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ABSTRACT
Resveratrol is a polyphenol with diverse pharmacological activities, but its clinical efficacy is limited 
due to low solubility/permeability, light-induced isomerization, auto-oxidation, and rapid 
metabolism. Nanodelivery systems, such as liposomes, polymeric nanoparticles, lipid nanocarriers, 
micelles, nanocrystals, inorganic nanoparticles, nanoemulsions, protein-based nanoparticles, 
exosomes, macrophages, and red blood cells (RBCs) have shown great potential for improving 
the solubility, biocompatibility, and therapeutic efficacy of resveratrol. This review comprehensively 
summarizes the recent advances in resveratrol nanoencapsulation and describes potential strategies 
to improve the pharmacokinetics of existing nanoformulations, enhance targeting, reduce toxicity, 
and increase drug release and encapsulation efficiency. The article also suggests that in order to 
avoid potential safety issues, resveratrol nanoformulations must be tested in vivo in a wide range 
of diseases.

1.  Introduction

1.1. Pharmacological effects of RES

Resveratrol (RES) (Figure 1) is a natural polyphenolic antitoxin 
secreted by at least 100 different plants after fungal infection 
or pathogen attack (Nam, 2006; Vestergaard & Ingmer, 2019; 
Ahmed et  al., 2017; Huang & Mazza, 2011; Tome-Carneiro 
et  al., 2013). RES has been used for the treatment of various 
diseases (Bhullar & Hubbard, 2015), as it can effectively scav-
enge free radicals (Prysyazhna et  al., 2019), regulate the 
expression and activity of antioxidant enzymes (Gal et  al., 
2021), as well as exert anti-inflammatory (Nunes et  al., 2018), 
anti-aging (Grilc et  al., 2021), antidiabetic (Rocha et  al., 2021), 
and cardioprotective effects (Gal et  al., 2021). RES also exhib-
its significant neuroprotective effects in central nervous sys-
tem diseases, such as Alzheimer’s disease (Huang et al., 2021), 
by inhibiting microglial activation and modulating neuroin-
flammation (Moradi et  al., 2020). It can protect against can-
cers of the breast (Vargas et  al., 2020), prostate (Khusbu 
et  al., 2020), lung (Yousef et  al., 2017), colon (Yuan et  al., 
2019), liver (Zhao et  al., 2021), gastrointestinal tract (Xu et  al., 
2017), pancreas (Srivani et  al., 2020), ovary (Guo et  al., 2015), 
and skin (Iqubal et  al., 2021).

1.2. Pharmacokinetics issues with RES

RES must overcome many pharmacokinetic hurdles before 
it can be considered clinically useful in chemotherapy. To 

comprehensively investigate the bioavailability of RES, 
14 C-labeled RES was administered orally and intravenously 
5–6 and five healthy subjects with doses of 25 and 0.2 mg, 
respectively (Walle et  al., 2004). Despite the fact that it is 
well absorbed when taken orally, with a bioavailability of 
around 70%, the bioavailability of RES itself is close to zero 
due to extensive metabolism in the liver and intestines, 
including glucuronidation and sulfation, which produces 
metabolites with lower biological activity than RES. After 
ingestion of RES, two maximum peaks in RES plasmatic 
levels are obtained: one is found 30–60 min following inges-
tion, and a second peak is found after 6 h. These findings 
suggest that an enteric recircularization of RES metabolites 
takes place. In addition, peak plasma levels of RES and 
metabolites of 491 ± 90 ng/mL (about 2 microM) and a 
plasma half-life of 9.2 ± 0.6 h. RES can be rapidly absorbed, 
yielding peak plasma concentration (Cmax) between 0.83 
and 1.5 h post-dose. However, only trace amounts of 
unchanged RES (<5 ng/mL) could be detected in plasma 
(Cottart et  al., 2010). Investigations of RES metabolism in 
vivo in rodent models showed that the liver is a major 
accumulation site for RES and its metabolites (Yu et  al., 
2002). Systemic in vivo distribution in rodents is charac-
terized by a peak concentration at 30 min (Soleas et  al., 
2001), with metabolites becoming detectable 3 h 
post-administration (Sale et  al., 2004). Compounding more 
to the problem is RES low water solubility, which is around 
0.03 mg/mL, hence affecting the compound’s absorption 
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and bioavailability (Summerlin et  al., 2015). Moreover, it 
exerts certain therapeutic effects only at low concentra-
tions, implying that even a modest increase in RES bio-
availability may have strong therapeutic effect (Calabrese 
et  al., 2010; Calabrese et  al., 2010).

To improve the solubility, stability and bioavailability of 
RES, enhance its permeability and therapeutic efficacy, and 
reduce its toxicity, the drug has been loaded into several 
natural, semi-synthetic, and synthetic nanodelivery systems 
(Fang & Bhandari, 2010; Ghalandarlaki et  al., 2014), including 
liposomes (Abu Lila & Ishida, 2017), polymer nanoparticles 
(George et  al., 2019), micelles (Lu et  al., 2018), lipid nanocar-
riers (Garces et  al., 2018), nanocrystals (Jermain et  al., 2018), 
inorganic nanoparticles (Yang et  al., 2019), dendrimers 
(Fischer & Vogtle, 1999), nanoemulsions (Gupta et  al., 2016), 
and bionic drug delivery systems (Chen et al., 2016) (Figure 2). 
The RES bioavailability effects after RES loading with distinct 
types of nanotechnology-based carriers administered orally, 
intravenously, which are discussed next, are summarized in 
Table 1.

In this review, we summarize recent advances in RES nano-
encapsulation and the resulting benefits, and we discuss 
current limitations affecting the in vivo behavior and thera-
peutic efficacy of RES-loaded nanocarriers.

