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Nesfatin-1 was discovered in 2006 and implicated in the regulation of food intake. Subsequently, its
widespread central and peripheral distribution gave rise to additional effects. Indeed, a multitude of
actions were described, including modulation of gastrointestinal functions, glucose and lipid metab-
olism, thermogenesis, mediation of anxiety and depression, as well as cardiovascular and reproductive
functions. Recent years have witnessed a great increase in our knowledge of these effects and their
underlyingmechanisms, whichwill be discussed in the present review. Lastly, gaps in knowledgewill be
highlighted to foster further studies.
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Nesfatin-1 is an 82–amino acid polypeptide derived from the precursor protein nucleobindin 2
(NUCB2), whose processing also yields nesfatin-2 and -3, two peptides with so far unknown
functions [1]. The 29-amino acid mid-fragment of nesfatin-1, nesfatin-130-59, has been
identified as the active core of nesfatin-1, also exerting an anorexigenic effect [2]. Although
full-length nesfatin-1 contains cleavage sites at the respective amino acids, cleavage has not
been shown in vivo.

NUCB2/nesfatin-1 (most antibodies do not distinguish between NUCB2 and processed
nesfatin-1, and therefore we refer to the analyte as NUCB2/nesfatin-1) was first detected in
food intake regulatory brain nuclei such as the paraventricular nucleus, arcuate nucleus, and
nucleus of the solitary tract [1], and subsequent studies extended this distribution to nu-
merous other brain nuclei in the rat [3] and mouse [4]. It is to note that NUCB2/nesfatin-1
has been detected primarily in the soma and primary dendrites of neurons, whereas less
immunoreactivity was observed in nerve fibers [5], possibly pointing to an autocrine or
paracrine rather than endocrine mode of action. Nonetheless, nesfatin-1 was shown to cross
the blood-brain barrier in both directions [6, 7], supporting a humoral route of signaling.
Further corroborating this assumption, NUCB2/nesfatin-1 has also been detected in the
periphery, namely in the gastric mucosa [8], adipose tissue [9], pancreatic beta cells [10],
testes [11], ovaries [12], uterus, epididymis [13] and cardiomyocytes [14]. The stomach was
identified as main source of peripheral NUCB2/nesfatin-1, with NUCB2mRNA levels higher
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than in other peripheral organs or the brain [8]. Additional analyses indicated the expression
of NUCB2/nesfatin-1 in gastric endocrine X/A-like cells coexpressed with the food intake-
stimulating hormone ghrelin [8] in rats, a finding later confirmed in humans [15].

Despite the increasing knowledge of the expression and regulation of the ligand, the
receptor mediating nesfatin-1’s actions has not been identified. A recent study using auto-
radiography showed nesfatin-1 binding in the brain, including the cortex, paraventricular
nucleus of the hypothalamus, area postrema, dorsal motor nucleus of the vagus nerve, and
cerebellum as well as in peripheral endocrine organs, namely the pituitary, stomach, small
intestine, pancreas, adrenal gland, testes, and visceral adipose tissue and also in the heart,
skeletal muscle, lungs, liver and kidneys [16]. This widespread binding of 125I-nesfatin-1 as a
surrogate for the putative expression of the receptor further supports the assumption of a
pleiotropic action of the peptide. On amolecular level evidence points toward themediation of
nesfatin-1’s effects via a Gi protein-coupled receptor with nesfatin-1 inducing a Ca2+ inflow
through L-type, N-type, or P/Q-type Ca2+ channels [17, 18] and promoting the phosphory-
lation of cAMP responding element–binding protein (CREB) in neuroblastoma cells in vitro,
additionally stimulating mitogen-activated protein kinase signaling [19]. In contrast, in
cardiomyocytes Gq is the supposed receptor type because nesfatin-1 suppressed L-type Ca2+

channel functioning by means of protein kinase C [20].
In the present review we describe the pleiotropic effects of nesfatin-1 and highlight un-

derlyingmechanismswith a focus on recent developments.We also discuss gaps in knowledge
to demonstrate the need for further studies. A PubMed search has been performed and all
studies with the terms “nesfatin-1,” “NUCB2,” and “nucleobindin 2” screened.

1. Implications of Nesfatin-1 in the Regulation of Food Intake

In the landmark study of Oh-I et al. [1], nesfatin-1 was described as anorexigenic peptide
exerting a robust reduction of dark phase food intake after third ventricular injection, with a
reduction of body weight gain after repeated injection. This effect is likely to be of physio-
logical importance because blockade of endogenous nesfatin-1 with an antisense oligonu-
cleotide [1] or knockdown of NUCB2 specifically in the paraventricular nucleus of the
hypothalamus [21] resulted in a stimulation of food intake and a subsequent increase in body
weight in rats [1, 21]. The anorexigenic effect after brain ventricular injection was confirmed
in subsequent studies by independent groups in rats [22–24], mice [25, 26], pigs, [27], and
goldfish [28], pointing toward a robust effect. Interestingly, a recent study using mice with
NUCB2 knockout in several brain areas and peripheral tissues failed to demonstrate an
effect on food intake and bodyweight comparedwith control mice, leading to the conclusion by
the authors that nesfatin-1 does not affect food intake [29]. However, the authors did not
check the expression of NUCB2/nesfatin-1 in the stomach, a major source of the peptide as
described earlier. This expression might well explain the circulating levels of NUCB2/
nesfatin-1 still observed in these mice. Lastly, the possibility of a compensatory action by
other food intake regulatory peptides under conditions of long-term loss of a hormone also
must be kept in mind.

