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Abstract

In adults 65 years or older, falls or other neuromotor dysfunctions are often framed as walking-

related declines in motor skill; the frequent occurrence of such decline in walking-related motor 

skill motivates the need for an improved understanding of the motor skill of walking. Simple gait 

measurements, such as speed, do not provide adequate information about the quality of the body 
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motion’s translation during walking. Gait measures from accelerometers can enrich measurements 

of walking and motor performance. This review article will categorize the aspects of the motor 

skill of walking and review how trunk-acceleration gait measures during walking can be mapped 

to motor skill aspects, satisfying a clinical need to understand how well accelerometer measures 

assess gait. We will clarify how to leverage more complicated acceleration measures to make 

accurate motor skill decline predictions, thus furthering fall research in older adults.

Index Terms—

Walking; motor control; motor skill; movement control; lower trunk acceleration; wearables; gait; 
clinical informatics; machine learning

I. Introduction

WALKING has been described as a skill that is acquired through motor learning [1]. The 

hallmark of a motor skill is a smooth and efficient movement that requires minimal attention 

[1]. Among older adults, the motor skill of walking varies widely [2]–[4] with declines in 

motor skill being among the most significant causes of falls [5], morbidity [6], and low 

quality of life [7]–[9]. Age-related decline in sensorimotor function further increases motor 

decline and may detrimentally change one’s gait [10].

Gait measures, such as gait speed, step length, and step temporal variability [7], [11], are 

used to characterize specific aspects of motor skill; however, these measures are somewhat 

limited. Some older adults may walk slowly with adapted optimal motor skill, while others 

may walk slowly with poor motor skill. Older adults with or without diagnosed disease may 

walk at clinically normal speeds with altered control [1], [12]. Other walking measures that 

are a better match to specific aspects of motor skill may prove to be useful when evaluating 

the gait of older adults.

The evaluation of the motor skill of walking considers multiple environmental factors. 

Evaluating walking in the clinic, while useful, is limited and may not capture the multiple 

dimensions of skills in everyday mobility. The recent emergence of wearable technology can 

capture numerous gait characteristics in various settings (e.g., clinical facilities, community 

settings, and in the home) [13]. Indeed, the amount of physical activity and human 

movement data collected from wearables is virtually unlimited; however, much of the data 

are not analyzed or used in a meaningful manner [14]. One way of making better use of this 

new data source is to develop metrics that match the motor skills of interest in older adults. 

This endeavor will require a collaborative effort between researchers in geriatrics of mobility 

and experts in engineering and data analytics.

One wearable technology that has gained prominence and has great potential to match with 

gait motor skill is accelerometry. Accelerometer assessment of gait is gaining clinical 

importance due to its simplicity and low cost. Acceleration gait measures (AGMs), derived 

or calculated from the raw values acquired with accelerometer wearables, capture body 

segments’ motion. Researchers have proposed that AGMs, particularly those derived from 

accelerations in the lower trunk, can be global indicators of the motor skill of walking [15]–
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[19]. AGMs are not only widely used [20] but can be proxies for center-of-mass dynamics 

[21], [22].

It is crucial to investigate motor skill in walking in relation to aging and illness. Trunk 

acceleration measurements have been used in the evaluation of normal aging [23], 

Parkinson’s disease [24], the impact of Alzheimer’s disease [25], and numerous other 

impacts on gait and balance [15], [26]. Previous studies found that older adults adopt more 

conservative gait patterns than younger adults, potentially to compensate for degeneration in 

physiological systems such as those associated with vision, sensation, and lower limb 

strength [23], [27]. These conservative gait patterns result in reduced walking velocities and 

accelerations, accompanied by reduced step length and increased step width [23].

Mapping AGMs of the lower-trunk can help clinical gait interpretation by presenting 

quantitative gait variables stratified by domains (of the motor skill of walking) with clinical 

relevance [26]. To understand the motor skill in older adults’ walking, literature that 

combines the use of trunk-AGMs are reviewed. The structure of this review paper is divided 

into six areas, as summarized in Figure 1: motor skill and walking definitions (Figure 1–A1; 

Section II), accelerometer data collection (Figure 1–B; Section III), signal pre-processing 

tasks (Figure 1–C; Section III), deriving and categorizing AGMs (Figure 1–D; Section III), 

mapping the aspects of the motor skill of walking to trunk-AGMs (Figure 1–A2 and D; 

Section IV), and the applications and future directions of AGMs and motor skill in the 

clinical space (Figure 1–E1 and E2; Section V).