2.  Nanocarriers used for RES delivery

2.1.  Exogenous nanoparticles

2.1.1.  Liposomes
Liposomes are stable spherical vesicles made up of choles-
terol and nontoxic phospholipids. Due to their amphiphilic 
nature, biocompatibility, biodegradability and easy surface 
modification, liposomes have been extensively used as car-
riers for hydrophilic drugs and lipophilic molecules (Table 2) 
(Li et  al., 2019). For example, the encapsulation of free RES 
into liposomes (Lip-RES) at 37 °C under light conditions 
improved its chemical stability and bioavailability, while also 
increasing RES uptake by white adipocytes by 25% (Zu et  al., 
2018). Lip-RES showed superior effectiveness relative to free 
RES in against DXR-induced renal toxicity in rats (Alhusaini 
et  al., 2022). In addition, Lip-RES increased the uptake of RES 
by cardiomyocytes and thus significantly activated the max-
imum cellular respiratory capacity (Tsujioka et  al., 2022).

Engineering liposomes to release their cargo only under 
specific conditions can prevent premature leakage of drugs 
into the circulation (Abri Aghdam et  al., 2019). For example, 
a previous study prepared RES-loaded liposomes using 
1,2-bis-myristyloxyamidopropyl ornithine and sucrose laurate 
L126 to achieve controlled drug release. The carbamate bond 
in the lipid structure was stable under neutral conditions, but 
acidic conditions triggered RES release, indicating that this 
nanoplatform can enhance RES accumulation in the acidic 
tumor microenvironment and improve its antitumor efficacy 
(Zhao et al., 2020). However, conventional liposomes are unsta-
ble during storage (Caddeo et al., 2018) and have low targeting 
ability (Laginha et  al., 2005). Therefore, RES-loaded liposomes 
were modified with poly(ethylene glycol) (PEG), resulting in a 
nanoplatform (PEG-lip-RES) with better stability and biocom-
patibility; low toxicity against murine macrophage cells Figure 1. Configuration of (a) trans- and (b) cis-reS.

Figure 2. reS-loaded nanoformulations. MSN, mesoporous silica nanoparticles.



DRuG DELIVERY 3

(RAW264.7), mouse fibroblast cells (L929), and human vascular 
endothelial cells (HuVEC); prolonged half-life; and good 
anti-oxidant effects (Shi et  al., 2021). In another study, the 

surface of liposomes was modified with chitosan and then 
coated with gold nanoshells to construct multifunctional lipo-
somes responsive to pH and near-infrared light that released 

Table 1. list of the most relevant in vivo studies concerning reS bioavailability upon oral, i.v. administration of different reS-loaded 
nanotechnology-based carriers.

Nanocarriers In vivo model via reS dose Outcomes (comparatively to free reS) ref

liposomes Charles Foster rats i.v. 2 mg/kg dose. AuC: 30-fold increased;
t1/2: 29.7-fold increased;
Cl: 33-fold decreased;
MrT: 29.5-fold decreased

vijayakumar et  al. 
(2016)

Polymeric nanoparticles 
(PlgA)

Wistar rats Oral 20.0 mg/kg AuC0→∞ : 10.6-fold increased;
Cmax: 1.2-fold increased;
Tmax: 28.0-fold increased;
Absorption rate: Ka was 7.2-fold increased);

Singh & Pai (2014)

lipid nanocarrier Wistar rats i.v. 2 mg/kg AuC0→∞:8.7-fold increased;
Cmax: 1.4-fold increased;
Cl: 13.4-fold decreased;
t1/2: 15-fold increased.

Poonia et  al. (2020)

Micelles (TPgS) Sprague-Dawley 
rats

Oral 20.0 mg/kg AuC0→∞: 3.5-fold increased;
Cmax: 2.2-fold increased;
MrT: 1.2-fold increased.

Singh et  al. (2017)

Nanocrystals Wistar rats Oral 40 mg/kg AuC: 6.3-fold increased;
Tmax: 2-fold decreased;
Cmax: 3-fold increased;
MrT: 3-fold increased.

Argenziano et  al. 
(2022)

Nanoemulsions Wistar rats Oral 120 mg/kg AuC0 →∞: 1.3-fold increased;
Cmax: 3.4-fold increased;
Cl: 1.2-fold decreased;
MrT: 1.1-fold decreased;
vd: 1.5-fold decreased.

Hao et  al. (2015)

Protein-based 
nanoparticles

Kunming mice i.v. 1.5 mg/kg Targeting efficiency increased;
reS accumulation in the liver, kidney, 

heart, and ovaries;

guo et  al. (2010)

AuC: area under the concentration-time curve (plasma exposure); t1/2: plasma half life; Cl: clearance; MrT: mean residence time; AuC0 →∞: area under 
the concentration time-curve from time zero to infinity; Cmax: peak plasma concentration; i.v.: intravenous; Ka: absorption rate constant; PlgA: Poly 
(lactic-co-glycolic acid); reS: resveratrol; tmax: time to achieve the maximum concentration; TPgS: D-α-tocopherol polyethylene glycol 400 succinate

Table 2. reS-loaded liposomes used for the treatment of various diseases.

Composition Targeting moiety
Preparation 

method
Physicochemical 

characteristics Cell line/animal model Disease Major outcome ref.