In contrast to the brain effects, conflicting data exist on the peripheral effects of nesfatin-1,
with some studies showing no effect [24], whereas others report a decrease in food intake after
intraperitoneal (IP) injection of high doses in mice [2]. Similarly, chronic subcutaneous in-
fusion of nesfatin-1 at high doses via osmotic minipumps was able to inhibit food intake in
rats [30]. Overall, the anorexigenic effect is more readily observed after central injection of
low doses of the peptide, giving rise to a predominantly central mode of anorexigenic action.

In addition to the food intake-reducing effect, intracerebroventricularly (ICV) injected
nesfatin-1 was also shown to reduce water intake, an effect likely to present a physiological
action of the peptide because pretreatment with an antinesfatin-1 antisense oligonucleotide
led to an increased drinking response to angiotensin II [31].

Subsequent studies investigated the microstructure underlying the reduction of food
intake by using an automated system that allows the continuous monitoring of food intake in
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undisturbed rodents. Inmice, ICV injected nesfatin-1 reducedmeal size, indicating increased
satiation andmeal frequency associated with a prolongation of intermeal intervals, reflecting
higher satiation [25]. Interestingly, ICV injected nesfatin-130–59, described as the active core
of nesfatin-1 [2], increased satiety as well whereas satiation was not altered in mice [32],
giving rise to differential receptor binding or activation. Lastly, in rats nesfatin-130–59 in-
duced satiation but not satiety [33], pointing toward species differences, a finding confirmed
after microinjection of nesfatin-1 into the lateral parabrachial nucleus in rats [34]. Although
the effect of nesfatin-130–59 was retained during diet-induced obesity (DIO) in rats [33], giving
rise to a leptin-independent signaling as suggested before [1, 2], the underlying micro-
structure differed, with increased satiety [33] suggesting different downstream signaling
under conditions of obesity.

When nesfatin-1 was injected ICV in rats, its anorexigenic effect was abolished by pre-
treatment with the selective corticotropin-releasing factor (CRF) 2 antagonist astressin2-B [24]
indicating downstream mediation via corticotropin-releasing factor receptor 2 (CRF2) signaling.
This findingwas also confirmed in chicks with astressin-B, a CRF1/2 antagonist [35]. Because the
melanocortin receptor 3/4 antagonist SHU9119, with anorexigenic melanocortin 4 signaling
being well established upstream of CRF [36, 37], attenuated [34] or blocked [1] nesfatin-1’s
anorexigenic effect, nesfatin-1might act viamelanocortin→CRF signaling to inhibit food intake.

Moreover, nesfatin-1 has been shown to inhibit neuropeptide Y (NPY)-containing cells in
vitro [38]. BecauseNUCB2/nesfatin-1 partly colocalizes withNPY in the arcuate nucleus [39],
this effect might involve an autocrine mode of signaling. Also, mammalian target of rapa-
mycin (m-TOR) is greatly colocalized with NUCB2/nesfatin-1 in the arcuate nucleus [39].
Based on the finding that m-TOR has been shown to reduce NPY mRNA expression [40],
nesfatin-1 might also signal via this pathway in an endocrine manner to reduce food intake.
Peripherally, a decrease of m-TOR signaling has been shown to reduce the expression of
NUCB2/nesfatin-1 in vitro and in vivo [41], whereas an increase of gastric phosphorylated
mammalian target of rapamycin (pm-TOR)/m-TOR expression was associated with an in-
creased gastric secretion of NUCB2/nesfatin-1, resulting in elevated levels of circulating
NUCB2/nesfatin-1 [42] probably involved in the observed suppression of food intake. In-
terestingly, in the brain a decrease of pm-TOR levels in the dorsal motor nucleus of the vagus
nerve induced by fourth ventricular injection of nesfatin-1 was associated with a reduction of
food intake [43], pointing toward a differential central or peripheral regulation of m-TOR.

Also, fibroblast growth factor 21 (FGF21) is likely to be involved in the mediation of
nesfatin-1’s anorexigenic effect because FGF21 increased the expression of NUCB2mRNA in
the paraventricular nucleus, increased [Ca2+]i in NUCB2/nesfatin-1-containing neurons, and
the suppression of food intake induced by ICV injection of FGF21 was absent in NUCB2
knockout mice [44].

Nesfatin-1 has been recently implicated in the endogenous inhibition of food intake in-
duced by IP application of cisplatin because cisplatin-activated NUCB2/nesfatin-1 neurons in
the hypothalamus and brainstem and the cisplatin-induced reduction of food intake were
attenuated by ICV injection of nesfatin-1/NUCB2-antisense [45], giving rise to a patho-
physiological role of nesfatin-1 in chemotherapy-induced hypophagia. Similarly, nesfatin-1
has also been implicated in the oxytocin-induced suppression of food intake because IP
injected oxytocin increased the number of activated NUCB2/nesfatin-1 neurons in the
paraventricular nucleus, arcuate nucleus, and nucleus of the solitary tract, and the oxytocin-
induced anorexigenic effect was attenuated by ICV injection of antisense nesfatin-1 [46].
Conversely, ICV injection of nesfatin-1 activated oxytocin-positive neurons in the para-
ventricular nucleus of the hypothalamus, as assessedwith c-Fos and stimulated the release of
oxytocin in vitro [47]. Lastly, an oxytocin receptor antagonist blocked the anorexigenic effect
of nesfatin-1 [22, 47] indicating a strong interaction between nesfatin-1 and oxytocin in the
inhibition of food intake.

