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We examine driven dislocation assemblies and show that they can exhibit a set of dynamical phases
remarkably similar to those of driven systems with quenched disorder such as vortices in superconductors,
magnetic domain walls, and charge density wave materials. These phases include pinned-jammed,
fluctuating, and dynamically ordered states, and each produces distinct dislocation patterns as well as
specific features in the noise fluctuations and transport properties. Our work suggests that many of the
results established for systems with quenched disorder undergoing plastic depinning transitions can be
applied to dislocation systems, providing a new approach for understanding pattern formation and
dynamics in these systems.

T
here are numerous examples of systems of collectively interacting particles that, when driven externally,
depin and undergo dynamical pattern formation and/or dynamic phase transitions, such as a transition
from a fluctuating to a nonfluctuating state. In these systems, which include domain walls, driven vortices in

type-II superconductors1–6, sliding charge density waves7, and driven Wigner crystals8, fluctuating and intermit-
tent dynamics arise just above a plastic depinning transition when an applied external force is increased from zero.
For higher drives the particles dynamically order into patterns such as anisotropic crystals or moving smectic
phases with different types of fluctuation statistics9–13. Dislocations in materials are known to undergo a transition
at the onset of irreversibility or yielding that has similarities to plastic depinning14,15; however, it is not known
whether driven dislocations exhibit the general features associated with plastic depinning transitions. Establishing
such a connection could potentially open a new understanding of driven dislocations. The potential connection
between moving dislocations and plastic depinning models has been inspired by recent numerical studies for
scaling near the yielding transition which fit to a mean field model for interface type depinning16.

It is known that organized dislocation structures within individual crystals, such as walls or tangles, can become
more refined and better defined as stress or strain increases. Two-dimensional (2D) and three-dimensional (3D)
dislocation dynamics simulations based on linear elasticity theory predict self-organization of dislocation assem-
blies into varying configurations, such as pileups near the yielding or depinning transition14,15,17, and 2D mobile
walls18,19 or 3D slip bands20,21 under an external drive. Below a critical stress where dislocations show no net
motion, the system is considered jammed or pinned22–24, while intermittent or strongly fluctuating behavior with
jerky or avalanche-like motion of the type proposed to be a signature of critical dynamics18,19,26,27 occurs above the
critical stress18,25. Here we demonstrate that driven dislocation assemblies exhibit a set of nonequilibrium phases
similar to those observed for collectively interacting particle systems undergoing plastic depinning, including
pattern organization in the pinned state, a strongly fluctuating intermittent phase with coexisting pinned and
moving particles1,3,10,28,29, and at higher drive, when the substrate effectiveness is reduced, a phase in which the
dislocations organize into moving wall structures2–4,6,7,11–13. The onsets of these different dynamical regimes are
correlated with pronounced changes in the transport curves1,5, noise properties3,30,31, and spatial structures4,6,9,
and can be observed via changes in the dislocation structure, mobility, velocity distribution, and velocity noise.
Our work implies that many of the established results obtained for driven vortex and other systems can be used to
understand dislocation dynamics.

Simulation
We utilize a discrete dislocation dynamics model for a 2D cross section of a sample with periodic boundary
conditions containing N5480 straight edge dislocations that glide along parallel slip planes. We also tested
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systems with smaller values of N. This model was previously shown
to capture the behavior observed in stressed anisotropic materials,
such as intermittent flow near the onset of motion18,22–24. The peri-
odic boundary conditions are of the same type that have been used
previously to study intermittent dislocation flow in viscoplastic
deformation18, dislocation jamming and Andrade creep19, and
power-law relaxation of dislocation systems32. An equal number of
positive and negative dislocations are randomly placed in the sample
and move in the positive or negative x-direction depending on the
sign of their Burgers vector b. Out-of-glide plane motion is forbid-
den. To prevent in-plane pile-ups, we place at most one dislocation
per plane. Rather than imposing an annihilation rule15,18,19, we
enforce that two adjacent glide planes must be separated by at least
dy, where dy is on the order of the Burgers vector of the
dislocations22–24,32.