Soy PC; cholesterol None Film 
dispersion

PS, ~110 nm; 
Pi, 0.140; ZP, 
~-28 mv; Dl, 
25.3%; ee, 
96%

Murine 3T3-l1 fibroblasts Obesity increased water 
solubility and 
stability; 
enhanced 
browning of 
white fat cells

Zu et  al. 
(2018)

1,2-Bis-myristyloxyamidopropyl 
ornithine; sucrose laurate 
l126

Tumor 
microenvironment

Thin-film 
hydration

PS, ~140 nm; 
ZP, ~40 mv; 
ee, >90%

Human breast cancer 
MCF-7 and MCr-5 cells; 
male BAlB/c nude mice

Breast 
cancer

enhanced 
bioavailability 
and anti-tumor 
activity

Zhao 
et  al. 
(2020)

Pluronic® l64; tocopherol-Peg-
succinate; phospholipon 
90 g

None ice-bath 
sonication

PS, ~85 nm; Pi, 
~0.2; ZP, 
−20 mv; Dl, 
5.3%; ee, 
94.9%

erythrocyte cells Oxidative 
stress

extension of half-life 
in the blood 
circulation

Caddeo 
et  al. 
(2018)

PT-98T; cholesterol; 
DSPe-Peg2000

None Thin-film 
hydration

PS, ~136 nm; 
ZP, −11 mv; 
Dl, 3.9%; 
ee, 81.3%

Mouse macrophages; l929 
mouse fibroblasts; human 
umbilical vein endothelial 
cells; BAlB/c female mice 
(7–8  weeks old)

Periodontitis High 
anti-inflammatory 
activity

Shi et  al. 
(2021)

Chitosan; Au; SPC Tumor 
microenvironment

None PS, ~140 nm; 
ZP, ~7 mv

Hela cells Cervical 
cancer

improved drug 
cellular uptake; 
synergistic 
antitumor effect

Wang 
et  al. 
(2017)

1-Palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine; 
cholesterol; Peg-Pe; 
TPP-DSPe-Peg

Mitochondria Thin-film 
hydration

PS, ~115 nm; 
Pi, 0.22; ZP, 
~10.46 mv

B16F-10 cells Melanoma increased antitumor 
activity

Kang & 
Ko 
(2019)

Dl: drug loading efficiency; DSPe: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; ee: entrapment efficiency; PC: phosphatidylcholine; Pe: phosphatidyleth-
anolamine; Peg: poly(ethylene glycol); Pi: polydispersity index; PS: particle size; SPC: soybean phosphatidylcholine; TPP, 4-carboxybutyl triphenylphosphonium 
bromide; ZP: zeta potential



4 C. LI ET AL.

Figure 3. (A) Preparation of resveratrol (reS)-loaded PlgA nanoparticles (NPs) modified with chitosan and alginate (PCAC-NPs) by the layer-by-layer (lBl) 
assembly method. (B) release curves of PCAC-NPs at pH 1.2, 6.8, and 7.4. (C) release curves of reS, PlgA-NPs, and PCAC-NPs in simulated digestive fluid. (D) 
retention of different formulations exposed to ultraviolet light for 120 min. (e) Schematic illustration of the path of PCAC-NPs after entering simulated gastric 
fluid. (F) Fluorescence distribution in mice at 6 and 12 h after oral administration of reS-PCAC-NPs. (g) Near-infrared fluorescence images showing the accu-
mulation of NPs in the colon at 6 and 12 h post-administration. (H) uptake of NPs by colon tissues after 6 h of co-incubation. reprinted from (Shahnaz et  al., 
2017) with permission. DAPi: 4′,6-diamidino-2-phenylindole; DSS: dextran sodium sulfate; PlA: polylactic acid; PlgA: poly(lactic-co-glycolic acid); rBiTC: 
rhodamine B isothiocyanate.

Table 3. reS-loaded polymer nanoparticles used for the treatment of various diseases.

Composition
Targeting 

moiety
Preparation 

method
Physicochemical 

characteristics
Cell line/animal 

model Disease Major outcome ref.

PlgA None Solvent 
displacement

PS, ~ 202.8 nm; Pi, 
~0.17; ee, 
89.32 ± 3.51%

Prostate cancer 
lNCaP cells

Prostate cancer increased cytotoxicity in 
lNCaP cells

Nassir 
et  al. 
(2018)

PlgA; polyvinyl 
alcohol

None None PS, ~ 257.9 nm; Pi, 
~0.26; ZP, 27.99 mv; 
ee, 20%

rats isoproterenol-induced 
myocardial 
infarction

improved bioactivity Sun etal. 
(2020)

PlgA; N-oleoyl-
d-galactosamine 
Tween 80

None Solvent 
diffusion

PS, ~108.4 nm; Pi, 
~0.217; ZP, −46.3 mv; 
ee, 97.22 ± 2.31%

rAW264.7 cells; 
rats

Myocardial injury improved oral 
bioavailability

Siu et  al. 
(2018)

Folic acid-conjugated 
PlgA; CTAB

enterocytes None PS, 131 ± 9 nm; Pi, 
0.181; ZP, −10.7 mv; 
ee, 59.1 ± 3.3%

Caco-2 cells; rats 
with intestinal 
inflammation

Colonic inflammation Protection under acidic 
conditions; 
inflammation 
suppression

Naserifar 
et  al. 
(2020)

PlgA; chitosan; 
alginate

None O/W emulsion 
technology

PS, ~255 nm; Pi, 
0.097 ± 0.095; ZP, 
~13.5 mv; ee, 87.26%

DSS-induced 
ulcerative colitis 
mice

Colonic inflammation enhanced 
colon-targeting 
ability; improved 
inflammation 
indicators

Jin et  al. 
(2021)

PlgA; polyvinyl 
alcohol; 
lactoferrin

Brain 
capillaries

emulsion 
solvent 
evaporation

PS, 148.2 ± 4.2 nm; Pi, 
0.12 ± 0.18; ZP, 
−23.1 ± 3.0 mv; Dl, 
6.1 ± 0.3%; ee, 
75.2 ± 4.1%

