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ABSTRACT
A threshold probability value of ‘p≤0.05’ is
commonly used in clinical investigations to indicate
statistical significance. To allow clinicians to better
understand evidence generated by research studies,
this review defines the p value, summarizes the
historical origins of the p value approach to
hypothesis testing, describes various applications of
p≤0.05 in the context of clinical research and
discusses the emergence of p≤5×10−8 and other
values as thresholds for genomic statistical analyses.
Corresponding issues include a conceptual approach
of evaluating whether data do not conform to a null
hypothesis (ie, no exposure–outcome association).
Importantly, and in the historical context of when
p≤0.05 was first proposed, the 1-in-20 chance of a
false-positive inference (ie, falsely concluding the
existence of an exposure–outcome association) was
offered only as a suggestion. In current usage,
however, p≤0.05 is often misunderstood as a rigid
threshold, sometimes with a misguided ‘win’
( p≤0.05) or ‘lose’ (p>0.05) approach. Also, in
contemporary genomic studies, a threshold of
p≤10−8 has been endorsed as a boundary for
statistical significance when analyzing numerous
genetic comparisons for each participant. A value of
p≤0.05, or other thresholds, should not be
employed reflexively to determine whether a clinical
research investigation is trustworthy from a scientific
perspective. Rather, and in parallel with conceptual
issues of validity and generalizability, quantitative
results should be interpreted using a combined
assessment of strength of association, p values, CIs,
and sample size.

INTRODUCTION
Clinicians and biomedical researchers frequently
encounter reports containing results of statistical
analyses (eg, p=0.052). In particular, generations
of practitioners and investigators have learned
that a threshold probability value—or, more for-
mally, a tail probability value—of ‘p≤0.05’ is
used commonly to define statistical significance.
For those unfamiliar with the underlying math-
ematical principles, however, the exact meaning
of such information can be elusive. In addition,
the corresponding procedures and practices
themselves have been criticized.1–6 This report,
in mainly non-mathematical terms, defines the
p value, summarizes the historical origins of the
p value approach to hypothesis testing, describes
various applications of p≤0.05 in the context of
clinical research, and discusses the emergence of
p≤5×10−8 and other values as thresholds for
genomic statistical analyses.

DEFINITION AND IMPLICATIONS
Studies of exposure–outcome associations typ-
ically include four stages: specifying a research
question, designing a study architecture, col-
lecting data, and conducting a statistical ana-
lysis to draw inferences from the results. (Of
note, we use exposure–outcome instead of
cause–effect to avoid implications regarding
causality; other characterizations include inde-
pendent variable(s)-dependent variable). The
predominant format for conducting statistical
analyses is the frequentist approach, referring to
the frequency of the occurrence of outcome
events in repeated samples from a source popu-
lation. Introducing an example that will be
referred to later, if a ‘fair’ coin were to be
flipped 10 times, every occurrence for the pos-
sible number of heads has an expected fre-
quency, including a maximum of 24.6% for five
heads and five tails, as well as lower expectations
for the other possibilities (75.4% combined).
Consider a simple two-variable clinical scen-

ario, with exposure as the independent variable
and outcome as the dependent variable.
Leaving aside various details and assumptions,
the frequentist researcher often examines the
results with respect to a null hypothesis of no
association between exposure and outcome. In
this context, the probability of an association at
least as strong as what is observed, by random
chance, is the p value. Importantly, the p value
is not the probability that the null hypothesis,
of no association, is true. Instead, we intention-
ally presume the null hypothesis—as a straw
man argument—is true, to indirectly assess the
plausibility of the data not conforming to it,
notwithstanding issues of measurement error
or systematic bias (including the concept of
‘confounding’). In more formal terms, the
American Statistical Association recently pub-
lished an editorial6 stating ‘a p-value is the
probability under a specified statistical model
that a statistical summary of the data (for
example, the sample mean difference between
two compared groups) would be equal to or
more extreme than its observed value’.
From a practical perspective, a test statistic

typically determines the probability of the
observed result (or a more extreme result)
occurring by random chance, if no association
exists. Among various reasons for selecting a
particular statistical test, one consideration
involves the measurement scales of the variables
describing the exposure–outcome association.
A selected list of some commonly encountered
tests is shown in table 1, including the χ2 test
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for categorical variables (eg, binary–binary comparisons, in
a 2×2 table), t-test for a binary-continuous comparison,
and log-rank test for time-to-event or ‘survival’ analyses
when evaluating unadjusted associations. Logistic regression
for binary outcomes and proportional hazards regression
for time-to-event analyses are common approaches when
evaluating adjusted, or multivariable,7 8 associations. Of
note, different tests can be applied in the same situation, as
with a Fisher’s exact test in lieu of a χ2 test, especially
when sample sizes are small.

