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Abstract 1H NMR spectroscopy was used to investigate

the metabolic consequences of general anesthesia in the

plasma of two groups of patients with diagnosis for non-

metastatic colorectal cancer and metastatic colorectal

cancer with liver-metastasis, respectively. Patients were

treated with etomidate or propofol, two frequently used

sedation agents. Plasma samples were obtained via Ficoll

separation. Here, we demonstrated that this procedure

introduces a number of limitations for NMR-based meta-

bolomics studies, due to the appearance of spurious signals.

Nevertheless, the comparison of the 1H NMR metabolomic

profiles of patients treated with etomidate or propofol at

equipotent dose ranges was still feasible and proved that

both agents significantly decrease the plasma levels of

several NMR-detectable metabolites. Consequently, sam-

ples collected during anesthesia are not suitable for meta-

bolic profiling studies aimed at patient stratification,

because interpersonal variability are reduced by the overall

depression of metabolites levels. On the other hand, this

study showed that plasma metabolomics could represent a

valuable tool to monitor the effect of different sedation

agents and/or the individual metabolic response to anes-

thesia, providing hints for an appropriate tuning of per-

sonalized sedation procedures. In our reference groups, the

metabolomic signatures were slightly different in patients

anesthetized with etomidate versus propofol. The impor-

tance of standardized collection procedures and availability

of exhaustive metadata of the experimental design for the

accurate evaluation of the significance of the observed

changes in metabolites levels are critically discussed.
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Abbreviations

CA Cano nical analysis

CPMG Carr-purcell-meiboom-gill

CRC Colorectal cancer

FDR False discovery rate

GABAa C-Aminobutyric acid type A

LC Liver metastasis of colorectal cancer

MPLS Multilevel PLS

MS Mass spectrometry

NMR Nuclear magnetic resonance

NOESY Nuclear overhauser effect spectroscopy

PCA Principal component analysis

PLS Partial least squares

1 Introduction

The development of personalized medicine (determining

an individual’s disease risk, prognosis, and therapeutic

options) is fostered by high-throughput analysis of
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molecular biomarkers (DNA, RNA, protein or metabolites)

in human biospecimens (Zatloukal and Hainaut 2010;

Eckhart et al. 2012). Insufficient quality of such specimens

may lead to spurious results and data misinterpretation

(Vaught and Lockhart 2012). This is true for tissues as well

as for body fluids and the quality of these samples for

further molecular analysis depends on the pre-analytical

conditions in which they were acquired (Bernini et al.

2011; Cacciatore et al. 2013; David et al. 2014; Emwas

et al. 2014; Juhl 2010). Furthermore, the lifestyle, and more

important medication administered to a patient influence

the molecular signatures in corresponding biological

samples.

The human metabolome is composed by an ensemble of

several thousands of small molecules (\1500–2000 Da)

produced by the genome of the host organism and by the

genomes of its microflora, or deriving from food, drinks,

drugs or pollutants (Wishart et al. 2013), present on a very

ample range of concentrations (from \1 nM to [1 lM).

Blood plasma is a primary carrier of small molecules in the

body. In terms of chemical composition, the blood plasma/

serum metabolome is composed by hydrophobic (glyc-

erides, phospholipids, fatty acids, steroids, fats, steroids)

and hydrophilic (e.g. amino acids, glucose, glycerol, lac-

tate, creatinine) molecules (Psychogios et al. 2011) whose

relative concentrations reflect tissue lesions and organ

dysfunctions. As a consequence, metabolomics of serum

and plasma is increasingly used for successful patient

stratification in various diseases including colorectal cancer

(CRC), where both biofluids have shown to possess a

strong signature of the disease that allows discrimination of

CRC patients from healthy individuals and, in serum,

permitted prediction of the overall survival within a set of

metastatic patients (Bertini et al. 2012; Ma et al. 2012;

Turano 2014; Zhang et al. 2014). The NMR detectable part

of the serum/plasma metabolome generally consists of

about 50 main compounds (Psychogios et al. 2011) and

changes in the relative concentration of the molecules are

at the bases of the metabolomic fingerprinting of various

diseases. Effectively, the entire NMR spectral pattern

becomes the relevant ‘‘biomarker’’ rather than a single or a

few particular molecules.

