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Abstract

We investigated two siblings, born to consanguineous parents, with neurologi-

cal features reminiscent of adaptor protein complex 4 (AP4) deficiency, an

autosomal recessive neurodevelopmental disorder characterized by neonatal

hypotonia that progresses to hypertonia and spasticity, severe intellectual dis-

ability speech delay, microcephaly, and growth retardation. Yet, both children

also presented with early onset obesity. Whole-exome sequencing identified two

homozygous substitutions in two genes 170 kb apart on 7q22.1: a c.1137+1G>T
splice mutation in AP4M1 previously described in a familial case of AP4-defi-

ciency syndrome and the AZGP1 c.595A>T missense variant. Haplotyping

analysis indicated a founder effect of the AP4M1 mutation, whereas the AZGP1

mutation arose more recently in our family. AZGP1 encodes an adipokine that

stimulate lipolysis in adipocytes and regulates body weight in mice. We propose

that the siblings’ phenotype results from the combined effects of mutations in

both AP4M1 and AZGP1 that account for the neurological signs and the mor-

bid obesity of early onset, respectively. Contiguous gene syndromes are the con-

sequence of loss of two or more adjacent genes sensible to gene dosage and the

phenotype reflects a combination of endophenotypes. We propose to broaden

this concept to phenotypes resulting from independent mutations in two genet-

ically linked genes causing a contiguous mutation syndrome.

Recent developments in next-generation sequencing (NGS)

and whole-exome sequencing (WES) have considerably

empowered our ability to identify the genetic basis of mono-

genicMendelian traits. Yet, human phenotypes are the result

of variants at multiple loci and studies of human diseases

must often expand beyond single-locus analyses. Accord-
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ingly, the power of NGS has also fostered the identification

of families with pathogenic mutations in more than one dis-

ease gene. Several examples illustrated the role for digenic

inheritance in deafness, long QT, or nephrotic syndromes

(Schaffer 2013). Similarly, recent publications illustrate

how WES can help identifying genetic modifier of a Men-

delian trait (Lemmers et al. 2012; Prokudin et al. 2014).

Homozygous or compound heterozygous mutations in

any of the four genes encoding the subunits of the adaptor

protein complex 4 (AP4) have been found to cause neuro-

logical disease underscoring the existence of a recognizable

AP4 deficiency syndrome. The phenotype is characterized

by microcephaly, severe intellectual disability (ID) with

delayed or absent speech, progressive spasticity leading to

wheelchair dependence in early adolescence, and growth

retardation. We report here on two siblings (one female

and one male) presenting the association of typical AP4-

deficiency neurological presentation and severe obesity

with early onset and provide evidence that this condition is

a contiguous mutation syndrome.

Patients II.1 and II.2 (Table 1 and Fig. 1B–C) are

brother and sister born to first cousin parents originating

from Algeria. They were term-born after an uneventful

pregnancy and delivery with normal birth parameters.

Neonatal hypotonia was reported for both patients. At

their last visit at 4 (II.2) and 7 (II.1) years of age, II.1

had a small head circumference (�1.5 standard deviation

[SD]) and II.2 was microcephalic with occipitofrontal cir-

cumference on �2 SD (Table 1). They had severe intellec-

tual deficiency with only a few single words. Eye contact

was sustained and they both had purposeful hand skills.

Patient II.2 presented unmotivated laughs and episodes of

heteroaggressivity. Patient II.1 could walk with wall sup-

port from 15 months of age and then lost the ability to

walk at 4 years of age. Patient II.2 never achieved

independent walking. Today, both patients are wheel-

chair-bound. Patient II.1 experienced a unique episode of

prolonged hyperthermic at 10 months of life and received

valproate until the age of 3 years with no recurrent epi-

sodes. Both presented pyramidal syndrome with hyperref-

lexia, Babinski sign, and spasticity. Excessive weight gain

started at 18 months of life for patient II.1 and 6 months

of life for patient II.2. At 7 years of age, the weight of

patient II.1 is over +4 SD and over +5 SD for patient II.2

at 4 years of age while height remained on the normal

range (+1 SD and +2 SD, respectively). Currently, the

father has a body mass index (BMI) of 24 and the mother

has a BMI of 31.5, with a gain of weight in motherhood.