Regardless of which statistical test is used, a ‘good’ result
for assessing exposure–outcome associations is a small
p value representing a low probability, thereby providing
statistical evidence that an exposure–outcome relationship
exists. In formal terms, the null hypothesis of no associ-
ation is rejected. Specifically, p≤0.05 indicates that if no
association exists, then the probability of the observed or a
stronger association being attributable to chance is no
greater than 1-in-20. Conversely, an analysis with p>0.05
is considered not statistically significant; chance is consid-
ered a plausible explanation, and the null hypothesis is not
rejected (although it is never ‘accepted’, given that an infin-
itely sized source population is assumed).

HISTORICAL ORIGINS
Published work on using concepts of probability for com-
paring data to a scientific hypothesis can be traced back for
centuries. In the early 1700s, for example, the physician
John Arbuthnot analyzed data on christenings in London
during the years 1629–1710 and observed that the number

of male births exceeded female births in each of the years
studied. He reported9 that if one assumes a balance of male
and female births is based on chance, then the probability of
observing an excess of males over 82 consecutive years is
0.582=2×10−25, or less than a one in a septillion (ie, one in
a trillion-trillion) chance. As an early example of how statis-
tical significance should not be the sole basis for interpreting
results, Arbuthnot included what he called an explanatory
note—with the findings linked to an assertion that ‘polyg-
amy is contrary to the law of nature and justice’.9

In 1900, and during the initial development of the
formal discipline of statistics,10 mathematician Karl
Pearson11 described the χ2 statistical test, applied to topics
including throws of dice and roulette balls at Monte
Carlo.12 For example, examining data for n=26,306 dice
throws, Pearson compared the observed versus the
expected frequencies of 5s or 6s, based on a uniform prob-
ability for each face value; the tail probability of 0.000016
indicated that the dice were biased toward the higher
values.11 Also in 1900, although not involving tests of stat-
istical significance, work done in the late 1800s by the
Austrian monk Gregor Mendel on inheritance patterns in
peas was first fully appreciated.13 Mendel had established
the genetic principles of segregation and independent
assortment, and the renewed interest in Mendel’s research
later spawned a ‘Mendelian–biometrician’ controversy
involving statistical methods14 15 that helped to spur devel-
opment of the science of genetics.

Whether focused on games of chance, patterns of inher-
itance or other topics, research on statistical methods flour-
ished in the early 20th century. In particular, the 1925
publication of Statistical Methods for Research Workers16

by the mathematician and biologist R.A. Fisher is consid-
ered a landmark event in statistics. This text, and later
editions, is credited with helping to have developed a
formal approach to significance testing using probability, or
p values.

THRESHOLD VALUES
Importantly, when deciding on what p value threshold
should indicate statistical significance, Fisher and other sta-
tisticians were not dogmatic. In 1926, as one of Fisher’s
early statements endorsing a p value of 0.05 as a boundary,
he wrote: “…it is convenient [emphasis added] to draw the
line at about the level at which we can say: ‘Either there is
something in the treatment, or a coincidence has occurred
such as does not occur more than once in twenty trials’.”17

In 1956, Fisher wrote: “[…] no scientific worker has a
fixed level of significance at which from year to year, and
in all circumstances, he rejects hypotheses; he rather gives
his mind to each particular case in the light of his evidence
and his ideas.”18

Despite Fisher’s intent, ‘p≤0.05’ is currently a benchmark
in many domains of scientific investigation. Thus, clinicians
are often taught that p≤0.05 indicates statistical significance,
based on the 1-in-20 threshold described earlier. If a clinical
research study has a lower (better) p value of 0.001, for
example, then the probability of chance alone explaining
the findings would be one in a thousand—approximately
the chance, invoking the previous coin scenario, of getting
10 heads in a row if a ‘fair’ coin is flipped 10 times (calcu-
lated as 0.510=0.00098, or ≈0.001).