The accuracy of metabolic profiles for clinical applica-

tions requires that the chemical composition (both in terms

of nature and levels of detectable molecules) represents as

much as possible the metabolome of the original sample,

and therefore it is little affected by pre-analytical proce-

dures. This aspect has received particular attention in

recent years and it has led to the development of validated

protocols for the collection/handling/storage of samples

dedicated to future metabolomic applications (Bernini et al.

2011; Pinto et al. 2014; Vuckovic 2012; Yang et al. 2013).

In particular, the factors influencing the stability of

metabolites during the various steps of the pre-analytical

phase for plasma and serum have been identified, leading

to the development of ad hoc standard operating proce-

dures concerning samples for metabolomics studies (Ber-

nini et al. 2011). These procedures are beginning to be

implemented in some biobanks. On the other hand, the

possibility to use one sample for multiple in vitro approa-

ches may offer advantages in studies aimed at combining

different molecular profiles (genomics, transcriptomic,

proteomics, and metabolomics).

Here, we have explored for the first time the possibility

to extract a disease signature from NMR spectra of plasma

obtained using Ficoll as separation medium and collected

from patients with non-metastatic colorectal cancer (CRC)

and metastatic colorectal cancer with liver-metastasis (LC)

patients. Additionally, we have evaluated the impact of

anesthesia on the metabolomic signature of the disease.

This work contributes to the definition of some best prac-

tice pre-analytical procedures related to sample collection

in NMR-based metabolomics studies. The observed chan-

ges that are specific for the different anesthetics within the

same group of patients, on a long-term perspective may

pave the way to the use of blood metabolomics for the

development of personalized sedation procedures.

2 Materials and methods

2.1 Patients recruitment

This study was conducted in accordance with the ethical

principles of Good Clinical Practice and the Declaration of

Helsinki. The local Ethics Committee approved the pro-

tocol before commencement of the study, and all subjects

gave written informed consent.

Seventy tumor patients, 32 female and 38 male, over

18 years of age, 40 with confirmed colorectal cancer and

30 with confirmed liver metastasis from colorectal cancer,

were recruited for this study, as summarized in Table 1. All

the participating subjects were able to understand the study

design.

Included subjects with CRC had a tumor mass greater

than 3 cm confirmed by colonoscopy and histology. Sub-

jects with LC had liver metastasis greater than 3 cm con-

firmed by an imaging method (e.g. CT). For all the patients

either hemihepatectomy or surgical tumor resection of

rectal or sigmoid tumors were scheduled. Female patients

of childbearing potential had to have a negative urine or

serum pregnancy test.

Exclusion criteria used in the selection of the subjects

included patients incapable of providing informed consent,

patients treated with a neo-adjuvant treatment (chemother-

apy or radiation) within the preceding 3 weeks, pregnant or
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lactating women, patients participating in another study of

investigational drugs or devices parallel to, or less than

1 month before study entry, or previous participation in this

study. In addition were excluded from the study employees

or family members of the investigators.

2.2 Blood collection and preparation

For each subject, blood was collected twice, the first time

prior to the administration of the anesthesia and the second

time when the patient was fully anesthetized, but before the

surgery. All blood samples were drawn from the central

infusion line and the blood was collected into commer-

cially available EDTA-treated vials.

All vials were bandaged with an absorbent cloth, stored

in a polythene bag and then immediately transferred at

4 �C. Plasma samples were obtained according to Indi-

vumed standard operating procedures: EDTA-plasma was

separated from the entire blood by a density gradient

centrifugation using the Ficoll-Paque and a Leucosep Tube

allowing also the separation of the mononuclear cells

lymphocytes used for other aims. Plasma samples were

stored at -80 �C until analysis.

2.3 NMR sample preparation

Frozen plasma samples were thawed at room temperature

and shaken before use. According to standard procedures

(Bernini et al. 2011), a total of 300 lL of a phosphate

sodium buffer (70 mM Na2HPO4; 20 % (v/v) 2H2O;

0.025 % (v/v) NaN3; 0.8 % (w/v) sodium trimethylsilyl

[2,2,3,3-2H4]propionate (TSP) pH 7.4) was added to

300 lL of each plasma sample, and the mixture was

homogenized by vortexing for 30 s. A total of 450 lL of

this mixture was transferred into a 4.25 mm NMR tube

(Bruker BioSpin srl) for analysis.