II. Motor Skill of Walking

A. Walking

Walking is defined as gait with intent, specifically, the control of the body’s center of mass 

and the continuation of movement; it involves multiple aspects of motor skill, which we call 

“the motor skill of walking” [1], [28]. Thus, walking is considered a form of “skilled 

movement,” which refers to a movement that “requires minimal attention to the individual 

components of the action, is goal-oriented, and learned through practice that proceeds 

through defined stages” [1], [29]. In the most general sense, walking can be thought of as 

moving the body through space by repetitive stepping (i.e., gait cycle) while maintaining 

postural stability and balance (Figure 1–A1) [30]. Postural stability refers to the inter-

segmental coordination during locomotion, including the pelvic, torso, head control, and arm 

swing coordination. Balance is the ability to remain upright while walking. Thus, walking 

requires complex coordination to be successful [30].

The motor skill of walking is the set of learned coordinated actions that result in the body’s 

translation through space while maintaining postural control and balance [1], [28]. In various 

real-world environments (e.g., indoor, outdoor, crowded malls, uneven or littered ground), 

motor skill needs to be tractable. For example, this tractability can be defined for three 

general paths of walking: a straight path, a curved path, and an obstacle avoidance path 

(Figure A1) [1], [31]–[33]. In each case, changes in foot placement and postural adjustments 

are superimposed upon the gait cycle. Kinematic measurements during walking are used to 

quantify gait characteristics to evaluate the motor skill of walking. Several metrics can be 
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calculated from these characteristics, which focus on the particular aspects of the motor skill 

of walking. Aligning the right metrics to the particular aspect of walking’s motor skill is 

imperative in defining healthy walking and impairments.

B. Characteristics of Motor Skill

Motor skill, generally, refers to a motor task’s successful performance with consistency, 

efficiency, and the flexibility to adapt to different environmental constructs [34], [35]. The 

intact motor skill of walking produces a smooth and efficient translation of the body over the 

surface. A decline in motor skill often leads to coordination loss, haphazard timing of 

stepping, postural instability, and asymmetries in gait phases during walking. Each of these 

aspects of motor skill is important in evaluating locomotion towards defining impairments 

and guiding rehabilitation. Based on the literature search, we defined seven interrelated, 

critical characteristics of the performance outcome of the motor skill of walking:

• Smoothness is the consistent forward progression and regular, repeatable pattern 

of steps during walking [36]–[38]. Specifically, the smoothness of walking refers 

to the acceleration and deceleration of the trunk during walking. An interruption 

of the gait cycle events, such as heel strike and toe-off, can lead to uneven 

walking, characterized by an extended deceleration of the “the leading limb at 

heel strike and altered accelerations of the trunk to advance the trailing limb [1], 

[36], [37].”

• Efficiency is inversely related to the energy expenditure during walking; the 

higher the energy cost of walking, the lower the efficiency [1], [39].

• Automaticity is the reproducibility of walking motor skill with little attentional, 

central nervous system resources for guidance [1], [40].

• Adaptability is the set of accommodations to walking based on the response 

before or after the loss of postural balance (due to obstacles or biomechanical 

defects) [41].

• Variability (or regularity) is the change or fluctuation in walking from one stride 

to the next [42], [43]. Multiple metrics claim to measure gait variability, leading 

to many ambiguous definitions [13], [44]. While gait variability may include the 

discussion of stride-to-stride fluctuations [42], there are further definitions of 

variability, such as the change in other spatial parameters (e.g., foot clearance) 

and temporal parameters (e.g., duration of gait phases) from one gait cycle to the 

next [45].