Table 1 Examples of type of variables and selected
statistical test(s)

Bivariate (unadjusted) analysis

First variable (*) Second variable (*) Statistical test(s)

Binary (unpaired)
(paired)

Binary
Binary

χ2, Fisher’s exact
McNemar χ2

Binary (unpaired)
(paired)

Continuous
Continuous

Student’s t-test
Paired t-test

Binary ‘Moving’ binary
(survival curves)

Log-rank

Continuous Continuous Correlation (r), linear
regression

Multivariable (adjusted) analysis

Target variable Statistical test(s)
Other target
variable(s)

Binary Multiple logistic regression Ordinal
Continuous ANOVA; ANCOVA –

Continuous Multiple linear regression Ordinal, binary

Integer count Poisson regression (contingency tables)
‘Moving’ binary
(eg, survival curve)

Proportional hazard
function analysis
(Cox regression)

–

*Independent and dependent variables, when applicable, are not distinguished
in this table.
Paired indicates that the study design links (matches) particular participants in
compared groups.
ANCOVA, analysis of covariance; ANOVA, analysis of variance.
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CONTEMPORARY USAGE
The use of p values is now ubiquitous, but at the same
time, their application has taken on excessive reverence, as
if rituals are being followed in their application. For
example, an editorial19 discussing a randomized trial of a
therapeutic intervention indicated that ‘the trial failed to
meet its goal: the P value for death for any cause was
0.052, which was higher than the pre-specified value of
0.05. All clinical trials are a gamble, and the [investigators]
came close to winning but did not win. Thus, the results of
the trial are difficult to interpret’. Although the assessment
of results was clarified elsewhere in the editorial, these par-
ticular statements (in a high-impact journal) prioritized the
p value threshold of 0.05. Readers might mistakenly view
the original trial20 as a failure—only on the basis of a
p value calculated to the third decimal place.

Two scenarios can illustrate why a p value threshold does
not represent a win–lose situation. As shown in figure 1, in
study A with n=87 participants, the p value is 0.062, not
meeting the p≤0.05 threshold for statistical significance. If
only two participants are added, however, and if the add-
itional exposed participant has the outcome, whereas the
additional non-diseased participant does not, then in study
B with n=89 participants, the p value is 0.037—a statistic-
ally significant result. (Of note, these results were calculated
using a Fisher’s exact test).

Most readers would agree that the distinction between
the two hypothetical studies, involving n=87 or n=89
participants, is modest. The relative risks are similar,
showing that both studies suggest a similar level of strength
of association. The appropriateness of the study design, the
quality of data, or other issues can dominate a modest
distinction in calculated p values.

CONFIDENCE INTERVALS
Although beyond the scope of this paper, CIs are a more
informative counterpart of p values, reporting mathemat-
ical stability in the format of the relative risk or other
expressions (eg, OR, HR, risk difference) of the strength of
association. From a pragmatic perspective, as shown in
figure 2, and using relative risk for illustration, a 95% CI
that excludes the null value is statistically significant—
leading to the same conclusion with regard to statistical sig-
nificance as a p≤0.05. Conversely, a 95% CI that includes
the null value is not statistically significant.

Described in the 1930s21 and endorsed later by influen-
tial papers22 23 on this topic, CIs are now a welcomed
accompaniment of p values, providing information on sta-
bility linked to information on the strength of association.
Although vulnerable to the same problems as p values
regarding inference, CIs can help to interpret analytic
results.24 Consider a result with a ‘non-significant’ result,
such as relative risk=1.4, 95% CI=0.80 to 2.4 and
p=0.20. In another project addressing the same question, a
stronger point estimate, wider CI and significant p value
are determined, such as relative risk=4.1, 95% CI=1.2 to
14.0 and p=0.02. In a side-by-side comparison, the first
scenario can actually be viewed24 as providing more trust-
worthy information on a possible association, given a nar-
rower CI—despite the lack of statistical significance when
judged by p≤0.05. The take-home message is that a p value
alone does not provide comprehensive information on an
analytic result.