Repeated injections of nesfatin-1 into the third brain ventricle [1] or the lateral para-
brachial nucleus [34] decreased body weight gain, probably via a stimulation of uncoupling
protein 1 (UCP1) expression in brown adipose tissue [34].
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The regulation of NUCB2/nesfatin-1 supports a role for this peptide as a physiological
modulator of food intake. Whereas fasting led to a decrease in hypothalamic NUCB2 mRNA
levels [1, 48], refeeding activated NUCB2/nesfatin-1-positive neurons in the supraoptic
nucleus, associated with an increase in NUCB2mRNA levels [48]. In line with these findings,
plasma NUCB2/nesfatin-1 levels decreased during 24-hour fasting and were restored after
refeeding in rats [8]. In vitro, glucose elevated NUCB2 mRNA expression and NUCB2/
nesfatin-1 secretion from cultured stomach ghrelinoma cells [49], probably contributing to the
observed increase in plasma levels. Interestingly, in goldfish intestinal cells NUCB2 mRNA
was decreased by glucose in vitro [50], pointing toward species differences. Also, sex dif-
ferences seem to play a role because male mice receiving a high-fat diet displayed a decrease
in serumNUCB2/nesfatin-1 levels [49], whereas this diet did not alter gastric NUCB2mRNA
expression in female mice [51]. Lastly, in zebrafish receiving a high-fat diet, supplementation
with Lactobacillus rhamnosus reduced gut NUCB2/nesfatin-1 levels [52], pointing toward a
microbiota-associated regulation of nesfatin-1 to be further investigated.

In obese children, no difference in NUCB2/nesfatin-1 plasma levels was detected between
the fasting and postprandial state [53]. Whether this also holds true under normal weight
conditions remains to be investigated. Moreover, an investigation of dynamic meal-related
changes in circulating NUCB2/nesfatin-1 in humans is still lacking. Chronic changes in body
weight also affect the levels of circulating NUCB2/nesfatin-1, with decreased levels in un-
derweight and anorexic subjects [54, 55]. Because rats with activity-based anorexia, an
animal model for anorexia nervosa, showed an activation of nesfatin-1 immunoreactive
neurons in several brain nuclei involved in the mediation of food intake, gastrointestinal
functions, and the response to stress [56], nesfatin-1 might be implicated in the development
or maintenance of this condition, a hypothesis to be further investigated.

Conversely, circulating NUCB2/nesfatin-1 levels were shown to be elevated in obese adults
[9, 57], probably because of increased expression of NUCB2/nesfatin-1 in the stomach [15].
These circulating levels were observed to be decreased after bariatric surgery–associated
weight loss [58]. However, other studies described a negative association of circulating
NUCB2/nesfatin-1 and body mass index (BMI) [55, 59, 60] and an increase after bariatric
surgery in humans [61] and also mice [62], giving rise to additional, confounding factors such
as sex or comorbidities like diabetes. Also, chronic malnutrition in children was reported
to upregulate serum NUCB2/nesfatin-1 concentrations [63]. Whether this effect reflects
metabolism- or stress-associated changes remains to be investigated.

2. Implications of Nesfatin-1 in Gastrointestinal Functions

As observed earlier for several peptides regulating food intake, nesfatin-1 has been shown to
alter gastrointestinal functions. Early on, an inhibitory action of nesfatin-1 on antral and
duodenal motility [26] and a reduction of gastric emptying was shown after ICV injection
[24], a finding later also observed after microinjection of the peptide into the central nucleus
of the amygdala [64], basomedial amygdala [65], arcuate nucleus [66], paraventricular
nucleus of the hypothalamus [67], lateral hypothalamus [68], and ventromedial hypothal-
amus in rodents [69], giving rise to the sites of action. Because gastric distension induced
c-Fos expression in NUCB2/nesfatin-1-positive neurons not only in the nucleus of the solitary
tract [70] but also in the ventromedial hypothalamus [71], and the injection of an
antinesfatin-1 antibody prevented a nucleus accumbens-induced ventromedial hypothalamic
neuronal firing [69], along with the finding that rats with lesioned ventromedial hypotha-
lamic nuclei showed increased gastric emptying [72], ventromedial nucleus nesfatin-1 sig-
naling might well play a role in the endogenous regulation of gastric motility.

Because intravenous (IV) application of nesfatin-1 was able to reduce gastric contractions
in dogs [73], the effect might also be mediated in the periphery, as recently hypothesized, by
the distribution of the receptor as assessed by autoradiography [16]. A recent study reported
that chronic gastric electrical stimulation used as a novel attempt to treat intractable
vomiting and nausea reduced circulating NUCB2/nesfatin-1 levels [74], possibly indicating
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nesfatin-1 as pathophysiological contributor to this disease. This hypothesis should be fol-
lowed up in future studies.