SH-Sy5y cells; 
mice with 
Parkinson’s 
disease

Colonic inflammation increased blood-brain 
barrier permeability; 
enhanced 
neuroprotective 
effect

Katila 
et  al. 
(2022)

Sulfobutylether-β-
cyclodextrin (4% 
w/v); polyvinyl 
alcohol; 
polyethyleneimine

None Solvent 
evaporation

PS, 264.2 ± 0.03 nm; Pi, 
0.16 ± 0.03; ZP, 
−1.46 ± 1.47 mv; Dl, 
0.72 ± 0.09%; ee, 
29.1 ± 2.0%

A549, H157, H460, 
H4006, H358, 
HeK-293 cells

Non-small cell lung 
cancer

increased water 
solubility; enhanced 
cytotoxicity

Wang 
et  al. 
(2020)

mPeg750-PlA1000 None None PS, 162.2 ± 2.9 nm; Pi, 
0.062 ± 0.024; ZP, 
−11.0 ± 0.4 mv; Dl, 
8.7%; ee, 95.1 ± 0.1%

B16-F10 cells; 
C57Bl/6J 
mouse model

Melanoma reduced degradation 
and metabolism; 
increased antitumor 
activity

yee et  al. 
(2022)

CTAB: cetyltrimethylammonium bromide; Dl: drug loading efficiency; DSS: dextran sodium sulfate; ee: entrapment efficiency; mPeg: methoxy poly (ethylene 
glycol); Pi: polydispersity index; PlgA: poly(lactic-co-glycolic acid); PS: particle size; ZP: zeta potential
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RES in a controlled manner, leading to synergistic antitumor 
effects against HeLa cells (Wang et  al., 2017). RES induces cell 
death through the mitochondrial apoptotic pathway, where 
mitochondria play a central role in the release of pro-apoptotic 
factors. The surface of RES-loaded liposomes was modified 
with cationically charged compounds such as 4-carboxybutyltri 
phenylphosphine bromide and dequinoline, which cross 
the mitochondrial membrane to promote drug accumu-
lation in mitochondria of tumor cells, leading to greater 
cytotoxicity against tumor cells (Maherani et  al., 2011; 
Kang & Ko, 2019).

2.1.2.  Polymer nanoparticles
Polymer nanoparticles are submicron-sized colloidal particles 
made from natural or synthetic polymers (Zu et  al., 2021), 
including polylactic acid, poly(lactic-co-glycolic acid) (PLGA), 
polycaprolactone, gelatin, and polysaccharides (Lu & Park, 
2013) (Table 3). Polymer nanoparticles can adsorb, wrap, or 
chemically bind to target compounds (Masood, 2016), 
enhancing the stability of drugs, especially protein drugs, 
prolonging their circulation in vivo, and releasing them in a 
controlled manner (Langer, 2000). Changing the composition 
and structure of polymer nanoparticles can also tune their 
behavior under different conditions (Masood, 2016; Zhang 
et  al., 2021).

PLGA is the polymer most commonly used for the syn-
thesis of nanocarriers. For example, loading RES into PLGA 
nanoparticles (15.6 μM) improved its IC50 value from 29.7 to 
15.6 μM and induced apoptosis in LNCaP prostate cancer 
cells, without adverse effects on normal macrophages (Nassir 
et al., 2018). In another study, RES-loaded PLGA nanoparticles 
showed better anti-inflammatory, anti-oxidant, and cardio-
protective effects than free RES in the treatment of myocar-
dial injury in vivo (Sun et  al., 2020). However, polymer 
nanoparticles do not enhance the efficiency of passive tar-
geting (Zhang et  al., 2014; Shahnaz et  al., 2017). Therefore, 
their surface has been modified with ligands or macromol-
ecules to enhance their ability to target disease sites. For 
example, modifying RES-loaded PLGA nanoparticles with the 
monosaccharide galactose improved intestinal uptake, anti-
tumor effects, and oral bioavailability of RES in rats (Siu 
et  al., 2018). In another study, modifying RES-loaded PLGA 
nanoparticles with folic acid enhanced their ability to enter 
colon cells and suppress colon inflammation (Naserifar 
et  al., 2020).

The kinetics of cargo release from PLGA nanoparticles, 
especially the initial burst, is difficult to control (Reinhold 
& Schwendeman, 2013). To address this drawback, the 
surface of RES-loaded PLGA nanoparticles was modified 
with chitosan and alginate to form a polymer membrane 
(PCAC nanoparticles) (Figure 3) (Jin et  al., 2021). Following 
oral administration to mice, the electrostatic interactions 
between chitosan and alginate were enhanced under 
acidic conditions in the stomach, reducing pore size and 
slowing drug release, while alkaline pH similar to that in 
the intestines enlarged the pores and accelerated drug 
release. Thus, PCAC nanoparticles not only protected the 

drug from degradation but also released it selectively in 
the simulated intestinal fluid. By labeling PCAC nanopar-
ticles with rhodamine B isothiocyanate, investigators 
showed that the nanoplatform penetrated deep into the 
mucosa through the enhanced permeability and retention 
effect, targeting inflammatory cells and enhancing the 
therapeutic effects of RES. In another study, RES-loaded 
PLGA nanoparticles were modified with lactoferrin, a nat-
ural iron-binding cationic glycoprotein that targets brain 
capillaries, helping them cross the blood–brain barrier 
(Katila et  al., 2022). In addition, the modification of PLGA 
nanoparticles with sulfobutylether-β-cyclodextrin signifi-
cantly increased the water solubility of RES and enhanced 
its antitumor activity against non-small cell lung cancer 
(Wang et  al., 2020). Similarly, methoxy poly (ethylene gly-
col)-poly(lactide) nanoparticles improved the liver accu-
mulation and plasma stability of free RES, leading to good 
therapeutic effects in a mouse model of melanoma (Yee 
et  al., 2022).