SAMPLE SIZE AND STATISTICAL POWER
The general relationship between sample size and statistical
significance tends to be appreciated by experienced

Figure 1 In the first study ‘A’, with n=87, the relative risk is 2.5
(95% CI 0.99 to 6.5) and the p value is 0.062. In the second
study ‘B’, with n=89, the relative risk is 2.7 (95% CI 1.1 to 7.0)
and the p value is 0.037. The two studies are quite similar from
an overall perspective, but ‘B’ is statistically significant, whereas
‘A’ is not.

Figure 2 p Values and CIs provide concordant information
regarding statistical significance. A 95% CI that excludes the null
value of one, as with a p value of ≤0.05, indicates a statistically
significant result. A 95% CI that includes the null value of one, as
with a p value of ≥0.05, indicates a statistically non-significant
result. A p=0.05 occurs when a CI ends at 1.0 and is considered
statistically significant.
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researchers, but may not be immediately apparent to clini-
cians. As shown in the top portion of table 2 (using data
from a previously prepared example25), a relatively big
quantitative difference (one-third vs one-quarter) can be
statistically non-significant, due to small sample size, and
such results should not be surprising. This situation pro-
vides an argument in favor of calculating a priori statistical
power, based on the difference in outcomes that might be
expected, to avoid ‘underpowered’ studies. Interestingly,
the concept of statistical power—as with p values—was
developed in the early 20th century,26 27 but its relevance
was not appreciated widely by many researchers until
decades later, with recognition that numerous underpow-
ered studies had been published in the social science28 and
medical literature.29

In brief, the power of a test is the probability that a statis-
tically significant result will be detected, given the existence
of an association of a certain (hypothesized) strength. Most
randomized trials are designed to have at least 80% power,
indicating a <20% chance of concluding that the data are
not supportive of an exposure–outcome association if a
specified exposure–outcome relationship were to exist (ie,
making a false-negative inference). In practical terms,
power should be calculated when a study is designed, and
is then discussed again (but not recalculated) if the results
are not statistically significant.

CLINICAL SIGNIFICANCE
Statistical (probabilistic) significance and clinical (quantita-
tive) significance are different concepts. Regardless of argu-
ments in favor or against hypothesis testing, few would
argue against the claim that p≤0.05 has become a standard
approach. In contrast, no single threshold for clinical sig-
nificance exists—and none will likely develop—because
each clinical context is different. For example, even a small
improvement in survival for a new therapeutic agent for an
aggressive type of cancer would likely be viewed positively;
the same percentage improvement involving a benign and
self-limited ailment might be met with less enthusiasm.

From a statistical perspective, the bottom portion of
table 2 shows that even a modest quantitative difference

(eg, 28.8% vs 28.2%) can be statistically significant with a
large sample size. Analyses of information in healthcare
(administrative) databases are likely contexts for this scen-
ario to occur. Sometimes characterized as ‘overpowered’
analyses, the results can include clinically unimportant dif-
ferences that achieve statistical significance. If the implica-
tions of p≤0.05 are misunderstood, then associations can
be misinterpreted when evaluating research questions
involving therapeutic effectiveness, quality improvement,
and other topics.

Interestingly, an argument was made in the early 20th
century that statistical significance does not confer quanti-
tative significance,30 yet for decades many studies only
reported p values. Other studies used ‘*’ to indicate
p≤0.05 and ‘NS’ to indicate non-significance. Reporting
p values without a relative risk, OR, etc, to describe the
strength of association is inappropriate, and corresponding
uncertainty in estimates should be provided (eg, using CIs).
In addition, using symbols is less informative than report-
ing actual p values, in that the actual values quantify the
probabilistic evidence against the null hypothesis. More
generally, and almost 100 years later, a statement published
in 1919 still applies: “[…] statistical ability, divorced from a
scientific intimacy with the fundamental observations, leads
nowhere.”30

P VALUES IN THE GENOMIC ERA
The threshold of p≤0.05 was established when sample
sizes in medical investigations tended to have a modest
number of measurements per participant. In contrast,
genome-wide association studies can evaluate hundreds of
thousands, to several million, single nucleotide polymorph-
isms (SNPs) as the exposure variable, and a disease or trait
as the outcome variable, for each participant. Studies
involving whole-exome or whole-genome sequencing have
even larger numbers to consider.