2.4 NMR spectra acquisition

Monodimensional 1H NMR spectra for all samples were

acquired using a Bruker 600 MHz metabolic profiler

(Bruker BioSpin) operating at 600.13 MHz proton Larmor

frequency and equipped with a 5 mm CPTCI 1H-13C-31P

and 2H-decoupling cryoprobe including a z axis gradient

coil, an automatic tuning-matching and an automatic

sample changer. A BTO 2000 thermocouple served for

temperature stabilization at the level of approximately

0.1 K at the sample. Before measurement, samples were

kept for at least 3 min inside the NMR probe head, for

temperature equilibration (300 K).

According to common practices (Beckonert et al. 2007;

Gebregiworgis and Powers 2012; Padeletti et al. 2014;

Pinto et al. 2015), for each sample, three monodimensional
1H NMR spectra were acquired with water peak suppres-

sion and different pulse sequences that allow the selective

observation of different molecular components:

(i) a standard NOESY (Nuclear Overhauser Effect

Spectroscopy) (Mckay 2011) 1Dpresat (noesygppr1d.comp;

Bruker BioSpin) pulse sequence, using 64 scans, 98,304

Table 1 Main demographic and clinical features of the patients’

cohort

CRC patients LC patients

Number 40 30

Hospital

A 16 0

B 5 24

C 0 25

Sex

Male 19 19

Female 21 11

Age

Median 67.5 65

Range 44–89 42–78

Body mass index

Underweight 1 2

Normal weight 20 18

Overweight 14 5

Obese 5 5

Stage

0 1 0

I 8 0

IIA 9 0

IIC 1 0

IIIA 2 0

IIIB 5 0

IIIC 1 0

IV 1 29

IVA 8 0

IVB 2 0

n/a 2 1

Grading

G2 25 11

G3 14 1

n/a 1 18

Tumor type

Primary tumor 39 0

Second resection 1 0

Metastatsis 0 29

n/a 0 1

Anesthetic

Etomidate 15 30

Propofol 24 0

Etomidate and Propofol 1 0
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data points, a spectral width of 18,028 Hz, an acquisition

time of 2.7 s, a relaxation delay of 4 s and a mixing time of

0.1 s. This pulse sequence is designed to obtain a spectrum

in which both signals of metabolites and high molecular

weight molecules (lipids and lipoproteins) are visible.

(ii) a standard Carr-Purcell-Meiboom-Gill (CPMG)

(Carr & Purcell 1954) (cpmgpr1d.comp; Bruker BioSpin)

pulse sequence, using 64 scans, 73,728 data points, a

spectral width of 12,019 Hz and a relaxation delay of 4 s.

This pulse sequence is designed for the selective observa-

tion of small molecule components in solutions containing

macromolecules.

(iii) a standard DIFFUSION-EDITED (Tang et al. 2004)

(ledbgppr2s1d.comp; Bruker BioSpin) pulse sequence,

using 64 scans, 98,304 data points, a spectral width of

18,028 Hz and a relaxation delay of 4 s. This pulse

sequence is designed for the selective observation of

macromolecule components in solutions containing small

molecules; the resulting spectrum is generally made up

only with the lipid, lipoprotein and protein signals.

Although the CPMG spin-echo was not sufficient to

filter out the signals of the Ficoll polymeric components,

the CPMG spectra resulted more informative than the other

two types of spectra, providing the highest discrimination

accuracies in the various multivariate comparisons per-

formed. This finding indicates that the main differences

among the analyzed groups arise from the small molecules

profiles rather than from the macromolecular components.

2.5 NMR spectra processing

Free induction decays were multiplied by an exponential

function equivalent to a 1.0 Hz line-broadening factor

before applying Fourier transform. Transformed spectra

were automatically corrected for phase and baseline dis-

tortions and calibrated (glucose doublet at 5.24 ppm)

using TopSpin 2.1 (Bruker Biospin srl). Each spectrum in

the range between 0.20 and 10.00 ppm was segmented

into 0.02-ppm chemical shift bins, and the corresponding

spectral areas were integrated using the AMIX software

(Bruker BioSpin). Regions between 6.00 and 3.30 ppm

containing residual water signal and the broad and intense

absorption attributable to the Ficoll contamination (Fig. 1

and Supplementary Figure S1) were excluded in subse-

quent statistical analyses. The total spectral area was

calculated on the remaining bins and total area normal-

ization was carried out on the data prior to pattern

recognition.