• Stability in locomotion is a fundamental concept that relies on neural control 

given the system is mechanically unstable. Gait stability can be defined in 

multiple ways, from the simplest definition of the ability to walk without falling, 

to complex interactions of the neural controller with the mechanical system 

during the process of walking [41], [46], [47]. The latter includes concepts such 

as dynamic stability of the system [48]. In this review, we examine stability of 

walking by measuring variability in the temporal and spatial characteristics of the 

whole body and limbs. Please note that stability does not refer to dynamic/
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postural control, which is dependent on measures such as step width and step 

width variability [49], [50].

• Symmetry is the agreement between the actions and behavior of the lower limbs 

during walking [51], [52]. While smoothness and variability may include some 

aspects of symmetry, symmetry is more focused on the concordance of 

contralateral motion while walking [36], [53], [54].

The above characteristics can be evaluated in various locomotor tasks. For example, in 

straight-line walking, good motor skill is indicated by clinical measures of low gait 

variability (Figure A1). In contrast, for curved-path and obstacle-avoidance walking, good 

performance is indicated by clinical measures of high gait adaptability, particularly in step 

lengths and widths (Figure A1). Furthermore, in curved-path walking, a good motor skill can 

be indicated by high gait variability (Figure A1) [31]. Hallmarks of poor straight-path and 

curved-path walking are a decrease in walking speed, a decrease in stride length, a reduction 

in trunk movement, decreased strength and flexibility, and decreased balance (Figure A1) 

[55]. Signs of poor obstacle-avoidance walking are decreased swing velocity, rapid stepping 

to maintain balance, shorter step lengths, shorter obstacle-heel strike distance, and freezing/

stopping in motion (Figure A1).

Motor skill is defined here as an intended voluntary task or goal-oriented motor action for 

walking [1]. The performance of these motor actions can be influenced by the environment 

or perturbations, but the response to these changes are not considered a part of the motor 

skill of walking [56]. For example, a gait perturbation such as a slip or trip in walking causes 

a response to regain stability and return to pre-planned locomotion where motor skills are 

engaged [57], [58]. Perturbations can be caused by cognitive, visual, mechanical (e.g., 

environmental) means, or pathological gait impairments [57], [59]. Perturbations do not 

refer to long-term changes in the system or environment, in which longer-term changes in 

one’s motor skill need to be made. Typically, one adapts to a perturbation by implementing 

faster, shorter, and wider steps [57]. Positive recovery from perturbations is related to 

increased stability and decreased variability of the motor skill of walking [57]. High 

variability as a response to a perturbation can indicate a risk for a future fall [27], [57]. 

However, perturbation studies, which often induce perturbations, are often risky for 

participants, especially older adults, and thus, there is little discussion of perturbations in 

this review.

The motor skill of walking is affected by age- and disease-related metabolic, cardiovascular, 

musculoskeletal, and neurological changes. Thus the altered motor skill of walking can be a 

functional indication of the aging system decline or subtle disease states. For example, for 

those who have Parkinson’s, walking in a straight path is more manageable than walking on 

a curved path or through/over obstacles [60]. Even in the presence of pain-free, adequate 

muscle strength and endurance, the difficulty in navigating curved-path walking and obstacle 

avoidance illustrate the disease-related altered basal ganglia to cortical communication 

impact on the timing coordination and adaptability of walking necessary for these walking 

tasks [61], [62].
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III. Acceleration Gait Measures (AGMs)

Accelerometers are used to study age- and illness-related changes in walking [63]. 

Accelerometers measure the accelerations of objects in motion along three orthogonal axes, 

often generally aligned with anatomical coordinates (e.g., mediolateral (ML), superior-

inferior or vertical (V), and anterior-posterior (AP) [64]; these accelerations are time-series, 

and an example is shown in Figure 2. Inertial measurement units (IMUs) or wearable 

technologies that include an accelerometer component (e.g., fitness trackers) are preferred 

because the acceleration measurements can be used to validate the velocity of walking, 

distance walked, and the intensity of movement (Figure 1–B) [64], [65]. Since orientation is 

relative to gravity, accelerometers contribute to the identification of the objects’ rotation and 

orientation. These characteristics allow accelerometers to determine body postures [64].