If a p value of ≤0.05 were to be used as the threshold
for statistical significance in these situations, numerous
associations would be expected by chance alone.
Accordingly, and using various strategies for calculations,
thresholds such as 5×10−8 have been proposed31 32 to dis-
tinguish ‘chance’ from potentially ‘real’ genomic associa-
tions. This particular approach is related to pregenomic
concepts of multiple comparisons.33–36 For example, the
Bonferroni correction35 calculates a threshold p value for
each comparison as 0.05/N, where N is number of compar-
isons. Thus, when evaluating 10 associations in a clinical
study, p≤0.005 for any comparison indicates statistical sig-
nificance. Using this strategy for a genome-wide association
study involving 1 million SNPs, p≤10−8 would be the cal-
culated threshold for each polymorphism. The false discov-
ery rate37 is another strategy used for this purpose.

COMMENTS AND CAVEATS
As shown in table 2, a p value of ≤0.05 for a given strength
of association can be achieved by enlarging sample size.
Even for a fixed sample size, however, a calculated p value
is not a unique assessment of any given data set. For
example, using the data in figure 1 and choosing a χ2 test
instead of a Fisher’s exact test, p=0.04 for n=87 and
p=0.02 for n=89, suggesting that both associations are
statistically significant—just by choosing a different

Table 2 Examples of large and small quantitative
differences, and corresponding p values25

Large quantitative difference

Outcome A=0.333 Outcome B=0.250 p Value

1/3 1/4 0.81
10/30 10/40 0.45
100/300 100/400 0.02
1000/3000 1000/4000 <0.0000001

Small quantitative difference

Outcome A=0.288 Outcome B=0.282 p Value

288/1000 282/1000 0.77
2880/10,000 2820/10,000 0.35
28,800/100,000 28,200/100,000 0.003

p Values calculated using the χ2 test, for demonstration purposes.
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statistical test that analyzes the data via another conceptual
approach and a different mathematical algorithm. As
another example, and although other reasons for inconsist-
ent results exist (including confounding), adding or remov-
ing several variables (ie, covariates) from a multivariable
regression model can affect the p value, and possibly
change the statistical significance, of a primary variable of
interest.38 Clinicians and investigators should certainly not
assume that p≤0.05 implies a ‘true’ association, even if the
non-statistical aspects of a study are conducted and
reported impeccably.

To emphasize the arbitrary aspect of p≤0.05, the field of
physics commonly uses a threshold p value of 3×10−7 for
statistical significance, based on observations at least 5 SDs
from the null hypothesis. Although the concept of SD is
not discussed in this review, p≤0.05 corresponds to ∼2
SDs, a less restrictive threshold to achieve. Other topics
include issues such as one-tail versus two-tail significance
testing. In brief, ‘tail’ or directionality refers to whether the
hypothesis allows for a drug, for example, to have either a
beneficial or a harmful effect, or is just expected to show
benefit. Of note, a one-tail p value of 0.025 corresponds to
a two-tail p value of 0.05, but two-tail (bidirectional)
testing is endorsed in most situations.39 As a separate con-
ceptual issue, this narrative focuses on p values in settings
where independence of compared groups, such as treat-
ment and control arms in a trial, is the desired outcome. In
some situations, including the Monte Carlo example men-
tioned earlier,11 as well as for Mendelian genetics,13 simi-
larity to a specific pattern is expected. (In addition, p>0.05
can even be a desired result, as with analyses to show that
the observed data conform to a predicted model).

Finally, problems with the frequentist approach have
been well documented, and Bayesian strategies are consid-
ered to be an appealing alternative approach.40–45

Consistent with the explanation provided in the Definition
and Implications section, the frequentist conceptual
approach can be stated as: ‘What is the probability that the
observed data are inconsistent with the null hypothesis?’ In
contrast, the Bayesian conceptual approach for a typical
research project can be stated as: ‘Given the observed data,
what is the probability that the true effect is negative
(null)?’. Although the Bayesian flow of logic is more in
keeping with how clinicians think, the need to specify the
strength of association ahead of time—in formal terms, the
‘prior probability distribution’ of the effect size—seems to
have made many researchers reluctant to adopt Bayesian
methods.