2.1.3.  Nanomicelles
Nanomicelles are macromolecules with a hydrophobic core 
and a hydrophilic shell that form from block or graft copo-
lymers in aqueous solution when the micelle concentra-
tion exceeds the critical micelle concentration (Table 4) 
(Xu et  al., 2020; Feng et  al., 2020). Nanomicelles can 
encapsulate hydrophobic drugs through covalent binding 
or physical trapping (Lu & Park, 2013), protecting them 
from the external environment, improving their pharma-
cokinetic properties, and reducing toxicity (Kataoka et  al., 
2001). The hydrophilic shell also enables them to escape 
clearance by the reticuloendothelial system (Sawant & 
Torchilin, 2010).

Pluronic F68 is widely used for the preparation of nano-
micelles due to its low cost and good biocompatibility, but 
its high critical micelle concentration significantly reduces 
drug encapsulation efficiency (Chaudhari & Patil, 2014; Kim 
et  al., 2021). Therefore, a recent study conjugated the two 
ends of Pluronic F68 with stearic acid and inulin, respectively, 
to increase the hydrophobic segment, reduce the critical 
micelle concentration, and protect the drug-loaded nanocap-
sules from the gastric environment while improving the oral 
bioavailability of RES and achieving controlled drug release 
for colon cancer treatment (Jangid et  al., 2020). In another 
study, a mixed micellar system prepared using poloxamers 
188 and 407 was loaded with RES and coated with biore-
sorbable polylactic acid to form hybrid nanomicelles with 
better biocompatibility and anti-arthritic effects than free RES 
(Kamel et  al., 2019).

2.1.4.  Solid lipid nanoparticles
Solid lipid nanoparticles (SLNs) are nanosized materials 
that can be loaded with hydrophilic and lipophilic drugs 
and easily modified with ligands due to their functional 
surface groups (Garces et  al., 2018). SLNs are considered 
effective carriers, as they can encapsulate or disperse 
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drugs in natural or synthetic solid lipids, giving rise to 
solid colloidal structures that can store lipophilic mole-
cules (Table 4). For example, loading RES onto SLNs sig-
nificantly increased the plasma concentration and area 
under the curve of the drug, reduced the time needed 
to reach the maximum plasma concentration, and pro-
moted oral absorption, thereby improving the ability of 
RES to protect against doxorubicin-induced cardiac toxicity 
in mice (Zhang et  al., 2019). SLNs have also been identi-
fied as a promising delivery platform for therapeutic 
agents against tumor drug resistance (Majidinia et  al., 
2020). For instance, in comparison with free resveratrol, 
RES-loaded SLNs promoted the absorption of drugs by 
down-regulating the expression of overexpression of drug 
efflux transporters P-gp and breast cancer drug resistance 
protein (Wang et  al., 2021). Another study reported that 
cationic RES-loaded SLNs showed significantly stronger 
anti-hepatocellular carcinoma activity in vitro and in vivo 
than conventional RES-loaded SLNs because of their stron-
ger affinity for negatively charged tumor cell membranes 
(Rahman et  al., 2020). Nevertheless, single solid lipids may 
form a perfect lattice structure during the preparation of 
SLNs; in this case, the lattice squeezes out the drug during 
storage, leading to low drug loading efficiency and leak-
age (Chen et  al., 2010; Das et  al., 2012).

2.1.5.  Nanostructured lipid carriers
Nanostructured lipid carriers (NLCs) are a new generation 
of lipid nanoparticles developed to overcome the limita-
tions of SLNs (Khosa et  al., 2018). To prepare NLCs, a 
certain proportion of liquid lipids is introduced into solid 
lipid carriers, disrupting the perfect lattice structure of 
SLNs; this reduces drug leakage during storage, stabilizes 
the nanoparticles (Tapeinos et  al., 2017), and increases 
their capacity for hydrophobic drugs, which are highly 
soluble in liquid lipids (Table 4) (Alam et  al., 2015). Recent 
studies have shown that RES-loaded NLCs prepared by 
interfacial polymer deposition can improve acute lung 
injury (de Oliveira et  al., 2019), protect blood vessels, and 
enhance the antihypertensive effects of RES (Astley et  al., 
2021; Li et  al., 2021). Lecithin is naturally present in plant 
and animal tissue, with a combination of glycerophospho-
lipids. A nanoplatform based on the lipid structure of 
lecithin to encapsulate RES was designed. This nanopar-
ticle is stable at ambient temperature as well as at 4 °C 
for up to 12  months, with inherent anti-oxidant and 
anti-cancer properties; indicating the feasibility of using 
this system as an cost-effective, and low side-effect 
anti-cancer therapeutic (Liang et  al., 2022). To improve 
the tumor targeting ability of such nanoparticles, 
RES-loaded NLCs were modified with folic acid, improving 
cytotoxicity in MCF-7 cells overexpressing folate receptor 
(Poonia et  al., 2019). NLCs have also shown the ability to 
protect skin by delivering RES to the stratum corneum 
and epidermis, but their fluidity limited their stability on 
the skin surface. To improve the stability and accumulation 
of RES on the epidermis, NLCs were modified with a 
hydrogel with good viscosity and ductility, resulting in a Ta

bl
e 
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nanoplatform with promising protective effects against 
ultraviolet radiation and oxidants (Miao et  al., 2021).