2.6 Statistical analysis

Various kinds of multivariate and univariate statistical

techniques were applied on the obtained buckets using R

3.0.2 in house scripts. Principal component analysis (PCA)

was used to obtain a preliminary outlook of the data (vi-

sualization in a reduced space, clusters detection, screening

for outliers), partial least squares (PLS) and multilevel PLS

(MPLS) were employed to perform supervised data

reduction and classification. Canonical analysis (CA) was

used in combination with PLS to increase the supervised

separation of the analyzed groups. Accuracy, specificity

and sensitivity were estimated according to standard defi-

nitions. The global accuracy for classification was assessed

by means of a Monte carlo cross-validation scheme.

Twenty metabolites (plus the antibiotic Cefuroxime)

(Supplementary Table S2), whose peaks in the spectra were

well defined and resolved, were assigned. Signal identifi-

cation was performed using a library of NMR spectra of

pure organic compounds, public databases (such as

HMBD, human metabolic database, and SDBS, spectra

database for organic compounds) storing reference NMR

spectra of metabolites, spiking NMR experiments and lit-

erature data (Psychogios et al. 2011). The relative con-

centrations of the various metabolites in the different

spectra were calculated by integrating the signal area

(Wishart 2008). The Wilcoxon test was used for the

determination of the meaningful metabolites. False dis-

covery rate correction was applied using the Benjamini &

Hochberg method (FDR) (Benjamini and Hochberg 2000):

an adjusted p value of 0.05 was considered statistically

significant. The changes in metabolites levels between two

groups of spectra are calculated as the log2 fold change

(FC) ratio of the normalized median intensities of the

corresponding signals in the spectra of the two groups

(Fold change). When two groups were constituted by

individuals that could be compared in pairs (e.g. the same

individual before and after anesthesia) a pairwise analysis

was performed. Pairwise Wilcoxon test (univariate statis-

tics) and multilevel PLS (van Velzen et al. 2008; Wester-

huis et al. 2010) were used to this purpose.

2.7 Data deposition

The NMR data are available from the MetaboLights data-

base (www.ebi.ac.uk/metabolights) with the accession

number MTBLS172.

3 Results and discussion

3.1 1H NMR profiling of plasma separated by Ficoll

All the 1H NMR spectra of plasma separated by Ficoll were

different from standard plasma spectra due to the presence

of a broad and intense absorption from 3.30 to 4.64 ppm

(Fig. 1 and Supplementary Figure S1). This absorption,
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together with sharper signals at 1.81, 1.84, 2.26, 5.42 and

5.58 ppm (Supplementary Figures S2 and S3), was attrib-

uted to contamination by the Ficoll used for plasma sepa-

ration, as demonstrated by comparison with the 1H NMR

CPMG spectrum acquired on a pure Ficoll solution

(Fig. 1). Ficoll is a high molecular mass (400 kDa)

hydrophilic branched polymer formed by copolymerization

of sucrose with epichlorohydrin. CPMG pulse sequences,

which are designed for the selective observation of small

molecule components in solutions containing macro-

molecules, were not effective in removing the signals of

Ficoll, most probably due to internal dynamics of the

polymer that does not allow magnetization selection based

on relaxation times. The Ficoll spectrum contains several

signals that appear with different relative intensities in

contaminated plasma spectra. This made essentially

impossible a reliable subtraction of the Ficoll spectrum

from those of plasma samples. The presence of this con-

taminant and in particular of the broad and intense envel-

oped centered at 3.80 ppm largely limited the applicability

of standard procedures for spectral analysis, which are

based on the comparison of spectra with comparable

baselines. The analysis of the metabolomic profiles was

therefore performed by systematically excluding the cen-

tral part of the spectra (between 3.33 and 6.00 ppm, which

includes the water signal). The use of a restricted active

spectral area severely limited the number of molecules that

might contribute to the spectral signature because the

excluded spectral range contains signals form a large

number of metabolites (including glucose, proline, serine,

and threonine).