BROAD PERSPECTIVE
This review does not discuss all issues related to p values,
and the topics that are included are presented only as an
overview, or in illustrative terms. For example, several dis-
tinctions that exist46–49 between recommendations for sig-
nificance testing by Ronald Fisher (focused mainly on a
null hypothesis) and by Jerzy Neyman and Egon Pearson
(incorporating an alternative hypothesis using power calcu-
lations) are not described. In addition, at least one
health-related journal (Basic and Applied Social Psychology)
has recently banned the ‘null hypothesis significance testing
procedure (NHSTP)’,50 stating specifically that prior to

publication, ‘authors will have to remove all vestiges of the
NHSTP (p values [and] statements about “significant” dif-
ferences or lack thereof, and so on)’.50

Notwithstanding such theoretical underpinnings and
conceptual debates, authors of contemporary research arti-
cles should, at a minimum, avoid performing a perfunctory
social ritual51 involving p values. This scenario involves
thoughtlessly repeating the same action (significance testing
procedures), focusing on a special number (p≤0.05),
fearing sanctions (by reviewers or editors) for rule viola-
tions, and thinking wishfully (seeking, and sometimes
manipulating, a desired p value) while limiting critical judg-
ment (as reflected by superficial discussion of statistical
results, such as the win–lose dichotomy described in the
Contemporary usage section).

As a general guideline, authors should report—and
thoughtfully interpret—results describing associations in
terms of strength, such as relative risk, as well as stability,
including the magnitude of p values and CIs. The size of
the study population is also relevant. From a more general
perspective, information on the stability of results is
important, but the clinical relevance of a research report is
also affected by the issues of validity, confirming that the
results are correct for the participants involved, and gener-
alizability, describing to whom the results apply.52 Box 1
provides several take-home points in this context.

Box 1 Take-home points for using probability
values in clinical research

▸ Assuming no association exists, a test statistic
determines a p value for (ie, the tail probability of ) an
observed result, or a more extreme result, occurring by
random chance.

▸ The threshold p value of ≤0.05 for statistical
significance, promoted in the early 20th century only as
an informal suggestion, indicates a 1-in-20 chance of a
false-positive inference (ie, assuming an exposure–
outcome association when it does not exist).

▸ Even if a study is conducted impeccably and reported
accurately, clinicians and investigators should not
assume that p≤0.05 implies a ‘true’ association—and
comparing a p value to a threshold does not represent
a win–lose situation.

▸ In genomic studies, p value thresholds such as 5×10−8

reflect the extremely large number of associations
(eg, alleles) being evaluated for each participant.

▸ In addition to p values, or CIs (as another format for
expressing stability of results), a numerical result for
the strength of an association (eg, relative risk) is
essential information.

▸ Rigorous statistical analyses should be combined with
relevant clinical insight regarding the corresponding
research question, data collection, and study design.

▸ While considering the conceptual issues of validity and
generalizability, interpreting the numerical results of
clinical research investigations should assess the
strength of association, magnitude of p values, CIs, and
sample size.
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CONCLUSION
Statistical testing describes the stability of quantitative
results from a probabilistic perspective, but tests of signifi-
cance should not be viewed as an all-or-none approach,
and p values should rarely be the main focus of attention
or the primary basis for evaluating a research study. At the
very least, p≤0.05 or p≤5×10−8 should not be employed
reflexively to determine whether a study is trustworthy
from a scientific perspective. Along with the conceptual
issues of validity and generalizability, the strength of associ-
ation, magnitude of p values, width of CIs, and size of the
study sample are all relevant when interpreting the results
of clinical research investigations.

In 1880, the biologist T.H. Huxley stated “…it is the cus-
tomary fate of new truths to begin as heresies and end as
superstitions.”53 After almost a century of originally being
adopted, p value thresholds have evolved into a supersti-
tion. To improve medical research and ultimately clinical
care, more judgment, and less ritual, is warranted.
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