The dislocations interact via a long-range anisotropic stress field
that is repulsive or attractive depending on their sign and relative
angle. We utilize a replicated image model to efficiently simulate a
large number of dislocations over long times33. Within the simulation
volume, all dislocations are subject to the stress fields of all surround-
ing dislocations regardless of their position. To best make the con-
nection with particle systems, nucleation of dislocations during
loading is suppressed. Under an external applied stress text, disloca-
tion i moves along x in its assigned plane according to an

overdamped equation of motion given by g
dxi

dt
~bi

PN
j=i tint rj{ri

� �
{text

� �
where xi is the x coordinate of dislocation

i at point ri5(xi, yi) with Burgers vector value bi, g is the effective
friction, and tint(rj2ri) is the long-range shear stress on dislocation i
generated by dislocation j. Here our time units are defined such that
one simulation time step dt51026. The external load on a dislocation
is proportional to the stress, Fd5btext. For r5(x, y)5(xj, yj)2(xi, yi),
tint(rj2ri) is tint(r)5bm[x(x22y2)]/[2p(12n)(x21y2)2] where m is the
shear modulus and n is the Poisson’s ratio. The length of the square
simulation cell L is set to unity and the simulation volume remains
fixed throughout loading. In our normalized units, mb/2(12n)51
and g51. We initially relax the system without an applied external
drive, and then apply the external drive with small enough stress rate
and sufficiently long waiting times twait between increments to avoid
transient effects. We measure the average absolute value of the dis-

location velocities vj jh i~
XN

i~1
vij jh i, where vi5dxi/dt, as a func-

tion of the stress. This is analogous to the voltage versus applied
current curve for superconducting vortices, and is the same as the
dislocation collective speed defined in Refs 16,22.

To characterize the dislocation content and charge of the wall
structures, we use the pair-correlation distribution dx5jxi2xjj, the
x-axis separation between two dislocations. The fraction of disloca-
tion pairs with dx,w is Pw~ndxvw=ntot , where w is the pre-assigned
maximum wall width, ntot is the total number of pairs, and ndxvw is
the number of pairs with dx,w. We set w50.05, although other
reasonable values, such as w50.02, give qualitatively similar results.
To distinguish unipolar from dipolar walls, we discriminate between
those pairs of like and unlike sign that lie within the critical wall
width. We measure B5P11,222P12, where P11,22 (P12) is the
fraction of pairs of like (unlike) sign. B is directly related to the net
Burgers vector around one dislocation within the wall width w and
P12 indicates the fraction of dipoles in the system. When a dipolar
wall forms, BR0 since P11,22<P12, while when a unipolar wall
forms, P1250 and B5P11,22.

Results and Discussion
As the randomly positioned dislocations relax under zero applied
stress, they form a locked configuration determined by the long-
range stress fields they collectively produce. The relaxed arrange-
ment shown in Fig. 1(a) is disordered and contains no percolating

walls. The internal stresses generated by this spatially random
arrangement are high and are distributed uniformly across the
volume.

For loads 0,Fd,2.0, the dislocation pattern slowly changes after
each load increment but Æjvjæ goes to zero in the long time limit,
indicating that the system is in the jammed phase below the critical
yield22–24. We treat the configuration as stable when Æjvjæ,vt, where
we take the threshold value vt50.01, 10 times smaller than the vt used
in previous work22. Under these low drives, any dislocation motion
merely causes the dislocations to lock into another immobilized
pattern. Figure 1(b) illustrates a typical locked dislocation configura-
tion for loads just below critical yield (i.e., Fd,Fc), where there is a
dipolar wall comprised of a disordered arrangement of positive and
negative dislocations that cannot move past one another. This dense
bipolar structure effectively screens the dislocation-dislocation inter-
actions. It has a high but localized internal stress field, with large
stress concentrations in the vicinity of the wall. Such walls are ana-
logous to the model of a ‘‘polarized’’ wall34,35, with dislocations of
predominantly one sign on one side of the wall and the other sign on
the other side. They are thought to be responsible for the observed
hysteresis in unloading or the Bauschinger effect in subsequent
reverse loadings36,37. Observations of polarized walls have also been
reported in crystals deformed to large strains38–40.