3.2 Pre-anesthesia fingerprinting of CRC versus LC

The comparison between the 1H NMR profiles CRC and

LC plasma samples is potentially relevant for the definition

of the metabolomic signature of the disease progression. A

defined metabolomic signature of CRC has been detected

in a number of studies based on the metabolic finger-

printing of plasma or serum samples of CRC patients with

respect to those of healthy controls, reaching discrimina-

tion accuracies up to 93.5 % (Ma et al. 2012). This figure

rose up to 100 % when comparing healthy subjects and

metastatic patients (Bertini et al. 2012). Here samples

collected before anesthesia were analyzed to avoid the

confounding effects deriving from the use of different

Fig. 1 a Downfield (1.00–4.00 ppm) and b upfield (5.50–8.50 ppm)

region of the 1H NMR CPMG spectra of plasma. The figure

underlines the difference between a ‘‘normal’’ plasma spectrum (red

trace) and the spectra of Ficoll-plasma samples of CRC patients

(green, blue and black traces). The baseline is heavily distorted in the

range 3.30–4.64 ppm and 5.20–5.65 ppm due to the presence of broad

unresolved features. Comparison of c. downfield (1.00–4.00 ppm) and

d. upfield (5.50–8.50 ppm) region of the 1H NMR CPMG spectra of

the Ficoll-plasma samples of CRC patients (blue, green and red

traces) and of Ficoll solution (black trace) (Color figure online)
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sedation procedures. The samples were divided into two

groups: the first contained all the pre-anesthesia of CRC

patients; the second group contained all the pre-anesthesia

samples belonging to LC patients. The discrimination

between LC and CRC obtained from the comparison of the

spectral active area of the corresponding plasma samples

was relatively weak (Fig. 2a and Supplementary Fig-

ure S4), with discrimination accuracies ranging from 74 to

76 %, depending on the type of 1H NMR spectrum

(NOESY = 74.84 %, CPMG = 76.46 %, Diffusion-edi-

ted = 73.80 %) employed for the analyses (Fig. 2b). The

value of discrimination accuracy represents the pre-

dictability of the model, i.e. the percentage of correct

classification testing the model with an unknown sample. A

percentage value of 76 % is quite low to allow the use of

this model in clinic analysis. Certainly this low value

depend on the restricted spectral areas used due to Ficoll

contamination, excluding from the analysis some metabo-

lite peaks that might contributed to the spectral signature of

CRC and LC samples.

Still, statistically significant differences in the concen-

tration of some metabolites were identified, as summarized

in Fig. 3. Most of these metabolites had been previously

identified as characteristic (up- or down-regulated in ser-

um/plasma of CRC and metastatic CRC patients with

respect to healthy subjects (Bertini et al. 2012; Ikeda et al.

2012; Leichtle et al. 2012; Ma et al. 2009; Miyagi et al.

2011; Nishiumi et al. 2012; Tan et al. 2013).

3.3 Post-anesthesia fingerprinting of CRC

versus LC

The discrimination between CRC and LC patients collected

after anesthesia was performed by dividing the spectra into

two groups: the first contained all post-anesthesia plasma

samples from CRC patients; the second group contained all

post-anesthesia plasma samples from LC. The discrimina-

tion accuracy between the two groups ranged from 85 to

Fig. 2 a Score plot of PLS-CA

discrimination of CRC and LC

patients using pre-anesthesia

samples. Red dots samples from

CRC patients. Green dots

samples from LC patients. The

plot has been constructed using
1H NMR CPMG spectra.

b Cross validation test and

confusion matrix for CRC and

LC in pre-anesthesia samples; *

sensitivity of the test; **

specificity of the test. c Score

plot of PLS-CA discrimination

of CRC and LC patients using

post-anesthesia samples. Red

dots samples from CRC

patients. Green dots samples

from LC patients. The plot has

been constructed using 1H NMR

CPMG spectra. d Cross

validation test and confusion

matrix for CRC and LC in post-

anesthesia samples; * sensitivity

of the test; ** specificity of the

test (Color figure online)

Fig. 3 Metabolites whose concentrations are significantly different

(p value\ 0.05) in pre-anesthesia plasma samples from CRC patients

compared to LC patients. The values of -Log2 (FC) and the p values

are provided. Metabolites with -Log2 (FC) negative values have

significantly higher concentration in plasma samples from CRC

patients with respect to LC patients. Metabolites with -Log2 (FC)

positive values have lower concentration in plasma samples from

CRC patients with respect to LC patients
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90 % based on the type of spectrum (NOESY = 90.35 %,

CPMG = 90.41 %, Diffusion-edited = 85.48 %) that we

considered (Fig. 2c, d and Supplementary Figure S5).