In this review, we focus on accelerometer placement on the low-back region to approximate 

the body’s center of mass movement [66]. Research-grade accelerometers are often located 

at the level of the L3-L5 vertebrae and are most often used to measure spatial variability, 

smoothness, and symmetry of gait [36]. From a clinical perspective, low-back or lower-trunk 

placement succeeds because the trunk segment covers over half the body’s mass and is 

prioritized by the nervous system [17].

In this review, AGMs are grouped by the methodologies they are derived from 1) gait cycle 

event timings, 2) statistical features, 3) signal-frequency features, 4) time-frequency features, 

and 5) information-theoretic features (Figure 1–D). Examples of the AGMs for each 

category can be found in the Appendices (Section VIII).

The gait cycle is defined by the coordinated trajectories of each leg and each leg’s swing and 

stance phases during single support and double support [68]–[70]. Specific events of 

particular interest are heel contact, foot flat, heel off, mid-swing, and toe-off (see [71] for 

details on gait cycle parameterization) (Figure 2). Using AGMs to measure gait cycle 

characteristics often requires knowing these events and how often they occur (i.e., the 

number of strides). In the majority of studies, statistical summaries are performed on 

different gait cycle metrics over a time period [72]. Signal-frequency features are those 

acquired by the frequency spectra of the acceleration signals. Time-frequency features are 

features gathered through information from signal and time dimensions, using time-

frequency functions [73], such as short-time Fourier transform and wavelet transformations. 

While some of the time-frequency features in this section may fit into the other AGM 

categories, they are specifically grouped here by how they are extracted from the 

acceleration signals. Information-theoretic features measure the amount of variability and 

uncertainty in the information context of a signal [16], [74]. Many of these features can be 

measured for each direction or a gait event (i.e., a stride).

In Table I, we define each of the categories and compare/contrast the differences between 

them. For the following attributes, we compare the strengths and weaknesses across AGM 

categories: 1) “Ease of calculation” refers to the difficulty of calculation of the AGMs, 2) 

“Directly applicable to clinical problems” refers to how contextually relevant the AGMs are 

without further explanation or back-calculation, 3) “Popular across literature” is how 
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prevalent these set of AGMs are, 4) “Reduce complexity and dimensionality” is the extent to 

which AGMs capture a wide amount of information, and 5) “Tied to multiple aspects of 

walking” refers to how well the AGMs relate to walking elements (Table I).

IV. AGMs in Action

A. Motor Skill and AGMs

Understanding the use of AGMs as proxies for the aspects of the motor skill of walking will 

provide better clinical features for models that can potentially predict the motor skill of 

walking. Clinically, mapping motor skill characteristics (Section II-B) to categories of 

AGMs (Table I) may be capable of providing relevant and accurate measurements. In Table 

II, we summarized a selection of references for each of the aspects of motor skill–AGM 

mappings. By doing so, we also identify the existing gap by seeing how researchers have 

combined multiple features extracted from gait accelerometry signals into a derived AGM 

that could potentially be a marker for walking-related changes in physical function.

1) Smoothness: Walking smoothness is a high indicator of fall-risk in older adults. The 

most common way to measure smoothness is through root mean square [89]–[93], indices of 

harmonicity, or harmonic ratios (estimated for each of the three directions as the index of 

harmonicity) [36], [94]–[96]. Larger harmonic ratios can indicate a smoother gait pattern. In 

contrast, a lower ratio is found in older adults and older adults with unsteady gaits [16], [36], 

[80], [90], [93], [97]. During most modes of walking, the most significant impact on the 

harmonic ratio, due to increased age, is in the ML direction. Another way to measure 

smoothness is to measure the jerk-cost function from the gait movement [38], [98]. Lower 

jerk indicates higher smoothness in gait and higher motor control [38]. Power spectrum 

entropy of the acceleration signals can be used to differentiate persons likely to fall and 

persons not likely to fall, by their gait [105].