Table 1. Clinical findings in patients with mutations in adaptor protein complex 4 (AP4) subunits.

II.1 II.2 Previously reported AP4-deficiency patients

Sex M F Sex ratio ~1

Age at evaluation

(years)

7 4 From 2 to 24

ID Severe Severe 33/33

Speech Less than 10 words, echolalia Never acquired 30/31

Stereotypes Hand flapping Unmotivated laughter, hand flapping 26/28

Character Calm Episodes of heteroaggressivity Shy, amicable, and calm for 14/19 unpublished

(Abou Jamra et al. 2011; Verkerk et al. 2009)

Shy and anxious for 2/19 (Abdollahpour

et al. 2015)

Neonatal hypotonia + + 25/25

Pyramidal syndrome + + 33/33

Deambulation Achieved then lost, wheelchair Never achieved, wheelchair 31/31

Seizures A unique episode of prolonged

hyperthermic seizure at 10

months of life, treated with

valproate until the age of 3

years without new convulsions

� 16/31

MRI examination Cerebral atrophy Incomplete corpus callosum agenesis

and lipoma, delayed myelinisation

19/20

thin corpus callosum; ventriculomegaly;

thinning and abnormal signal of the

periventricular white matter; atrophy of the

inferior vermis with cortical atrophy, dilated

ventricles, prominent cisterns

Head circumference �1.5 SD �2 SD Microcephaly for 25/32

Stature +1 SD +2 SD Short stature for 12/14

Early onset of

severe obesity

Starting at 18 months of life,

weight >4 SD at 7 years

Starting at 6 months of life,

weight >5 SD at 4 years

0/33
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No dysmorphic features were observed except a short col-

umella. The neck was short with acanthosis nigricans.

Brain magnetic resonance imaging showed cerebral atro-

phy for patient II.1 (Fig. 1C, left panel), and partial agen-

esis of the corpus callosum with a lipoma as well as

delayed myelinization for patient II.2 (not shown). Multi-

ple ENT infections motivated amygdalectomy for both

patients. Endocrine and metabolic screening showed no

abnormalities except a raised parathyroid hormone

(PTH) (57 ng/L, N = 10–46) with normal calcemia

(2.57 mmol/L, N = 2.2–2.7) in II.2 who was supple-

mented with vitamin D. Array-CGH (SpectralChip CC4-

V0.3, Perkin Elmer, Waltham, Massachusetts, USA)

showed no pathologic copy number variant (CNV).

To identify the disease-causing mutation of this undi-

agnosed condition, we performed WES on peripheral

blood DNA from all family members. We first focused on

novel homozygous variants cosegregating with the disease

and corresponding to either nonsynonymous (NS) vari-

ants, splice acceptor and donor site mutations (SS), or

coding insertions/deletions (indels). We regarded variants

as novel if they were absent from all publically available
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Figure 1. The combination of two substitutions in AP4M1 and AZGP1 genes underlies the association of two distinct syndromes in both patients.

(A) Pedigree of the family. Shaded symbols indicate the affected individuals. (B) Photographs of patients II.1 (left) and II.2 (right). Legal

representative of the patients gave consent for the publication of these photographs. (C) Brain MRI (magnetic resonance imaging) of patient II.2

aged 4 years old (left panel) and a 4-year-old normal control girl (right panel): sagittal T1 (i) and sagittal T1 fat sat (ii), axial T2-weighted Fast Spin

Echo (FSE) images (iii) and coronal FLAIR-weighted FSE images (iv). Sagittal T1 (i) and sagittal T1 fat sat (ii) of the affected girl show a lipoma of

the posterior part of the corpus callosum (white arrows). Axial T2 (iii) show a moderate ventricular dilatation compared to age-matched normal

control. The coronal Fluid attenuation inversion recovery (FLAIR) (iv) of the affected girl shows delayed myelination of the white matter (arrow)

compared to age-matched normal control. (D) Sequence analysis in a patient (II.1) and an healthy parent (I.1) showing the c.1137+1G>T; the

c.595A>T, p.Asn199Tyr; and the c.12445G>A, p.Ala4149Thr variants in the AP4M1, AZGP1, and HERC2 genes, respectively. (E) Exon 14 skipping

in AP4M1 mRNA from patients’ fibroblasts compared to controls’. (F) Drawing showing the 7q22.1 region and the two mutated genes located