Besides an effect onmotility, nesfatin-1 affects secretory functions: ICV injected nesfatin-1
reduced 2-deoxy-D-glucose-stimulated gastric acid production [75] associated with a lower
expression of H+/K+-ATPase in obese rats [76]. Moreover, nesfatin-1 seems to be implicated in
inflammatory processes, because IP [77] or IV [78] injected nesfatin-1 improved healing in rat
models of gastric ulcer, associated with a decrease in TNF-a and IL-1b and mediated by
downstream cyclooxygenase 2 signaling [79, 80].

3. Implications of Nesfatin-1 in Blood Glucose Homeostasis

Early on, an implication of nesfatin-1 in glucose homeostasis was suggested. Besides its
expression in the stomach, NUCB2/nesfatin-1 has also been detected in endocrine islets of the
pancreas [8, 81, 82] colocalized with insulin in rodents [10, 83], dogs [84], pigs [84], and
humans [85].

In rats, glucose challenge led to a release of NUCB2/nesfatin-1 from isolated pancreatic
islets in vitro [86], probably by activating L-type Ca2+ channels [87] and inhibiting Kv2.1
channels [88]; however, the release of insulin was more pronounced [83]. Nesfatin-1 further
increased the glucose-stimulated insulin release in vitro [86], giving rise to a direct effect
supported by the assumed nesfatin-1 receptor in the pancreas as suggested by autoradi-
ography [16], an effect leading to a reduction in glucose levels in mice [85, 89]. The glucose-
lowering effect after oral glucose intake [90] probably also involves a nesfatin-1-induced
release of glucagon-like peptide 1, because preproglucagon mRNA was upregulated by
nesfatin-1 in the enteroendocrine STC-1 cell line in vitro [91]. Moreover, subcutaneously
infused nesfatin-1 increased insulin-stimulated phosphorylation of protein kinase B (AKT) in
skeletal muscle, adipose tissue, and liver and glucose transporter type 4 membrane trans-
location in skeletal muscle and adipose tissue of mice [92]. IV infusion of nesfatin-1 in
streptozotocin-induced type 2 diabetic mice decreased blood glucose and insulin resistance by
increasing the expression of phosphorylated 50 AMP-activated protein kinase (p-AMPK) and
acetyl-CoA carboxylase (p-ACC) of skeletal muscles [93]. Conversely, knockdown of hypo-
thalamic NUCB2/nesfatin-1 increased hepatic glucose flux and reduced glucose uptake of
peripheral tissues under conditions of normal weight and in obese rats, effects associated
with decreased hepatic insulin receptors, insulin receptor substrate 1, and AKT kinase
phosphorylation and phosphorylation of m-TOR, signal transducer and activator of tran-
scription 3 (STAT3), and the suppressor of cytokine signaling 3 [94]. Simultaneously, hepatic
glucose-6-phosphatase and phosphoenolpyruvate carboxykinase levels were increased [94].
Lastly, ICV injection of nesfatin-1 led to increasedmuscle glucose absorption, insulin receptor
signaling through the AKT/AMP-activated protein kinase (AMPK)/transducer of regulated
CREB protein 2 pathway, decreased gluconeogenesis and hepatic mRNA and protein ex-
pression and activity of phosphoenolpyruvate carboxykinase [95].

In immunohistochemical studies using c-Fos as marker for neuronal activity, hypogly-
cemia after peripheral insulin administration induced an activation of nesfatin-1-expressing
neurons in the arcuate nucleus, paraventricular nucleus, lateral hypothalamic area, dorsal
motor nucleus of the vagus, and nucleus of the solitary tract [96]. Retrograde tracing with
fluorogold showed that those activated neurons in the dorsal motor nucleus of the vagus
project to the pancreas and stomach, suggesting that nesfatin-1 is implicated in central glucose
sensing and initiates the hormonal and physiological response to hypoglycemia [96]. Accord-
ingly, nesfatin-1 inhibited almost 90% of the gastric distension inhibitory and activated.75%
of gastric distension excitatory neurons in the dorsal vagal complex [97]. Similarly, nesfatin-1
injected into the lateral parabrachial nucleus activated the majority of glucose-inhibited
glucosensing neurons [34]. Moreover, in the paraventricular nucleus glucose and insulin in-
creased calcium concentrations in nesfatin-1 immunoreactive neurons, leading to activation of
those initiating satiety [98]. In contrast, in the nucleus of solitary tract nesfatin-1 did not trigger
the response of glucosensing neurons when the glycemic state changed [99].
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Nesfatin-1’s expression was altered under conditions of type 2 diabetes mellitus with
reduced pancreatic NUCB2/nesfatin-1 peptide expression in rodents with genetically de-
termined diabetes [83], whereas in DIO mice the NUCB2/nesfatin-1 peptide concentration
was increased [86]. In humans, NUCB2 mRNA expression was reduced in islets of subjects
with type 2 diabetes [85]. However, circulating NUCB2/nesfatin-1 levels were not altered
under conditions of type 2 diabetes in rats [83], whereas in streptozotocin-induced type 2
diabetic mice [93] and in humans levels were higher in patients with type 2 diabetes or
impaired glucose tolerance than in healthy controls [100], giving rise to species differences.
However, in patients with metabolic syndrome, including insulin resistance, NUCB2/nesfatin-
1 concentrations were lower than in controls [101]. A recent meta-analysis failed to show
differences in circulatingNUCB2/nesfatin-1 concentrations between controls and patientswith
type 2 diabetes [102]. Subgroup analyses showed significantly higher levels in patients newly
diagnosed with type 2 diabetes without any treatment and lower levels in patients receiving
antidiabetic medication [102], indicating an influence of medication on NUCB2/nesfatin-1
signaling. In line with this assumption, in a study of 100 patients with type 2 diabetes mellitus
the oral glucose-lowering agent saxagliptin increased circulatingNUCB2/nesfatin-1 alongwith
C-peptide and improved insulin resistance as well asmetabolic profile, BMI and blood pressure
[103]. The observed negative correlation between nesfatin-1 and homeostatic model assess-
ment for insulin resistance and hemoglobin A1c [103] emphasizes the beneficial effect of
nesfatin-1 on glucose homeostasis.