Just above yielding, the dipolar wall structure breaks down as
shown in Fig. 1(c) and the system enters a state characterized by
strong fluctuations in the dislocation positions. The dipolar walls
repeatedly break up and reform, while the remaining wall fragments
become smaller at higher drives and show continual change. The
fluctuating state persists up to Fd55.0, when a new type of dynamic
pattern appears where the dislocations form continuously changing
unipolar walls composed of only one type of dislocation, either nega-
tive or positive, as shown in Fig. 1(d). These walls can be identified as
disordered tilt walls, which are periodic arrays of edge dislocations
that accommodate a tilt misorientation between two adjoining crys-
tals. The development of low-misoriented tilt walls is suspected to be
a precursor for the eventual formation of subgrains in heavily

Figure 1 | Stress map snapshots of the sample. The colormap scale is the

same in all panels. Red (blue): large negative (positive) stress. (a) The initial

dislocation positions at zero load. (b) Just before yielding, a single bipolar

wall forms from dislocation pile-ups. (c) Above yielding at Fd53.6,

intermittent structures form. (d) At Fd58.0 dynamically ordered polarized

walls occur.
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deformed crystals41,42. In our system, when unipolar walls form, the
internal stress decreases in intensity. The alternating positive and
negative stress pattern that develops along the wall in Fig. 1(d) is
consistent with the theoretical prediction for an infinite array of
perfectly aligned, like-signed edge dislocations43 from linear elasticity
theory.

In Fig. 2 we show that the changes in the dislocation structure
produce signatures in Æjvjæ versus Fd for the system in Fig. 1. The
upper curve in Fig. 2(b) shows the simple linear dependence of Æjvjæ
on Fd expected for a single dislocation. We refer to this dashed line as
the Ohmic limit. For the interacting system, Æjvjæ is zero below yield-
ing for 0.0,Fd,2.0, increases nonlinearly for 2.0#Fd,7.5, and then
becomes linear again for Fd$7.5. Near yielding, we find a scaling of
the velocity-force curve V/ (Fd2Fc)b, where Fc is the yielding point
and b51. We note that recent simulations of driven dislocations in
2D models have studied the scaling near yield much more exactly and
find b51.0, consistent with a mean field depinning model16.

Figure 2(a) characterizes the ordering dynamics as a function of
Fd. Since the system is initialized in a random state containing no
walls, P12<0 at Fd50, but as the load increases, P12 reaches a
maximum just below the yielding point as shown in Fig. 1(b) where
a large dipolar wall forms. Above yielding, P12 decreases in the
fluctuating regime when the walls break up, and gradually drops to
zero in the high-driving region where the unipolar walls form. To
identify the unipolar dislocation walls, we measure P11,22, which
rises for Fd.5.0 in Fig. 2(a). Also shown in Fig. 2(a) is the net Burgers
vector of the walls, indicating that for Fd.5.0 the walls are indeed
unipolar and contain either exclusively positive or negative disloca-
tions. At high Fd in the reordered regime, the unipolar wall structures
are in motion as indicated by the finite value of Æjvjæ in Fig. 2(b). The
correlated nature of this motion is indicated by the fact that Æjvjæ
approaches the dashed Ohmic limit curve more closely as Fd

increases. When the dislocation motion is incoherent, as in the fluc-
tuating phase, the deviation between Æjvjæ and the Ohmic limit curve
is much larger due to the plastic distortions that occur which tear
apart the incipient domain walls. Samples with smaller N have the
same general features in P12, P11,22, and B, as shown in Fig. 3.
Here, as the density of dislocations increases, the onset of dislocation
motion shifts to higher values of Fd due to the more pronounced

dislocation-dislocation interactions which enhance the jamming of
the dislocations. The features in the curves also become better
resolved as N increases.

The dynamics illustrated in Figs. 1 and 2 are remarkably similar to
those observed in driven systems with quenched disorder. For
example, for vortex matter as a function of external drive, there is
a low drive pinned phase, a strongly fluctuating phase with a disor-
dered vortex structure, and a highly driven phase where dynamical
pattern formation occurs2,3,13. The vortex velocity-force curves also
show the same features: the fluctuating phase is correlated with a
nonlinear region, while the velocity increases linearly with drive in
the dynamically reordered phase1,3,5,10.

The dynamical phases in the vortex system produce changes in the
velocity noise fluctuations across different regimes. Just above depin-
ning in the fluctuating regime, there is a strong 1/fa noise signal1,3

associated with a bimodal velocity distribution from coexisting
pinned and moving vortices3,10,44. At the onset of dynamical ordering
the noise power S0 drops and narrow band noise features appear3,30.
For the dislocation system, in Fig. 4(a) we plot the instantaneous
velocity distribution P(jvj) in the fluctuating phase at Fd53.2.
Here, a portion of the dislocations are immobilized in pileups while
other dislocations have broken out of pileups and are mobile. A
similar velocity distribution appears in the fluctuating phase for

Figure 2 | (a) P12 (blue squares), the fraction of dipolar walls, vs Fd has a

peak just below yielding. P22,11 (black circles), the fraction of uni-polar

walls, passes through a plateau when the polarized wall state forms.