2.1.6.  Nanocrystals
Drug nanocrystals are usually formed as nanosuspensions in 
the presence of surfactants, polymers, or their mixture as 
stabilizers (Lu et  al., 2019; Li et  al., 2021). Nanocrystals can 
improve the dissolution and absorption of insoluble drugs by 
increasing the specific surface area and saturation solubility, 
showing higher drug loading capacity than other nanofor-
mulations (Fontana et  al., 2018) (Table 4). The use of nano-
crystals also reduces the potential toxicity of excipients and 
promotes drug accumulation at target sites (Lu et  al., 2017). 
However, their interactions with biologically tissues should 
be investigated in detail, as they can persist for a long time 
in biological environments. To enhance the solubility and 
bioavailability of RES, another study developed RES-loaded 
nanocrystals by the spontaneous conjugation of RES with 
hydroxypropyl methyl cellulose through van der Waals forces. 
The prepared nano-system entered cells through 
lattice-protein-mediated endocytosis, significantly enhancing 
the cellular uptake of RES, and protecting neurons from chem-
ically induced cytotoxicity. Moreover, they showed negligible 
toxicity toward zebrafish embryos and larvae and exhibited 
more favorable pharmacokinetics and oral bioavailability in 
rats. Similar results were observed in mice with Parkinson’s 
disease, suggesting that nanocrystals may be a promising 
formulation for both oral and systemic delivery of RES (Xiong 
et  al., 2020). Loading RES into nanocrystals significantly 
strengthened the drug’s ability to inhibit the proliferation of 
peritoneal tumor cells in Ehrlich ascites tumor (EAT)-bearing 
mice. RES-loaded nanocrystals ameliorated free RES-induced 
hepatocyte necrosis and apoptosis and liver fibrosis; however, 
as with free RES, RES-loaded nanocrystals resulted in inflam-
mation of proximal tubular necrosis and glomerular swelling, 
as well as a slight elevation of several biochemical parameters 
that did not prolong the life span of EAT bearing mice (Ancic 
et  al., 2022). In order to increase the beneficial effects and 
reduce risks associated with resveratrol nanocrystals, addi-
tional factors such as dose, genetics, health status, and the 
nature of the target cells should also be considered.

2.1.7.  Inorganic nanoparticles
Inorganic nanoparticles (Fan et al., 2020), such as mesoporous 
silica nanoparticles (MSNs), gold nanoparticles (GNPs), silver 
nanoparticles (AgNPs), and quantum dots (QDs), have been 
used as delivery carriers for therapeutic cargos (Sperling & 
Parak, 2010; Pearce & O’Reilly, 2019) due to their unique 
magnetic and optical properties, which distinguish them from 
their organic and polymeric counterparts (Huang et  al., 2011) 
(Table 4).

GNPs exhibit good stability, high thermal, optical, and 
electrical activity, high surface area, and multifunctionality 
(Amina and Guo, 2020), RES was biocoupled with GNPs 
via the cross-linking agent polyvinylpyrrolidone (RES@
PVP-GNPs) to enhance the delivery performance and 
anti-tumor efficacy of RES (Lee et  al., 2022). However, 

GNPs are usually synthesized by physical or chemical 
methods that may be toxic to humans. In contrast, syn-
thesizing GNPs with plant-derived secondary metabolites 
such as RES is environmentally friendlier and may be safer 
for subsequent in vivo use (Bharadwaj et  al., 2021; Akintelu 
et  al., 2021). For example, RES-loaded GNPs were synthe-
sized at room temperature through the RES-mediated 
reduction of Au3+ into Au0, and the nanoparticle surface 
was then wrapped with highly branched gum Arabic to 
improve drug loading efficiency and overall stability. The 
modified GNPs had optimal cellular uptake at 24 h 
post-incubation and exhibited good synergistic antitumor 
effects (Thipe et  al., 2019). The same method was used 
to prepare AgNPs (Kup et  al., 2020).

MSNs are also widely used in drug delivery and biomed-
icine due to their large surface area and pore volume. It has 
been reported that encapsulating RES in colloidal MSNs with 
high loading capacity (20% w/w) and excellent encapsulation 
efficiency (100%) can enhance its solubility by 95% and 
improve in vitro release kinetics, leading to stronger 
anti-inflammatory and anti-tumor activities than free RES 
(Summerlin et  al., 2016).

2.1.8.  Dendrimers
Dendrimers are highly branched, star-shaped macromolecules 
with nanometer-scale dimensions (Svenson, 2009). unlike 
conventional polymers, the molecular weight and chemical 
composition of dendrimers can be controlled by modulating 
their synthesis, resulting in higher loading capacity (Menjoge 
et  al., 2010) and improved biocompatibility, pharmacokinetics 
(Lee et  al., 2005), and polydispersity (Boas & Heegaard, 2004). 
In a recent study, RES was conjugated to the amino terminus 
of glycosylated maize dendrimer dextran, affording a 
nano-delivery system with higher solubility and anti-oxidant 
activity that improved the cellular uptake of RES and pro-
tected against oxidative cell damage in Caco-2 cells (Shi 
et  al., 2020) (Table 4).