170 kb apart.
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data sets, including those of dbSNP138 (http://www.ncbi.

nih.gov/SNP), the 1000 Genomes Project (http://

browser.1000genomes.org/index.html), the NHLBI ESP

Exome Variant Server (http://evs.gs.washington.edu/EVS/),

and from in-house exome data containing information

for over 600 patient samples. Three candidate variants

fulfilled these criteria (Table S1) and were confirmed by

Sanger sequencing: a splice variant in the AP4M1 gene

(NM_004722.3: c.1137+1G>T), a misense variation in the

AZGP1 gene (NM_001185.3: c.595A>T, p.Asn199Tyr),

and a misense variation in exon 81 of HERC2

(NM_004667.4: c.12445G>A, p.Ala4149Thr) (Fig. 1D).

Filtering WES data for compound heterozygous muta-

tions or heterozygous “de novo” mutations shared by the

siblings did not provide any additional candidate variants.

The AP4M1 splice variant affects the donor splice site

of intron 14 (Fig. 1D) and was described previously in

five affected siblings from a consanguineous Moroccan

family with a highly similar neurological presentation but

no obesity was reported (Verkerk et al. 2009). As previ-

ously demonstrated by Verkerk and colleagues, this vari-

ant leads to skipping of exon 14 in the AP4M1 transcript

extracted from patients’ cultured skin fibroblast (Fig. 1E).

AP4M1 encodes one of the subunit (l) AP4, an evolu-

tionary conserved heterotetrameric complex consisting of

two large (a or b), a medium (l), and a small (r) adap-

tin. Mutations affecting all four subunits of AP4 (AP4M1,

AP4E1, AP4S1, and AP4B1) have been found to cause

autosomal recessive AP4 deficiency syndrome character-

ized by severe ID, microcephaly, progressive spastic para-

plegia, speech delay, and growth retardation (Table 1 and

Table S2) (Verkerk et al. 2009; Abou Jamra et al. 2011;

Blumkin et al. 2011; Moreno-De-Luca et al. 2011; Najma-

badi et al. 2011; Bauer et al. 2012; Philippe 2012; Kong

et al. 2013; Tuysuz et al. 2014; Abdollahpour et al. 2015).

The p.Ala4149Thr substitution in HERC2 affects an

absolutely conserved amino acid residue located within the

Regulator of Chromosome Condensation (RCC1) protein

domain and is predicted to be damaging by various in silico

tools (PolyPhen-2 score = 0.968, Sorting Intolerant from

Tolerant (SIFT) score = 0, and disease causing according

to MutationTaster, Charit�e University, Germany). The

HERC2 gene is located on 15q13.1 and encodes a large

ubiquitin ligase protein. A distinct HERC2 founder muta-

tion (c.1781C>T, p.Pro594Leu) has been previously associ-

ated in the Amish community with a disorder characterized

by mild developmental delay, autism spectrum disorder,

and Angelman-like features (MIM:615516) (Puffenberger

et al. 2012; Harlalka et al. 2013). Functional studies of the

p.Pro594Leu variant demonstrated that it induces protein

aggregation and decreased HERC2 abundance.

The third variant (c.595A>T, p.Asn199Tyr) affects the

AZGP1 gene, encoding the zinc-a2-glycoprotein (ZAG).

The c.595A>T variant does not affect a highly conserved

amino acid residue and its consequences on protein func-

tion is unclear (PolyPhen-2 score = 0.946, SIFT

score = 0.01, and polymorphism according to MutationT-

aster). AP4M1 and AZGP1 are located on chromosome

7q22.1, 170 kb aside from each other (Fig. 1F). To dis-

criminate between a hot spot and a founder mutation, we

performed genotyping analysis in all family members as

well as in two affected siblings from the Moroccan family

using microsatellite markers encompassing the AP4M1

locus. As shown in Table S3, both families share a com-

mon haplotype supporting the hypothesis of a founder

effect of the AP4M1 mutation. The c.595A>T AZGP1

mutation was not present in the previously described

Moroccan family (Table S3). These data strongly support

the hypothesis that the AZGP1 mutation arose more

recently in our family and occurs secondarily to the

AP4M1 mutation and on the same haplotype.