B (red triangles) is a measure of the net Burgers vector in the walls.

(b) The average absolute value of the dislocation velocity Æ | v | æ
(solid lower curve) vs Fd. The upper dashed curve shows Æ | v | æ for non-

interacting dislocations. Points a, b, c, and d indicate the Fd values

illustrated in Fig. 1.

Figure 3 | P12 (blue squares), P22,11 (black circles), and B (red

triangles) vs Fd for samples with different numbers of dislocations

N 5 (a) 48, (b) 96, (c) 144, (d) 192, (e) 240, and (f) 360. The same three

regimes, pinned, fluctuating, and reordered, occur for all values of N, but

shift to different values of Fd as N changes.

www.nature.com/scientificreports
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driven vortices and colloids. The power spectrum S(f) in Fig. 4(b) of
the time series of jvj has a 1/f1.5 signal in this regime, in good agree-
ment with driven vortex studies. For Fd58.0 in the dynamically
ordered phase, we plot P(jvj) in Fig. 4(c), and in Fig. 4(d) we show
that S(f) has a narrow band feature with a characteristic frequency
generated by the formation of ordered unipolar walls. In Fig. 5(a) the
noise power S0 averaged over a fixed low frequency window peaks in
the middle of the fluctuating disordered phase and then decreases
upon approaching the dynamically ordered phase of unipolar walls.
The 1/f1.5 noise signal is obtained from the low frequency range of the
spectrum; for higher frequencies, the exponent is closer to 1.75 to 2.0.
In recent studies of this same system16, S(f) above yield in the higher
frequency regime had the form 1/f2.

By conducting a series of simulations for varied N and analyzing
the ordering dynamics, we construct the dynamic phase diagram
shown in Fig. 5(b). The lower curve indicates the yielding transition
from the low drive jammed or pinned phase of dipolar walls to the

fluctuating disordered phase, as determined by using the dislocation
velocity curves. The onset of the fluctuating regime is marked as the
point at which the dislocation velocity rises above zero. The onset of
the dynamically ordered phase is defined as the force at which the
unipolar wall structures start to form, measured as the point at which
the fraction of walls reaches 0.4, and is plotted in the upper curve. As
N increases, the yielding point rises to higher Fd since the dislocations
have a more difficult time breaking through the dipolar walls that
form. The increase in yield threshold with increasing N remains
robust when we perform simulations with different initial dislocation
configurations. Figure 5(b) shows that the onset of the high drive
dynamically ordered phase also increases in a similar fashion with
increasing N. This phase diagram exhibits the same features observed
for vortex systems as a function of pinning strength vs external drive,
where both the critical depinning force and the onset of the ordering
rise to higher drives with increasing pinning strength13. For the dis-
location system, increasing N is equivalent to increasing the pinning

Figure 4 | (a) P( | v | ) at Fd53.2 in the fluctuating phase. (b) The corresponding S(f) from the time series of the velocity has a 1/f1.5 shape. (c) P( | v | ) for

Fd58.0 in the ordered phase. (d) The corresponding S(f) has a characteristic peak indicating narrow band noise.

Figure 5 | (a) S0 vs Fd averaged over a fixed frequency window centered at f510 peaks in the fluctuating phase and drops upon approaching the

dynamically ordered phase. (b) A log-log plot of the dynamical phase diagram Fd vs 1/N. Lines indicate a slope of 0.7. Lower curve (red circles): onset of

yielding; upper curve (black squares): onset of the dynamically induced ordered phase. The fluctuating phase falls between the two curves.

www.nature.com/scientificreports
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strength. In our simulation, the pinning strength scales with the total
number of dislocations, N, with a power law exponent of 0.7. This
value can be linked to the dislocation structures that form. For a
random arrangement of dislocations spaced dy apart, the scaling
on strength is expected to follow 1/dy1/2, where dy51/N in our
model45,47. In contrast, a 1/dy scaling on strength should arise for
systems where the dislocations form well defined walls48.
Theoretically, the dislocation dipole break stress scales as the vertical
distance, dy, between two dipole dislocations46. In contrast, in our
simulations, the dislocation structure at the onset of yielding devel-
ops into a set of wavy dislocation dipole walls, rather than a random
arrangement of perfectly aligned dipoles.