The c.1012C.Gpolymorphism of theNUCB2 gene has been associated with a reduced risk
of type 2 diabetes in the Chinese Han population [104]. In patients with type 2 diabetes
mellitus the GG phenotype was related to lower BMI and fasting plasma glucose levels [104].
In accordance, in patients with metabolic syndrome the CG and GG genotypes were found
less frequently, giving rise to a reduced risk of metabolic syndrome associated with the GG
genotype and G allele [105].

In patients with gestational diabetes mellitus serum NUCB2/nesfatin-1 concentrations,
NUCB2/nesfatin-1 levels in cord blood and protein expression of NUCB2/nesfatin-1 in
subcutaneous fat were higher than in healthy pregnant subjects [106]. Inconsistently, a
previous [107] and a subsequent [108] study showed the opposite regulation, with decreased
serum NUCB2/nesfatin-1 levels and a positive association between NUCB2/nesfatin-1 and
gestational week [108]. These discrepant results might be due to, although subtle, differences
in age (29.6 6 5.3 vs. 32.1 6 6.2 years), BMI (31.0 6 5.5 vs. 33.8 6 6.5 kg/m2), and ad-
vancement of pregnancy (26.26 1.8 vs. 23.0 6 7.8 weeks), to be considered in future studies.

Laparoscopic Roux-en-Y gastric bypass or sleeve gastrectomy was shown to reduce BMI,
waist circumference, hip circumference, waist-to-hip ratio, fasting blood glucose, and he-
moglobin A1c levels, homeostatic model assessment for insulin resistance, and plasma in-
sulin C-peptide after 1 year in patients with type 2 diabetes [109]. Glucagon stimulation
reduced plasma levels of NUCB2/nesfatin-1, with higher levels observed in nonremitters
compared with remitters [109]. Whether nesfatin-1 plays a pathogenetic role under these
conditions or is compensatorily increased to improve glucose homeostasis will have to be
further investigated in longitudinal studies.

4. Implications of Nesfatin-1 in Energy Metabolism

It was shown early on that nesfatin-1 is able to elevate core body temperature in rats after
ICV injection [23], also modulating energy expenditure, dry heat, brown adipose tissue
growth, and tail temperature, probably mediated via downstreammelanocortin 3/4 signaling
[110]. Moreover, cold ambient temperature activated nesfatin-1 immunoreactive neurons in
the paraventricular nucleus [23]. Because knockout of the transcription factor Yin Yang 1
increased energy expenditure and oxygen consumption in beige and white fat depots along
with an increased expression of NUCB2 mRNA in brown adipose tissue [111], NUCB2/
nesfatin-1 might be physiologically involved in the regulation of energy expenditure. Lastly,
nesfatin-1 was shown to stimulate brown adipocyte differentiation via m-TOR signaling and
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upregulation of UCP1mRNA expression [112]; therefore, nesfatin-1might well be involved in
long-term changes of energy expenditure. Because nesfatin-1 reduces food intake and in-
creases energy expenditure, it induces a negative energy balance, which might be relevant in
states of overnutrition but also might reflect conditions of stress, ultimately leading to
wasting or cachexia, a hypothesis to be further investigated.

With regard to lipid metabolism, chronic subcutaneous infusion of nesfatin-1 reduced
cholesterol and triglyceride levels in mouse plasma, an effect independent of food intake and
body weight [113]. In diabetic mice, IV injected nesfatin-1 was able to normalize free fatty
acids and body weight after 6 days, accompanied by an elevation of p-AMPK and p-ACC
expression levels in skeletal muscle, indicating improved free fatty acid utilization [93].
Moreover, lipid accumulation was reduced by nesfatin-1 in cultured hepatocytes in vitro, probably
because of a decrease of lipogenesis-relevant genes such as peroxisome proliferator-activated
receptor-g and sterol-regulatory element-binding protein 1 and enzymes including fatty acid
synthase and glycerol-3-phosphatase acyltransferase, whereas b-oxidation-related genes were
increased [113]. Because circulating levels of NUCB2/nesfatin-1 were reduced in patients with
nonalcoholic fatty liver disease [114], the peptide might play a pathogenetic role under these
conditions. This role should be further investigated along with the therapeutic potential in
this disease.