2.1.9.  Nanoemulsions
Nanoemulsions are a biphasic dispersion of two immiscible 
liquids, one in the dispersed phase and the other in the 
continuous phase, which are generally stabilized using sur-
factants and co-surfactants as emulsifiers (Bonferoni et  al., 
2019). Nanoemulsions are usually formed using high pressure 
homogenizers, high shear stirring, or ultrasound generators 
as external forces to promote the release and absorption of 
the drug after digestion (Choradiya & Patil, 2021), while 
enhancing targeted drug delivery and minimizing adverse 
and toxic reactions (Jaiswal et  al., 2015) (Table 4). For exam-
ple, a RES-loaded nanoemulsion was prepared using coconut 
oil as the oil phase and Pluronic-107 and Cremophor EL as 
surfactants (Kotta et  al., 2021). The optimized preparation 
showed better drug release properties than an RES suspen-
sion in 0.5% (w/v) sodium carboxymethyl cellulose and exhib-
ited a good brain-targeting effect after intranasal 
administration in rats. The nanoemulsion was also stable at 
room temperature for 3 months (Kotta et  al., 2021).
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Among such nanomaterials, oil-in-water (O/W) nanoemul-
sions are considered ideal for encapsulating RES, as they can 
be easily prepared through high-energy processes using 

natural ingredients and low emulsifier concentrations. For 
example, an RES-based O/W nanoemulsion significantly 
reduced cell viability in bladder T24 cancer cells and enhanced 

Figure 4. Bionic drug delivery systems loaded with resveratrol (reS). DSPe: 1,2-distearoyl-sn-glycero-3-phosphoethanolamine; exo: exosomes; FA: folic acid; 
gA: glycyrrhizic acid; HSA: human serum albumin; MP: macrophage; NHS: N-hydroxysuccinimide; NlC: nanostructured lipid carrier; Peg: poly(ethylene glycol); 
PTX: paclitaxel; r8: octaarginine; PlgA: poly (lactic acid)-glycolic acid; rBCm: red blood cell membrane; rvg: rabies virus glycoprotein; TPP: 4-carboxybutyl 
triphenylphosphonium bromide.
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the cytotoxic activity of RES through fast intracellular drug 
uptake (Rinaldi et  al., 2021), suggesting that O/W nanoemul-
sions can effectively improve RES bioavailability. In another 
study, two RES self-emulsifying systems increased the toler-
ance of human immortalized chondrocytes toward RES, 
reduced its cytotoxicity at high concentrations, promoted 
drug uptake by membranes and cells, and improved the 
anti-oxidant activity of the free drug (Le Clanche et  al., 2018).

2.2.  Bionic drug delivery systems

Synthetic nanocarriers protect drugs from degradation and 
improve their oral bioavailability and therapeutic effects, but 
they suffer from weak targeting, toxicity, and easy elimination 
by the immune system (Torchilin, 2005). To avoid these prob-
lems, bionic drug delivery systems resemble natural particles 
such as cells (Chen et  al., 2022), pathogens (Yin et  al., 2022), 
and endogenous proteins (Wu et  al., 2020), mimicking their 
in vivo activity and selectively delivering drugs to target sites. 
The result is lower immunogenicity, fewer side effects, and 
stronger therapeutic effects than with conventional nanopar-
ticles (Li et  al., 2021) (Figure 4).

2.2.1.  Protein-based nanoparticles
Albumin, the most abundant plasma protein, plays a key role 
in the metabolism, transfer, and distribution of nutrients in 
cells. Albumin has been used extensively in nanotechnology 
as carrier due to its good drug binding ability, high stability, 
biodegradability, low toxicity, non-immunogenicity, and bio-
compatibility (Iqbal et  al., 2021). Hydrophobic drugs such as 
RES can be easily encapsulated into albumin nanoparticles, 
while carboxyl and amino groups on the surface of albumin 
facilitate surface functionalization of its nanoparticles (Zhu 
et  al., 2017). For example, encapsulating RES into glycyrrhizin 
acid-conjugated human serum albumin nanoparticles signifi-
cantly improved its pharmacokinetic properties, bioavailabil-
ity, and targeting of the liver (Wu et  al., 2020). In another 
study, folate-modified RES-loaded human serum albumin 
nanoparticles selectively delivered RES to tumor sites and 
induced apoptosis in HepG2 cells more effectively than free 
RES (Lian et  al., 2019).

2.2.2.  Exosomes
Exosomes are cell-derived vesicles with a particle size of 
40–160 nm that can transfer chemical or genomic contents 
from parental to daughter cells (Yan & Jiang, 2020). Their 
membrane also contains several integrin-interacting proteins 
and antigens, allowing exosomes to overcome various bio-
logical barriers and achieve specific recognition and long 
circulation in blood as well as escape clearance by the 
immune system (Wang et  al., 2019; Wang et  al., 2022). Thus, 
exosomes have been extensively used as drug carriers to 
improve therapeutic outcomes. For example, loading RES into 
exosomes derived from primary microglia allowed the drug 
to penetrate the blood–brain barrier and stabilized it, pro-
longing its therapeutic efficacy. In addition, the exosomes 
activated neuronal autophagy via PI3K signaling, significantly 

promoting neuronal repair after central nervous system injury 
(Fan et  al., 2020).

However, the extraction of exosomes from biological fluids 
and cell culture media is inefficient (Haney et  al., 2015). In 
contrast, milk has been identified as a cost-efficient source 
of large amounts of exosomes that show cross-species bio-
compatibility, lack toxicity, encapsulate hydrophilic and lipo-
philic macromolecules, and efficiently cross the blood–brain 
barrier (Munagala et  al., 2016). RES was loaded passively into 
milk-derived exosomes, which then delivered the drug selec-
tively to rat mammary tissue, inhibiting the proliferation of 
MCF-7 and MDA-MB-231 breast cancer cells more strongly 
than free RES (Gonzalez-Sarrias et  al., 2022).