2) Efficiency: Efficiency, the inverse of energy expenditure, can also be used to assess 

the gait and evaluate balance in older adults [39], [127]. Energy expenditure was measured 

along with the center of mass accelerations in all forms of walking to come up with 

guidelines on how older adults can improve their walking [104]. Another way to measure 

efficiency is through measuring periodicity, precisely constant acceleration periods and 

changes [79], [86], [107]–[109]. While these AGMs are useful in measuring efficiency, 

validation methods such as measuring the oxygen rate during walking are often used [127], 

[128].

3) Automaticity: Automaticity often goes hand in hand with variability/regularity [40]. 

Many of the features that measure inter-step or inter-stride variability in walking can be 

indicative of automaticity. For instance, the coefficient of variation of stride velocity, 

coefficient of variations of the axial directions of accelerations, and swing time variability 

are measures of automaticity [1], [102], [103]. Other useful AGMs include the periodicity of 

accelerations [80], [90], [93], [99]–[101], and measures of efficiency [104]. For example, in 

patients who freeze or momentarily stop walking, a sign of Parkinson’s disease, these 

measures are particularly useful [129]–[132]. Moreover, automaticity becomes an important 
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motor skill to investigate when studying cognitive impairment or load within aging adults 

[133].

4) Adaptability: Adaptability is a distinct aspect of the motor skill of walking, but it is 

very closely tied to the concepts of stability and variability/regularity. Adaptability is 

influenced by stability since people try to increase their stability in the ML direction to 

maintain an upright posture. Similarly, adaptability can be affected by variability/regularity, 

since people adapt back into their regular gait pattern when they are perturbed [120]. 

Statistical features of gait cycle events and the harmonic ratio can also be used to measure 

gait adaptability [16]. In obstacle avoidance studies [117]–[119], gait pattern adaptations 

were measured via step length variability. Step length variability is measured in the 

following studies: [90], [99], [100], [107], [108], [110]–[116]. The common measures of gait 

adaptability come from the use of Lyapunov exponents and entropy measures; while both 

variability and stability may use these measures, adaptability can be measured by examining 

the “continuum” of Lyapunov exponent and entropy values [134]–[136].

5) Variability: Typically, gait variability is calculated through simple measures (and by 

simple methods), such as step or stride length (or duration) [77]. Because accelerometers can 

collect massive amounts of data over time, they are especially useful in assessing stride-to-

stride or step-to-step variability of walking [76]. Some common AGMs describing 

variability presented are:

• Standard deviation and coefficient of variation of the gait cycle events can 

directly measure variability [76].

• The median of the modal frequencies for the V, ML, and AP directions and the 

strength of the relative fluctuations in the phase progression can determine step/

stride frequency [66].

• The autocorrelation coefficient of the signal can capture inter-stride variability 

[19], [76].

• The peak values of the first and second dominant periods of the autocorrelation 

function, simple statistical features, individual curve estimates, and adaptive peak 

thresholds can determine step/stride variability [43], [82], [83].

• Root mean square of the acceleration signal can be a measure of variability. For 

example, Rispens et al. define “movement intensity” as the root mean square of 

the acceleration [66], [79]–[81].

• Entropy, entropy rate, and Lyapunov exponents may be correlated with gait 

variability (as well as adaptability) [13], [16], [106], [137].

While many gait cycle events are used for variability, step duration is a much better measure 

than step length when investigating the loss of balance in older adults [23], [26], [75], [78]. 

Statistical summaries of step length, in conjunction with a low root mean square value, often 

indicate a typical gait pattern during walking. On the other hand, the autocorrelation 

coefficient of the signal and other signal-frequency features can better pick up characteristics 

of overall walking patterns. Finally, information-theoretic features can provide some insight 
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into variability if other motor skill aspects are also being investigated [16]; for example, the 

regularity of a time series can be captured via entropy or entropic features [85].