5. Implications of Nesfatin-1 in the Development of Anxiety and Depression

Nesfatin-1 was shown to exert an anxiogenic effect after ICV injection in rats [115], a finding
subsequently confirmed after IP injection [116]. A rat model inducing anxiety by using
maternal separation and acute gastric irritation in early life and sequential stress in
adulthood displayed increased NUCB2/nesfatin-1 peptide levels in the hippocampus, gastric
fundus, and plasma, possibly contributing to the increased anxiety under these conditions
[117]. Interestingly, in humans a correlation between circulating NUCB2/nesfatin-1 levels
and self-reported anxiety was observed, with a positive association in women [118, 119],
whereas in men this association was negative [120], pointing toward a sex-specific regulation
of the peptide. However, the reduction of anxiety under inpatient treatment conditions did
not significantly alter circulating NUCB2/nesfatin-1 levels [121]. Whether a longer
(.4 weeks) observation time is necessary or whether patients with more severe anxiety
disorders should be included to detect changes in NUCB2/nesfatin-1 warrants further in-
vestigation. Because anxiety and food intake are intimately linked, it might also be spec-
ulated that nesfatin-1 primarily affects anxiety and subsequently food intake. This
speculation should be followed up, for example, by assessment of food intake after coap-
plication of nesfatin-1 and anxiolytic drugs.

Besides the correlation with self-reported anxiety, circulating NUCB2/nesfatin-1 was also
associated with reported depression in a mixed-sex population [122], with NUCB2/nesfatin-1
levels rising with increasing severity of depression [123, 124], and correlated with in-
flammatorymarkers such as IL-6 and C-reactive protein aswell as corticosterone under these
conditions [125]. Higher NUCB2/nesfatin-1 levels were subsequently shown in patients
reporting depression associated with subclinical hypothyroidism [126], leading to the hy-
pothesis of nesfatin-1 being involved in these symptoms. Also, an animal model of gastric
cancer comorbid with depression displayed higher NUCB2/nesfatin-1 peptide levels in the
hippocampus, midbrain and plasma compared with undisturbed controls [127]. Nesfatin-1, at
least based on animal data, is likely to play a role in the development of depressive symptoms,
because ICV injection of the peptide was shown to reduce the consumption of a palatable
snack in a novel environment as a surrogate for anhedonic behavior in rats [115]. This finding
was subsequently extended to a peripheral effect as rats showed increased immobility in the
forced swim test after IP injection of the peptide [116]. Whether nesfatin-1 plays a causal role
in the development of depressive symptoms in humans as well remains to be investigated.

Interestingly, a positive association between circulating NUCB2/nesfatin-1 and depression
has been described in women [118, 119], whereas inmen this correlation was absent [120]. The
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sex-specific alteration of the peptide was also described in a study on depression-associated
suicide victims: while NUCB2 mRNA expression in the Edinger-Westphal nucleus was ele-
vated in men, it was lower in women than in control subjects who died without any diagnosed
neurodegenerative or psychiatric disorder [128]. This sex-specific regulation, possibly associ-
ated with a sex steroid dependency, as described below, should be followed up in future studies.

6. Implications of Nesfatin-1 in Cardiovascular Functions

ICV injection of nesfatin-1 was shown to increase blood pressure in rats [129, 130], an effect
also observed after microinjection into the paraventricular nucleus of the hypothalamus [131]
and probably mediated by increased central parasympathetic tone [132], assumed to mediate
the observed bradycardia [133], and by sympathetic nerve outflow [134], and blocked by
pretreatment with the melanocortin 3/4 antagonist SHU9119 [129, 130] or the a-adrenergic
antagonist phentolamine [130]. Moreover, pretreatment with an oxytocin antagonist, orni-
thine vasotocin [22], or a CRF2 antagonist, astressin2-B [135], prevented nesfatin-1’s hy-
pertensive effect. Because the hypertensive action of CRF, but not a-melanocyte-stimulating
hormone, was prevented by pretreatment with ornithine vasotocin [135], nesfatin-1might act
via downstream CRF → oxytocin → melanocortin 3/4 signaling to increase blood pressure.
Also, microinjection of nesfatin-1 into the nucleus of the solitary tract increased blood
pressure in rats [136]. Further corroborating the role of nesfatin-1 in the regulation of blood
pressure, mice overexpressing NUCB2 displayed an increased systolic, diastolic, and mean
blood pressure [137]. Conversely, knockdown of NUCB2 specifically in the paraventricular
nucleus blunted the high-salt diet-stimulated increase in systolic blood pressure [21].
Likewise, silencing of paraventricular NUCB2/nesfatin-1 signaling counteracted the rise in
systolic blood pressure observed in agouti-related peptide/3-phosphoinositide-dependent
protein kinase-1 knockout mice [138].

Peripheral nesfatin-1 exerts pronounced effects on the cardiovascular system, namely an
increase in blood pressure after IP administration in mice [139] and rats [140] or IV injection
in rats [141], with inhibited relaxation of peripheral blood vessels probably contributing
to this effect [141]. This effect is likely associated with stimulated signaling of the
phosphoinositide-3-kinase (PI3K)/AKT/m-TOR pathway and phosphorylation of Janus ki-
nase 2 (JAK2)/STAT3, resulting in proliferation, migration, and phenotype switch of vascular
smoothmuscle cells from a contractile to a synthetic state by elevating themRNA and protein
expression of matrix metalloproteinase 2 and 9 while reducing peroxisome proliferator-
activated receptor-g [142, 143]. Because NUCB2 mRNA expression was increased in the
media of the aorta of spontaneously hypertensive rats [142], nesfatin-1 might play a
pathogenetic role under these conditions. In line with this assumption, circulating NUCB2/
nesfatin-1 levels were higher in patients with essential hypertension than in normotensive
controls and correlated with systolic blood pressure [144]; therefore, nesfatin-1 has been
suggested as a risk factor for obesity-associated hypertension (OR 1.5) [145]. Also, patients
with polycystic ovary syndrome displayed increased circulating NUCB2/nesfatin-1 concen-
trations, which correlated with systolic and diastolic blood pressure levels [146].