Our patients are severely retarded. They have some fea-

tures of the autistic spectrum but marked and prolonged

ocular contacts (Table 1). Although two AP4 patients

have been described with a shy and anxious character

(Abdollahpour et al. 2015), the majority of patients with

AP4 deficiency are described as shy, amicable, and calm

(Table 1) (Verkerk et al. 2009; Abou Jamra et al. 2011).

Collectively, these data predicted only a minor effect of

the p.Ala4149Thr HERC2 variant identified in our family

and demonstrated that the c.1137+1G>T AP4M1 variant

clearly accounts for the majority of neurological features

observed in our patients.

However, none of the 33 previously reported AP4 defi-

ciency cases are reported as obese, while obesity was

described as a feature of the two siblings’ condition as it

started very early in both (before 1 year of age, table and

sup clinical data). Similarly, no obesity has been reported

in HERC2-mutated patients. While we cannot exclude

that the HERC2 variant may contribute to the neurologi-

cal presentation of our cases, it is unlikely that it accounts

for the obesity. By contrast, ZAG is an adipokine secreted

by the adipose tissue and playing an important role in

the mobilization and utilization of stored lipids (Balaz

et al. 2014). Furthermore, several studies support the role

of the ZAG protein in the regulation of body weight in

both animal models and humans. Reduced plasmatic

ZAG levels have been observed in ob/ob mice and Azgp1

deficient mice showed increased body weight and

decreased adipocytic lipolysis (Rolli et al. 2007; Mracek

et al. 2010b). Moreover, oral administration of human

ZAG to ob/ob mice resulted in progressive loss of body

weight (Russell and Tisdale 2012). Linkage analyses

showed linkage disequilibrium mapping of genes influencing

human obesity, insulin resistance, and type 2 diabetes in

the 7q22.1 region and the rs4215 SNP in AZGP1 gene is
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associated with obesity in Chinese population (Sell et al.

1998; Li et al. 2003; Sim et al. 2011; Huang et al. 2012;

Sanghera and Blackett 2012; Zhu et al. 2012). Finally,

both lower serum concentrations of ZAG and significantly

lower ZAG expression in the adipose tissue and liver have

been observed in obese subjects (Selva et al. 2009; Mracek

et al. 2010a; Garrido-Sanchez et al. 2012; Balaz et al.

2014). Further investigations will be needed to evaluate

the ability of the mutant p.Asn199Tyr ZAG protein to

induce lipolysis, but these results make AZGP1 an excel-

lent candidate gene for very early onset obesity in humans

and may provide interesting clues for novel therapeutic

interventions in obese patients.

Altogether, our results suggest that the phenotype

observed in our patients results from the additional

effects of AP4M1 and AZGP1 mutations accounting for

the neurological signs on one hand and the precocious

morbid obesity on the other hand. Additional subtle

effects of the HERC2 variant on the neurological presen-

tation, particularly on the communicative skills, cannot

be excluded. The current report further demonstrates

how consanguinity could increase intrafamilial clustering

of multiple hereditary diseases and how WES has consid-

erably empowered our ability to detect such complex

events.

The term contiguous gene syndrome (CGS) has been

proposed in 1986 to explain the association of unrelated

clinical features due to the deletion of multiple genes

lying in close proximity to one another on a single chro-

mosome (Schmickel 1986). The phenotypes observed arise

as a result of the combination of the endophenotypes

from each deleted gene sensitive to haploinsufficiency.

While CGS is caused by a single mutational event (i.e., a

chromosomal deletion), the phenotype we describe is the

consequence of two independent mutational hits in two

genetically linked genes. The mode of inheritance we

describe is also different from a digenic inheritance that

refers to the alteration of two interacting genes to cause a

phenotype. While the final demonstration of our hypoth-

esis is awaiting the identification of AZPG1 mutations in

obese patients with normal neurodevelopment as well as

the demonstration of the impaired function of the mutant

p.Asn199Tyr ZAG protein, we propose to use the name

contiguous mutation syndrome to describe this complex

and clinically challenging phenotype caused by indepen-

dent mutations in genetically linked genes.
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