Some specific examples in the literature have shown that measuring variability via AGMs is 

helpful to differentiate between classes of older adults. Older adults with neuromotor 

difficulties have one or more of the following: lower step/stride variability, lower step/stride 

frequency, and higher movement intensity in all forms of walking [23], [43]. Linear (mean 

velocity, the peak-to-peak amplitude of accelerations, root mean square, and frequency 

dispersion) and non-linear AGMs (Lyapunov exponent and entropy) can be used to measure 

the gait variability in patients with multiple sclerosis in lieu of simple footfall data [84]. Gait 

variability AGMs can be part of a clinical screening method for the locomotive syndrome 

since AGMs provide a complete, accurate, and personalized measurement of locomotive 

disorder in older patients with or without the musculoskeletal disease [138]. Gait 

irregularities and variability can also be measured to create a reference database, investigate 

outcomes in patients with gait disorders, and study rehabilitation for those with limited knee 

function [90], [99], [107], [108]. Similarly, other articles directly assess gait variability 

through trunk AGMs [91], [116], [139], [140].

6) Stability: To measure how people maintain gait stability, many researchers test a 

strategy of changing walking speeds or measuring accelerations. However, raw trunk 

acceleration data could enrich the measure of stability. Vertical accelerations can show the 

moments when toe-offs and heel strikes occur - decreased moments and low acceleration at 

heel contact, foot flat, mid-swing, and initial push-off are more prevalent in older adults 

[46], [81], [82]. High fractal values (from the maximum-likelihood-estimate analyses of 

accelerations) can indicate instability [27]. Additionally, measures such as root mean square 

[66], [79]–[81], standard deviations, and coefficient of variations of the acceleration signals 

can provide a better depiction of stability.

Non-linear aspects of stability can be described through dynamical systems analyses. Local 

dynamic stability is measured with the maximal Lyapunov exponent. Dynamical system 

analysis has been used to evaluate gait stability and falling risk [87]. A high local dynamic 

stability is indicative of good motor control and dynamically-stable gait. Another non-linear 

measure of stability are that has been used is the step stability index [43], [141]. The step 

stability index is a function of standard deviations of the intrinsic mode functions (derived 

from acceleration signals from the vertical direction) [43], [141]. The harmonic ratio, while 

it is often used to quantify smoothness or variability, can also be correlated with stability 

[142].

7) Symmetry: Similar to variability, fractal dynamics [76] and autocorrelation coefficient 

of the signal [76], the mean, standard deviation, coefficient of variation, and correlation of 

the gait cycle events [76], [79], [91], [111], [123], [124] are used to determine symmetry.

Symmetry can be derived from the autocorrelation function of the vertical acceleration 

signal [82], [101], [121]. There are more metrics of symmetry [51]: step asymmetry [122], 

symmetry ratio, symmetry index, gait asymmetry, and symmetry angle using step length, 
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swing time, stance time, double support time, and an intra-limb ratio of swing time to stance 

time.

B. Uses of Motor Skill–AGM Mapping for Gait-Related Outcomes

Mapping AGMs to motor skill can aid in differentiating gait-related outcomes through 

machine or statistical learning. In machine learning, there are two tasks: supervised learning 

and unsupervised learning. In the field of motor skill research, the goal of supervised 

learning is to learn a function from labeled data and approximate the relationship between 

the observable exposure and outcome variables in the data; in unsupervised learning, 

walking tasks, other gait-related, or motor decline outcomes are not labeled, and the goal is 

to deduce the relationships within the data.

Among the paradigms of classifiers for recognizing gait-related outcomes, regression, Naïve 

Bayes, support vector machines, decision trees, k-nearest neighbors, Hidden Markov 

Models, neural networks, and deep learning are the most popular. Typically, the pipeline for 

machine learning with acceleration signals follows the following steps: 1) pre-process the 

signals, 2) derive AGMs, 3) label the outcomes (if performing supervised learning), 4) use 

single or a combination of classifiers, and 5) applying models to test data to predict 

probabilities of class assignments.

However, with the use of machine learning and AGMs, it can be challenging to determine 

which selected features (AGMs) are less significant than others. Mechanistically, there are 

feature selection methods, such as forward or backward or recursive methods. However, it is 

more clinically useful to pick out relevant AGMs that fit the clinical problem’s context.

V. Discussion and Future Directions

The literature is overpopulated with multiple AGMs, and very few researchers can say they 

measure specific aspects of motor skill. For example, there appear to be several conceptual 

and data-driven clinical models that utilize AGMs for fall-risk assessment in various ways 

(Figures 3–4 from [13]). Thus, there are several issues to be addressed to move the field of 

gait and rehabilitation forward.