In the heart nesfatin-1 decreases contractility and relaxation as assessed in isolated rat
heart preparations [147]. In zebrafish, IP injected nesfatin-1 reduced end diastolic volume
and cardiac output associated with decreased heart rate [148], whereas in rat [149] and
goldfish [150] a positive inotropic effect was observed ex vivo [150], possibly reflecting the
difference between whole body and organ or tissue conditions. These effects might well be
locally mediated, because NUCB2 mRNA expression has been detected in the heart of mouse
[14], rat [14], zebrafish [148], and human [14], a finding corroborated by NUCB2/nesfatin-1
protein expression in rat and human cardiomyocytes [14]. Because the receptor is assumed to
be expressed in the heart, as recently suggested by autoradiography in rats [16], nesfatin-1
might act in the heart in an autocrine or paracrine manner.

The cardioprotective effects were first suggested after ex vivo experiments in Langendorff-
perfused rat heart preparations, as indicated by reduced infarct size, lactate dehydrogenase
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release and postischemic contracture [147]. These effects are probably mediated by myocardial
upregulation of p-AKT/AKT and p-glycogen synthase kinase (GSK)-3beta/GSK-3b, resulting in a
reduction of apoptotic and necrotic cells under conditions of isoproterenol-induced myocardial
infarction [151]. Consequently, cardiac troponint and proinflammatory cytokines were lower in
rats receiving IP nesfatin-1 than in those treated with vehicle [151]. However, another study
reported a nesfatin-1-induced apoptosis of cardiomyocytes in isolated neonatal rat hearts me-
diated via reduced AKT inactivation and increased expression of apoptogenic protein 1 and
caspase-3 [152]. Whether this discrepancy is caused by dosage differences (1 mM vs. 100 pM/L)
warrants further investigation. Lastly, in a human study investigating subjects with rheumatoid
arthritis, nesfatin-1 correlated positively with rheumatoid factor, matrix metalloproteinase-2,
and plaque stability mediator and negatively with carotid intima-media thickness [153], giving
rise to a protective effect of nesfatin-1 under these conditions.

7. Implications of Nesfatin-1 in Reproductive Functions

Expression ofNUCB2mRNAhas beendetected in rat [11],mouse [11], dog [154], andhuman [11]
testes, and NUCB2/nesfatin-1 protein has been identified in the interstitium next to the
seminiferous tubules [8], probably representing interstitial Leydig cells, with increased levels in
the transition from puberty to adulthood stimulated by pituitary LH [11]. Similarly, in female
mice NUCB2 mRNA expression was detected in the ovary, with NUCB2/nesfatin-1 peptide
expression in the theca and interstitial cells of the ovary [13], the peptide expression has been
confirmed in birds [155]. In female rats hypothalamic NUCB2 mRNA levels and NUCB2/
nesfatin-1 protein content increased during pubertal transition [156]. Also, in humans circu-
lating NUCB2/nesfatin-1 levels increased in girls with premature thelarche compared with the
prepubertal state [157], leading to the hypothesis of a role for nesfatin-1 in gonadal development.

Indeed, ICV injection of nesfatin-1 resulted in an elevation of circulating gonadotropins,
whereas ICV infusion of an anti-NUCB2 antisense oligonucleotide delayed vaginal opening
and decreased ovarian weights as a sign of hampered puberty in these animals [156].

In male rats, nesfatin-1 increased human chorionic gonadotropin-stimulated testosterone se-
cretion from testicular explants ex vivo [11]. ICV injection of nesfatin-1 resulted in a reduced ex-
pression of hypothalamic GnRH, kisspeptin, pituitary FSHb, LHb, and testicular steroidogenic
acute regulatory protein, whereas it markedly elevated the expression of 3b-hydroxysteroid de-
hydrogenase, 17b-hydroxysteroid dehydrogenase, and cytochrome P450 mRNA in the testes of
pubertal rats [158]. Conversely, testosterone stimulated mouse NUCB2 mRNA and NUCB2/
nesfatin-1 protein expression in hypothalamic and pituitary cells in vitro [159]. Further
corroborating the testosterone-dependent regulation of nesfatin-1, castratedmice displayed reduced
NUCB2 mRNA expression in the pituitary, a finding reversed by testosterone treatment [160].

Immunohistochemical expression analysis of hemochorial mouse and human placenta
demonstrated a wide distribution of NUCB2/nesfatin-1, namely in the ectoplacental zone,
parietal trophoblast giant cells and early spongiotrophoblast from embryonic day (E) 7.5 to
E9.5 and additionally at E10.5 to E12.5 in the developing labyrinth [161]. Glycogen tro-
phoblast cells, syncytiotrophoblast, sinusoidal trophoblast giant cells and fetal capillary
endothelial cells of the labyrinth expressed NUCB2/nesfatin-1 at high levels from E12.5
[161]. In human pregnancy, nesfatin-1 was highly expressed in syncytiotrophoblast
throughout all three trimesters [161], giving rise to a modulating role of nesfatin-1 in glucose
homeostasis also during pregnancy. Nesfatin-1 was also recently implicated in the main-
tenance of pregnancy because uterine expression levels of NUCB2 mRNA and NUCB2/
nesfatin-1 protein levels were increased in a mouse spontaneous abortion model [162], a
hypothesis to be further investigated.

