differences were due to differences
in subject groups, given that both studies used young
normal-hearing listeners.

To evaluate the impact of introducing multiple cue
levels in the F1 domain, a follow-up experiment was
conducted, using a restricted range of VCR (ranging
from 1.0 to 2.5), while otherwise testing the same cues
examined in the main study. Restricting the range of
VCRs was intended to mitigate the strong bias for /z/
perception in two ways: first, it did not include the high-
est VCRs; and second, it was less variable, suggesting
that it might not be as salient. These steps were taken
to free responses to vary more widely between /s/ and /z/

along the other cue dimensions. The same 10 subjects
were tested as in the main experiment, and the same
procedures for the categorization task were used.
Figure 5 demonstrates the categorization functions for
the restricted set of stimuli. It can be seen that the result-
ing responses and GLMM analysis confirmed stronger
effects of listening condition on the weighting of the F1
cue; the vocoder and LP conditions yiclded nearly flat
categorization functions, with substantial increases in
slope for unprocessed and vocoder + LP conditions.

A second follow-up study used stimuli identical to
those used by Winn et al. (2012) to assess subject
group variability and the effect of a restricted set of F1
values. Eight of the same 10 subjects from the main
experiment completed this follow-up study. The experi-
mental procedures for the categorization task described
in the Methods section were used. There was at least one-
week lapse time between studies for each subject. The
results of this study revealed a stronger effect of F1
than that reported in Table 3 for the main experiment
in the current study. Additionally, separate effects of
vowel and consonant duration were identified, consistent
with the results of Winn et al. (2012). Figure 6 demon-
strates the categorization functions for the stimuli used
by Winn et al. in the four listening conditions in this
study. For this replication, the effect of listening condi-
tion on the weighting of F1 is more straightforward: it is
weakest in the vocoder condition, slightly higher in the
LP condition, and considerably higher in the unpro-
cessed and vocoder + LP condition. It can also be seen
that consonant duration has an effect independent of
vowel duration, which is understandably weakest in the
LP condition, where the consonant would be rendered
nearly inaudible.

Results of the second follow-up study (Figure 6) illus-
trate the influence of stimulus dimensions on the



Trends in Hearing

=N
o
e

0.75+

0.50+

0.25+

Proportion of responses as voiced /z/

0.00+
I I I
200 250 300
Vowel
duration (ms)
1.00+
0.75+

0.50+

0.25+

Proportion of responses as voiced /z/

0.00+

6(I)0 5I50 5(I)0 4I50
F1 (Hz)

2012 stimulus set

1.00+

0.75+

0.50+

0.25-
0.00+
I I I I
250 200 150 100
Consonant
duration (ms)
1.00+
0.75-

l“‘

0.50- W

+ Unprocessed

0.254 " s @ = [P
s | \/OCOdET
== @= = Vocoder+LP

0.00+

0 10 20 30 40 50
CVoicing (ms)

Figure 6. Categorization responses to stimuli used in the study by Winn et al. (2012) in the four listening conditions used in the current
study. Notable differences include the independence of vowel and consonant duration, and the use of only two different levels of Fl.

estimation of cue weighting. Separating the contribution
of vowel and consonant duration (rather than tying them
together in a “double-cue” fashion) apparently allowed
for more influence of the F1 offset cue, which was most
readily accessible in the unprocessed speech and
vocoder + LP conditions. Hence, when in a listening con-
dition that promotes the use of spectral cues, listeners
can take advantage of acoustic fine-structure to categor-
ize speech cues.

Clinical Implications

As a group, listeners in the present study weighted spec-
tral cues more strongly in the simulated bimodal

condition than in the vocoder alone and LP alone con-
ditions. Importantly, this finding shows that listeners can
integrate cues across ears and subsequently attend to the
enhanced spectral information when labeling stimuli
along the “loss”-“laws” continuum.

As pointed out in previous studies (e.g., Kirk, Tye-
Murray, & Hurtig, 1992; Kong & Braida, 2011; Kong,
et al., 2015; Moberly et al., 2016; Moberly et al., 2014;
Winn et al., 2012; Winn & Litovsky, 2015), variability in
CI and bimodal hearing outcomes likely reflect factors
beyond sensitivity to spectral or temporal cues. Indeed, it
is likely that performance on simple discrimination tasks
(e.g., spectral ripple: Aronoff & Landsberger, 2013;
Azadpour & McKay, 2012) cannot satisfactorily account
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for variability in speech recognition performance in
CI users.

Previous studies have provided evidence that top-—
down processing (e.g., context effect, phonemic restor-
ation, cue-integration) plays a role in speech recognition
when listeners receive spectrally degraded speech signals
(e.g., Baskent, 2012; Kong & Braida, 2011; Kong et al.,
2015; Loebach, Pisoni, & Svirsky, 2010; Peng,
Chatterjee, & Lu, 2012; Sheffield, Schuchman, &
Bernstein, 2015; Yang & Zeng, 2013). The current
study extends that work by demonstrating a shift of
cue-weighting strategy in a listening situation where
one of the cues is perceptually degraded. This finding
supports the earlier conclusion of Moberly et al. (2014;
2016) that cue-integration and optimal weighting of cues
plays an important role in successful speech perception.

Acknowledgments

We would like to thank Ala Somarowthu for technical support.
We also thank the two anonymous reviewers for their helpful
comments on an earlier version of the manuscript.

Declaration of Conflicting Interests

The authors declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The authors disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article:
This work was supported by NIH R01-DC012300 (PI: Y.-Y.
Kong).

Note

1. F1 offset discrimination was performed at two different
levels of VCR to examine the possible effect of vowel dur-
ation on discrimination performance.
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