It is natural to consider the yielding transition to be some type of
depinning transition. There are numerous kinds of depinning, such
as the strongly plastic depinning of vortices, colloids, or particles
driven over 2D substrates. This type of depinning has been shown

to fall into the class of absorbing phase transitions, specifically direc-
ted percolation28,49. There is also elastic depinning found for elastic
lines or interfaces, such as domain walls; this type of depinning would
fall into a different universality class of depinning models. The dis-
location systems have much longer range interactions than a simple
elastic interface; however, recent work on driven dislocation sys-
tems16 has found evidence that the yielding in this class of dislocation
systems falls into the class of models of interface depinning. This is
consistent with our results in which the dislocations form a wall that
can be treated as an interface. In a more disordered dislocation
system, the interface would be rougher. The interface picture for
the gliding edge dislocations also can be understood by considering
that any one dislocation can only move along a 1D line, so it main-
tains the same neighbors in adjacent planes even if they are not
located nearby. In the 2D vortex system there is strong mixing in
the directions both transverse and parallel to the drive, and the

Figure 6 | The red (blue) crosses are the locations of the dislocations with positive (negative) Burgers vectors in a sample with N5480 that has been

instantaneously loaded with Fd510. The time progression of the formation of multiple unipolar walls is illustrated. (a) Initial dislocation

configuration. (b) After 1 time unit. (c) After 3 time units. (d) After 5 time units. (e) After 20 time units. (f) After 149 time units.

www.nature.com/scientificreports
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vortices do not keep their same neighbors over time28. It may be
possible that in more complex dislocation systems where glide or
rotation occurs, the yielding may fall into a different universality
class than the mean field interface depinning.

In our simulations we observe dynamical reordering at higher
drives when unipolar walls form. In real systems, at large strains
the dislocation picture starts to break down, so observing the fully
developed unipolar walls may be difficult. It may, however, be pos-
sible to observe the initial formation of the unipolar walls along with
changes in the noise characteristics. Additionally, in a very clean
system with low numbers of dislocations, it may be possible to reach
high enough strains that freely flowing dislocations can appear. Free
flow of dislocations was recently reported in experimental studies of
solid He50, and there is increasing interest in using solid He as an ideal
system for clear studies of very low density dislocation dynamics51.
Our phase diagram suggests that all three dynamical phases could
occur even for low dislocation densities.

The type of ordered state that forms in the strong driving regime
varies depending on the manner in which the external load is applied.
The ordered polarized walls illustrated in Fig. 1 form under continu-
ous sweeps of the load. If the load is instead instantaneously set to a
high value, we observe a transient disordered phase followed by the
formation of multiple lower density unipolar walls instead of the two
unipolar walls shown in Fig. 1(d). This process is illustrated in
Figure 6.

In summary, we have shown that driven dislocation assemblies
exhibit the same nonequilibrium phases observed for systems of
collectively interacting particles such as vortices in disordered super-
conductors. These include a jammed phase analogous to a pinned
state, a fluctuating or disordered phase, and dynamically ordered or
pattern forming states. All of the states are associated with transport
signatures such as changes in the transport noise fluctuations as well
as features in the dislocation velocity vs applied shear, in analogy
with velocity-force curves.
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13. Moon, K., Scalettar, R. T. & Zimányi, G. T. Dynamical phases of driven vortex
systems. Phys. Rev. Lett 77, 2778–2781 (1996).

14. Moretti, P., Miguel, M.-C., Zaiser, M. & Zapperi, S. Depinning transition of
dislocation assemblies: Pileups and low-angle grain boundaries. Phys. Rev. B 69,
214103 (2004).

15. Laurson, L., Miguel, M.-C. & Alava, M. J. Dynamical correlations near dislocation
jamming. Phys. Rev. Lett 105, 015501 (2010).

16. Tsekenis, G., Uhl, J. T., Goldenfeld, N. & Dahmen, K. A. Determination of the
universality class of crystal plasticity. EPL 101, 36003 (2013).
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