2.2.3.  Macrophages
Macrophages enter the tumor microenvironment after surgi-
cal resection by recruiting monocyte chemoattractant 
protein-1 (CCL-2) and pro-inflammatory factors, suggesting 
that macrophage-derived carriers may enhance drug delivery 
and accumulation in scattered tumor cells that escape resec-
tion. In one approach, liposomes were modified with 
octa-arginine, a cell-penetrating peptide, and loaded simul-
taneously with RES and paclitaxel. The obtained liposomes 
were then internalized by macrophages, affording a 
cell-mediated carrier with high drug-loading capacity as well 
as the ability to target sites of inflammation and tumors. The 
liposomes entered tumor cells, inhibiting their growth and 
postoperative recurrence in a 4T1 orthotopic mouse model 
(Qiu et  al., 2021).

2.2.4.  Red blood cells
Red blood cells (RBCs) are responsible for the transport of 
oxygen to tissues or organs and have a lifespan of about 
115  d in the human body, as some of their membrane gly-
coproteins protect them from immune system clearance 
(Dupire et  al., 2012; Franco, 2012). For example, the trans-
membrane protein CD47 on the RBC membrane prevents 
their uptake by macrophages by selectively binding to the 
signal regulatory protein-α on macrophages, which acts as 
a ‘don’t eat me’ marker (Muzykantov, 2010). Due to their 
high drug-loading capacity and easy collection, RBCs are 
considered ideal drug carriers for prolonged circulation with 
good biocompatibility and low immunogenicity (Gutierrez 
Millan et  al., 2012). For example, coating RES-loaded PLGA 
nanoparticles with RBC membrane prolonged the circulation 
of RES and released the drug in a sustained manner after 
systemic injection in rats, leading to a half-life significantly 
longer than that of free RES or uncoated nanoparticles (Li 
et  al., 2019). However, in the treatment of brain diseases 
such as Alzheimer’s disease, the use of toxic organic reagents 
in the preparation of PLGA nanoparticles and the acidic 
by-products of PLGA during degradation may make it unsuit-
able for long-term use in the brain (Yang, 2010; Fuhrmann 
et  al., 2015). NLCs based on natural lipids with better bio-
compatibility may be more suitable for brain formulations 
than PLGA nanoparticles (Fu et  al., 2019). To enhance the 
efficacy of anti-Alzheimer’s disease treatment, RBC 
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membrane-encapsulated nanostructured lipid particles (NPs@
RBCm) were prepared and rabies virus glycoprotein (RVG29) 
targeting the brain and triphenylphosphine cation (TPP) 
targeting the mitochondria were introduced using a green 
lipid insertion method to the RBC membrane surface (RVG/
TPP NPs@RBCm), allowing RES delivery across the blood-brain 
barrier and subsequent targeting of neuronal mitochondria 
(Han et  al., 2020). The experimental nanoformulations did 
not cause significant damage to normal cells or organs in 
experimental mice, and the erythrocyte membranes were 
able to persist a long time in circulation. In addition, 
co-culture models and in vivo imaging showed that RVG/
TPP NPs@RBCm penetrated the blood–brain barrier better 
than NPs@RBCm, and it targeted neuronal cells, where it 
localized to mitochondria. These results suggest that 
polymer-based bionic drug delivery systems camouflaged 
with RBC membranes can effectively prolong the effi-
cacy of RES.

3.  Discussion and future perspectives

RES has a wide range of pharmaceutical activities and prom-
ising applications in natural medicine, but its unstable phar-
macokinetics undermine its therapeutic efficacy and hinder 
clinical application. To overcome these drawbacks, RES has 
been encapsulated into specific nanocarriers, including lipo-
somes, polymeric nanoparticles, SLNs, protein-based nanopar-
ticles, and inorganic nanoparticles, which can modulate drug 
release to reach significant therapeutic concentrations in 
plasma and improve bioavailability. Among these nanocarri-
ers, polymer nanoparticles are most widely used due to their 
high encapsulation efficiency, which significantly reduces the 
amount of nanocarriers required to achieve the desired bio-
activity and to reduce potential toxic and side effects (Santos 
et  al., 2014). The behavior of polymer nanoparticles under 
different conditions or in response to specific stimuli can 
easily be tuned by changing their composition and structure, 
while their surface can be functionalized with ligands that 
bind to specific cell receptors for targeted RES delivery. 
Despite their advantages, synthetic nanoparticles such as 
inorganic nanoparticles and nano-emulsions have low encap-
sulation capacity and present several toxicity and safety 
issues that limit their therapeutic efficacy (Rezaei et  al., 2019; 
Roy et  al., 2019).

Compared to synthetic nano-systems, biologically derived 
carriers can greatly improve the biological distribution, cel-
lular uptake, and controlled release of encapsulated drugs, 
while showing higher biocompatibility and lower toxicity (Bu 
et  al., 2019). Bionic drug delivery systems have strong affinity 
for cells and can easily escape phagocytosis by endothelial 
reticulocytes, stabilizing drugs in the circulation. However, 
proteins, exosomes, and other bionic nanocarriers cannot 
easily be obtained on a large scale, highlighting the need 
to discover novel delivery systems for naturally derived drugs 
like RES that show low water solubility, weak ability to pen-
etrate cells, and poor bioavailability. Additional studies are 
also needed to extend our knowledge on the pharmacoki-
netics, biodistribution, toxicity, and biocompatibility of 

RES-loaded nano-formulations and validate their performance 
in vivo.

4.  Conclusion

Our review illustrates how the encapsulation of RES into 
synthetic or natural nanocarriers can improve its physico-
chemical properties and targeted delivery, offering an effec-
tive approach for custom-made treatments. However, the 
therapeutic efficacy of RES-loaded nanoparticles should be 
further investigated with in vivo studies and clinical trials to 
ensure their suitability for the clinic.
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