These data indicate that after anesthesia the two groups are

well discriminated from each other. The increased dis-

crimination, however, is attributable to the different phar-

maceutical treatments administered to patients with

colorectal cancer with respect to those with liver metasta-

sis, rather than to the metabolomic signature of the disease.

In general, the sedation procedures included treatment with

different anesthetics (etomidate, propofol 1 %, propofol

2 %), contemporary administration of different antibiotics

(cefuroxime, metronidazol), physiological solutions of

different saline composition (ringer, ringer acetate, ringer

lactate) and other drugs, as summarized in Supplementary

Table S1.

The definition of best pre-analytical practices for accu-

rate results of metabolomics analysis is an active field of

research (Bernini et al. 2011; Fernandez-Peralbo and

Luque de Castro 2012; Fliniaux et al. 2011; Pinto et al.

2014; Vuckovic 2012; Yang et al. 2013) and the impact of

common clinical procedures and medical intervention have

started to be considered (Cacciatore et al. 2013). The pre-

sent results clearly indicated that the NMR metabolic

profiles of samples collected immediately after drug

administration contained a strong signature of the phar-

maceutical treatment that might obscure the disease sig-

nature. Only a careful annotation of the administered

molecules allows interpreting the changes occurring in the

metabolome composition and permits spectral assignment.

3.4 Effects of anesthesia on the metabolomic profiles

The evaluation of the overall metabolic effect of the

anesthesia on all plasma samples was performed using all

sample divided into two groups: the first contained all the

samples collected before anesthesia, independently on the

cancer type; the second group contained all the samples

collected after anesthesia. In this case, the MPLS approach

was used to characterize the within-subject changes intro-

duced in the individual metabolic profile by anesthesia.

With this approach, the between-subject variations are

removed and only the within-subject treatment-related

variations are considered. The two groups are well dis-

criminated (Fig. 4a and Supplementary Figure S6). The

discrimination accuracy ranged from 90 to 93 % (Fig. 4b),

depending on the type of spectrum (NOESY = 92.43 %,

CPMG = 92.57 %, Diffusion-edited = 90.43 %). Some

peaks, which turned out to be the major discriminants in

the analyzed spectra areas, have been assigned to drugs

administered to patients. This is the case of the antibiotic

Cefuroxime, whose characteristic peaks are detectable only

in spectra of patients treated with this molecule.

Additionally, the concentration of the metabolites whose

peaks are assigned to well-known low molecular weight

components of plasma have been evaluated to determine

changes in their concentration after the anesthesia. The

analysis was performed in the CPMG spectra. The Fig. 4c

lists the metabolites whose concentration is significantly

(p value\ 0.05) decreased or increased in post-anesthesia

plasma samples. A general decrease in metabolites con-

centration was observed and it can be reasonably attributed

to a slower metabolism under anesthesia. The increased

Fig. 4 a Score plot of Multilevel PLS discrimination of pre- and

post-anesthesia CRC and LC samples. Red dots pre-anesthesia

samples from CRC and LC patients. Green dots post-anesthesia

samples from CRC and LC patients. The plot has been constructed

using 1H NMR CPMG spectra. In this type of informed analysis

samples from the same donor are compared pairwise. b Cross

validation pairwise test and confusion matrix for pre-anesthesia CRC

and LC samples (PRE) and post-anesthesia CRC and LC samples

(POST); * sensitivity of the test; ** specificity of the test. Metabolites

whose concentration is significantly different (p value\ 0.05) in pre-

anesthesia plasma samples from CRC and LC patients with respect to

post-anesthesia samples. The values of -Log2 (FC) and the p-values

are provided. Metabolites with -Log2(FC) negative values have

significantly lower concentration in post-anesthesia plasma samples

from CRC and LC patients with respect to the pre-anesthesia samples.