8. Conclusions

The present review highlights nesfatin-1 as a pleotropic polypeptide (Table 1) with a well-
established anorexigenic action and an inhibitory effect on gastrointestinal motility acting on
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Table 1. Central and Peripheral Effects of Nesfatin-1

Central Effects Mediation Peripheral Effects Mediation

Feeding behavior Food intake ↓ (acute)
[1, 21, 24], water
intake ↑ [31]

CRF2- [24] and
histamine- [35],
melanocortin- [1]
dependent [35], pm-
TOR-related [67]

Food intake ↓/= (acute
and chronic) [2, 30]

Leptin-independent [2]

Gastrointestinal
functions

Gastric emptying ↓
[24, 67]

Melanocortin receptor-
dependent ↓ [67]

Gastric contractions ↓
[73]

Cyclooxygenase
2-dependent [79]

Gastric motility ↓ [69] H+/K+-ATPase
expression ↓ [76]

Gastric ulcer healing ↑
[78–80]Acid output ↓ [69]

Glucose
homeostasis
andmetabolism

Muscle glucose
absorption, insulin
receptor signaling ↑
[95], gluconeogenesis ↓
[95], hypothalamic
glucosensing neurons
↑/↓ [34, 97], core body
temperature ↑ [23],
energy expenditure ↑
[110], dry heat ↓ [110],
brown adipose tissue ↑
[110], tail temperature
↑ [110], body weight
gain (chronic) ↓ [1, 34]

AKT/AMPK/transducer
of regulated CREB
protein 2 [95],
melanocortin 3/4
signaling [110], UCP-
1 expression and
m-TOR signaling
[112], melanocortin
system, UCP1
expression [34]

Glucose-stimulated
insulin secretion ↑ [90],
glucagon secretion ↑
[85], insulin sensitivity
↑ [90], blood glucose ↓
[92], blood glucose and
insulin resistance ↓
[93], brown adipocyte
differentiation ↑ [112],
UCP1 expression ↑
[112],plasmacholesterol+
triacylglyceride ↓ [113],
lipid accumulation ↓
[113], free fatty
utilization ↑ [92]

Kv2.1 channel-
dependent [88],
AMPK and p-ACC
phosphorylation
[93], m-TOR
signaling [112], AMPK
phosphorylation [113]

Anxiety and
depression

Anxiety and depressive-
like behavior (acute) ↑
[115]

Anxiety-like behavior
(chronic) ↑ [116]

Cardiovascular
functions

Blood pressure ↑
[130–132, 136], heart
rate ↑/↓ [132], [133]

CRF- [22], sympathetic-
[134], parasympathetic-
[132, [133],
melanocortin- [22]
dependent

Blood pressure ↑ [139,
140], contractility of
heart and vessels ↑
[141, 147], end
diastolic volume,
cardiac output, heart
rate ↓ [148], aorta
relaxation ↑ [149, 150],
cardioprotection ↑
[147, 151], apoptosis of
cardiomyocytes ↑/↓
[151, 152], proliferation,
migration, phenotype
switch of vascular
smooth muscle cells ↑
[143]

PI3K/AKT/m-TOR,
JAK2/STAT3
signaling [142],
endothelium, NO-
and guanylatecyclase-
dependent [149],
p-AKT/AKT and
p-GSK-3b/GSK-3b
[143], AKT,
apoptogenic protein
1 and caspase-3
[152]. PI3K/AKT/
m-TOR pathway and
phosphorylation of
JAK2/STAT3 [142]

Reproductive
functions

Pubertal transition ↑
[156]

Circulating
gonadotropins ↑ [156,
158], expression of
genes for GnRH,
kisspeptin, FSH,
LH, testicular
steroidogenic acute
regulatory protein ↓
[158], expression of
genes for 3b-HSD,
17b-HSD, cytochrome
P450 ↑ [158]

Human chorionic
gonadotropin-dependent
testosterone secretion ↑
[158]

Abbreviations: ↑, increase/stimulation; ↓, decrease/inhibition; =, no effect; NO, nitric oxide.
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different brain nuclei (Fig. 1). Moreover, nesfatin-1 plays a role in glucose homeostasis as a
negative regulator of glucose levels and is also involved in energy expenditure by increasing
thermogenesis. In addition, nesfatin-1 might be involved in the development of anxiety and
depression as well, with a differential regulation in male and female patients high-
lighting the need for the study of sex differences. Its most striking peripheral effects are
related to the cardiovascular system, thereby improving cardiac contractility, aorta re-
laxation, and cardioprotection. Lastly, peripheral nesfatin-1 is involved in gonadal de-
velopment and during pregnancy. The identification of the yet unknown nesfatin-1
receptor will represent a great leap forward in the understanding of nesfatin-1’s physi-
ology and will allow us to better investigate the effects underlying the different actions
summarized here.
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