A. Selection and Use of AGMs

Extracting AGMs from raw acceleration values is a natural step in biomedical informatics 

research. With the increased use of artificial intelligence, feature selection and specification 

are necessary for scientists to build statistical models to make predictions in the context of 

their problem. Clinical researchers in rehabilitation and physical-activity sciences may find 

utility and insight from conducting more studies in observational and clinical trials with 

AGMs to further the field.

However, the current selection and use of AGMs in research have limited value because of a 

lack of gold-standard information from acceleration measurements. Only a few studies have 

compared various AGMs within the same sample or dataset, let alone in different study 

designs. Moreover, there is a discrepancy in how AGMs are used between age, sex, gender, 

and disease groups. Further, previous research is limited to comparing AGMs to common 
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simple gait measurements [143]. Collectively, research has a minimal consensus on the 

validity of using many of these AGMs.

There is little consensus on the most useful AGMs for analyzing locomotion in general, 

particularly with an accelerometer located on the lower back. There are very few studies that 

examine more than one AGM from one dataset [144]. Most of the current single AGMs 

studies only differentiate generalized populations (e.g., older adults vs. young adults) as 

opposed to more specific groups (e.g., older adults who are more prone to falling vs. older 

non-fallers). To improve the accuracy of the AGMs for detection of gait impairment, future 

researchers need to combine multiple AGMs through modeling [144]. Analyzing AGMS 

collected pre- and post-intervention can examine discriminative ability, responsiveness and 

construct validity for various AGMs [144], [145].

B. Contribution of AGMs to Gait & Motor Skill Research

The contribution potential of a critical analysis of AGMs and the aspects of the motor skill 

to which they are mapped is substantial. As iterated in the introduction, gait impairments and 

“poor motor” skill of walking are observed across various morbidities. These gait 

impairments can have significant consequences on the quality of life of individuals. In the 

clinical space, gait and the motor skill of walking is often evaluated using observational 

scales and performance-based tests, such as the Timed Up and Go test. This evaluation can 

only be done by trained health professionals and may not prevent future gait-related 

incidents, such as falls. However, the addition of accelerometers and AGMs can provide a 

more continuous assessment of a person’s gait and walking skill. For example, Salarian et al. 
developed a Timed Up and Go test using from five to seven accelerometer sensors; which 

had good psychometric properties at a pilot study for Parkinson’s patients; main features that 

demonstrated association with the Unified Parkinson’s disease rating scale, extracted from 

instrumented Timed Up and Go are step counting, seconds, peak arm velocity, cadence, 

stride and turning and among the sub-elements of the instrumented Timed Up and Go test, 

gait, turning, and turn-to-sit were the most reliable [146].

C. Issues in Validity and Interpretation of AGMs

There are multiple construct validity issues with the use of AGMs, because of the various 

methods for the derivation of an AGM from gait accelerometry and no known means to 

compare across the derived AGMs. It is not certain if various AGMs represent the same 

findings of the motor skill of walking, or if differences in the ability of various AGMs to 

distinguish the level of physical functioning in daily life.

In the studies that we have identified that investigate the impact of aging and illness on 

specific walking tasks, older adults adopt more conservative and compensatory gait patterns 

[27]. Older adults typically have reduced walking velocity and trunk-accelerations 

accompanied by reduced step length; these reduced accelerations are possibly induced to 

compensate for degeneration in vision, sensation, and lower-limb strength [23]. Notably, in 

straight path walking and curved-path walking, older adults have increased sub-movements, 

deceleration, and hesitancy [38].
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Furthermore, few studies have researched how multiple AGMs within the same sample can 

effectively improve a statistical model. Several investigators report individually defined 

indexes of the acceleration signal, derived by proprietary algorithm methods [147], [148]. 

Little replication of AGMs in the same target population exists, including by the same 

investigator in subsequent studies of a similar sample. As a result, the clinical investigator 

has little to base an informed decision or intervention about the usefulness of derived AGMs 

to describe, detect, and monitor walking abnormalities. Therefore, there is an obligation for 

further study into comparing AGMs in a more standardized way.