Metabolites with -Log2 (FC) positive values have higher concentra-

tion in post-anesthesia plasma samples from CRC and LC patients

with respect to the pre-anesthesia samples (Color figure online)
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levels of a few molecules are more difficult to interpret but

they might be directly related to the effect of some of the

medical treatments, for example acetate concentration

could increase because of the administration of Ringer

Acetate solution (Supplementary Table S1).

We further analyzed the overall effect of anesthesia on

the metabolic profiles focusing on a homogeneous set of

patients, namely the CRC patients. Within this group, two

different types of sedations were used: Etomidate and

Propofol 2 %. Samples were divided into two groups: the

first contained the samples collected after anesthesia

belonging to CRC patients treated with Etomidate; the

second group contained the samples collected after anes-

thesia belonging to CRC patients treated with Propofol

2 %. The discrimination accuracy was relatively high, of

the order of 86 % (Fig. 5a, b and Supplementary

Figure S7). The main molecular markers for the observed

differences were branched amino acids such as isoleucine

(-Log2 (FC) = 0.234), leucine (-Log2 (FC) = 0.349) and

valine (-Log2 (FC) = 0.06). Their levels were less

reduced under Propofol 2 % than under Etomidate seda-

tion, although the measured changes are not statistically

significant.

4 Concluding remarks

An incredible amount of human biosamples currently

stored in biobanks have been collected and processed by

methods that did not anticipate the demands of metabo-

lomic technologies; these samples represent a precious

resource for metabolomics research, especially when

focused on retrospective studies. Here we evaluated the

reliability of NMR-based metabolomics data on plasma

obtained from well-established lymphocyte separation via

Ficoll in 2010, when metabolomics was not part of the

design study. Although, this lymphocyte separation media

is widely used and commonly applied to blood samples, we

have shown that this procedure for plasma separation

severely limits the NMR spectral range amenable for

metabolomics analysis, excluding a number of molecules

that contribute significantly to the NMR profile. Still, the

active spectral area allowed us to measure meaningful

differences between different groups of patients and it

permitted the evaluation of the effect of anesthesia.

The changes occurring in the individual metabolome at

the systemic levels during general anesthesia were moni-

tored and some common trends observed, thus contributing

another piece to the puzzle of the possible effects on the

metabolome induced by medical intervention. From a

methodological point of view, anesthesia introduces two

confounding effects: (i) the signals of several molecules

administered to the patients at the moment of the anes-

thesia are visible in the spectra, complicating the analysis

of the NMR profiles; (ii) the levels of most plasma

metabolites are decreased at variable degrees, thus altering

the absolute and relative concentrations of metabolites

between different groups of patients and reducing the dis-

crimination capability of the method. Consequently, post

anesthesia samples are not very suitable for standard

metabolomics studies. Therefore, metabolomics studies

aiming at the stratification of patients should be carefully

conducted and patient follow-up data on medication is

essential for the interpretation of metabolomic analyses.

The comparison of pre- and post-anesthesia plasma

profiles, however, could provide hints at the molecular

level of the consequences of general anesthesia. Prior work

has shown in vivo cerebral metabolomic spectral patterns

that are anesthetic-dependent (Jacob et al. 2012; Makaryus

Fig. 5 a Score plot of PLS-CA discrimination of post-anesthesia

CRC samples from patients treated with different anesthetics. Cyan

dots samples from CRC patients treated with etomidate. Magenta dots

samples from CRC patients treated with propofol 2 %. The plot has

been constructed using 1H NMR CPMG spectra. b Cross validation

pairwise test and confusion matrix for plasma samples from CRC

patients treated with different anesthetics;* sensitivity of the test;

** specificity of the test
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et al. 2011). Here we demonstrated that Propofol 2 % and

Etomidate, which are known to act by selectively potenti-

ating GABAa (c-aminobutyric acid type A) receptors to

provide very similar sedation, but to have some different

side effects (Hemmings et al. 2005; Miner et al. 2007; Yip

et al. 2013), induce small but meaningful differences in the

plasma metabolic profiles at the systemic level. This

molecular information is readily accessible via NMR pro-

filing and may complement classical clinical signs for the

evaluation of sedation agents and procedures.
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