D. Addressing Barriers to Future Use

Without reliable and accessible tools within an established signal pre-processing pipeline, 

the use of AGMs in research cannot be feasible. Acceleration signal pre-processing can be a 

time-consuming task and can get in the way of diagnosing or analyzing a clinical problem. 

The assessment of gait in the clinical space lacks maturity with the use of these signal pre-

processing tasks.

This paper does not address the deeper issues of data collection or signal pre-processing. 

Data collection involves technical issues [149], such as sampling rates used, frequency 

response requirements for different tasks, placement and alignment of the accelerometer on 

the trunk [26], and how they are attached for long-term and short-term use. To derive AGMs, 

there are several pre-processing steps that can be used to prepare the signal data [86], [150], 

such as filtering or extracting noise from the signals [151]–[153], event detection and 

labeling [66], [71], [154]–[156], wavelet analysis and decomposition [68], [157], [158], 

Fourier or Laplace transformations [159], integration [150], [160], [161], tilt correction [86], 

nonlinear techniques [158], statistical calculations [67], [162]. A non-exhaustive list of 

signal pre-processing tasks can be found in Figure 1–C.

Computing languages, packages, and toolboxes will come and go, but there will always be a 

constant need for technological tools that are more accessible to researchers of all levels. 

Some of the attributes any tool processing the acceleration signal to AGMs should have are 

the ability to visualize accelerations, packages that can filter out signal noise, and the ability 

to extract signal features into a data structure that can later be used in statistical modeling. 

While MATLAB, Python, and the other current tools have all of these pieces, tools with 

greater ease of use and reduced programming requirements could make these measures more 

available to a broader audience of researchers and clinicians.

E. Future State of AGM Use

In Figure 3, the future of this field and how gait accelerometry research can be ameliorated 

through the use of AGMs, not just in the clinical space but also in the hands of patients and 

consumers. For instance, AGMs combined with electronic health and medical records may 

be used to identify those with a high risk of falls [163]. Since wearables are increasingly 

reducing in size, they can be used as a means to provide digital medicine with a harmonious 

set of biomarkers (risk, diagnostic, monitoring, prognostic, etc.) [164].
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VI. Conclusion

The use of AGMs is increasing due to the ease of use and low cost. The ultimate goal is to 

develop screening measures for a walking-related physical-function decline. Also, AGMs 

could inform intervention strategy and monitor outcomes. However, currently, there is a 

disparity in the literature reviewing the different mapping of AGMs to aspects of motor skill. 

In this review, we characterized the three different modes of walking, defined seven motor 

skill aspects of walking, categorized five broad categories of AGMs, and discussed the 

typical AGMs used for the aspects of the motor skill of walking. This review will elucidate 

how AGMs supplement simple measures and improve our understanding of how AGMs can 

be used to investigate locomotion. Linking motor skills of walking to AGM metrics will 

prove useful in quantifying declines due to aging and other neuromotor factors. In 

application, AGMs have been used to detect differences and changes in motor performance 

due to learning/expertise, or task and environment manipulations. In conclusion, AGMs are 

a promising component of motor skill research, which can help older adults’ quality of life 

and reduce the strain on healthcare.
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Fig. 1. 
An overview of the pipeline mapping AGMs to motor skills. From top to bottom, (A1) 

defining common real-world walking tasks which can be impacted by normal aging, illness, 

or injury that are then mapped to (A2) seven characteristics of the motor skill of walking 

performance. (B) Accelerometer data collection results in raw acceleration values, which (C) 

undergo signal pre-processing before deriving AGMs. (D) These AGMs are grouped into 

categories that can then be matched to motor skills of walking. The red arrows show this 

review’s main contribution, where AGMs and motor skills can be mapped to each other. (E1 

and E2) Subsequently, this mapping has various applications in clinical fields.
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Fig. 2. 
Example of acceleration signals (ML, AP, and V) from an accelerometer placed on the lower 

back. A full gait cycle of the right foot (starting from a heel strike) is shaded (data and gait 

extraction done by Dasgupta et al. [67]).
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Fig. 3. 
Comparison between the current and future state of AGM use in research.
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