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AP-MS: affinity-purification mass spectrometry 

BFDR: Bayesian false discovery rate 

COVID-19: coronavirus disease 2019 

DUB: deubiquitinating enzyme 
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FDR: false discovery rate 

GO: gene ontology 

M: membrane 

N: nucleocapsid 

NO: nitric oxide 

ncRNA: non-coding RNA 

Nsp: non-structural protein 

OMS: open modification searching 

PIA: Protein Inference Algorithms 

PPI: protein-protein interaction 

PSM: peptide-spectrum match 

PTM: post-translational modification 

S: spike 

SARS-CoV-2: severe acute respiratory syndrome coronavirus 2  
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Abstract 

The outbreak of the SARS-CoV-2 coronavirus, the causative agent of the COVID-19 disease, has 

led to an ongoing global pandemic since 2019. Mass spectrometry can be used to understand the 

molecular mechanisms of viral infection by SARS-CoV-2, for example, by determining virus–host 

protein–protein interactions (PPIs) through which SARS-CoV-2 hijacks its human hosts during 

infection, and to study the role of post-translational modifications (PTMs). We have reanalyzed 

public affinity purification mass spectrometry data using open modification searching to 

investigate the presence of PTMs in the context of the SARS-CoV-2 virus–host PPI network. 

Based on an over two-fold increase in identified spectra, our detected protein interactions show a 

high overlap with independent mass spectrometry-based SARS-CoV-2 studies and virus–host 

interactions for alternative viruses, as well as previously unknown protein interactions. 

Additionally, we identified several novel modification sites on SARS-CoV-2 proteins that we 

investigated in relation to their interactions with host proteins. A detailed analysis of relevant 

modifications, including phosphorylation, ubiquitination, and S-nitrosylation, provides important 

hypotheses about the functional role of these modifications during viral infection by SARS-CoV-

2. 

 

Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible and 

pathogenic coronavirus that causes coronavirus disease 2019 (COVID-19). Since late 2019, it has 

caused an ongoing global pandemic and socioeconomic crisis, with currently over 610 million 

people infected and over 6.5 million deaths globally (World Health Organization, September 2022) 
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[1]. Despite intensive research by the scientific community, many important questions regarding 

its molecular mechanisms remain unanswered. 

 

Viruses are opportunistic intracellular pathogens that depend on their interactions with host 

proteins to ensure their survival and propagation. The study of protein–protein interactions (PPIs) 

between SARS-CoV-2 and human proteins is important to understand the mechanisms of viral 

infection by SARS-CoV-2 [2] and develop therapeutic treatments [3]. Proteins and their function 

can be altered by post-translational modifications (PTMs) to increase the functional diversity of 

the limited number of proteins that are encoded. Interestingly, PTMs have been characterized on 

several coronavirus proteins, in spite of the fact that coronaviruses lack enzymes capable of 

introducing such modifications [4]. Elucidating the roles of PTMs in a mechanistic context is 

important to understand viral infection, as they are crucial for viral protein function and promote 

viral replication, assembly, and release. For example, phosphorylation of the SARS-CoV-2 

nucleocapsid protein allows its shuttling between cellular compartments [5]. Additionally, insights 

in viral and host PTM dynamics offers a potential avenue towards the development of antiviral 

therapies. Removing PTMs that play a role in the enzymatic activity of viral proteins can aid the 

host in overcoming viral infection. Alternatively, viral proteins can be modified leading to their 

inactivation and/or proteasomal degradation, for example by attaching ubiquitin [6]. 

 

Affinity-purification mass spectrometry (AP-MS)-based proteomics was used to compile the first 

SARS-CoV-2–human PPI map, revealing interactions with proteins involved in major cellular 

processes, including DNA replication, RNA processing, and vesicle trafficking to give insights 

into SARS-CoV-2 infection [2]. Additionally, the interaction map revealed several human proteins 
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that are targeted by existing drugs approved by the US Food and Drug Administration, which may 

be potential targets for drug repurposing. 

 

The majority of previously conducted studies use standard sequence database searching to process 

AP-MS data [2, 7-10]. Most search engines require the user to explicitly specify potential protein 

modifications to be considered during searching. Unfortunately, taking into account multiple 

modifications simultaneously during spectrum identification is problematic. First, it leads to 

excessive search times due to the exponential increase in the number of candidate peptides that 

have to be considered. Second, it produces more random high-scoring matches due to the increase 

in candidates, leading to fewer identifications at a given false discovery rate (FDR) [11]. Therefore, 

a standard analysis typically only considers a handful of variable modifications. In the original 

analysis of the SARS-CoV-2 AP-MS data, only two modifications (N-terminal acetylation and 

methionine oxidation) were considered, leaving a substantial part of the data unexplored. 

 

We have recently performed a computational reanalysis of the SARS-CoV-2 AP-MS data by 

Gordon et al. [2] to uncover additional virus–host interactions not reported in the original study, 

which highlighted further opportunities for drug repurposing [12]. However, post-translational 

modifications were still not considered. Therefore, in this study we used an increasingly popular 

approach to overcome these limitations called “open modification searching” (OMS) to gain new 

insights into virus–host interactions. This innovative approach allows a modified spectrum to 

match against its unmodified variant by using a very wide precursor mass window. It is thus able 

to identify peptides carrying any type of modification. Algorithmic advances of the last few years 

now allow for the fast and accurate use of OMS, enabling an unbiased detection of modifications 
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at an unparalleled scale [13-15]. The OMS solution ANN-SoLo [13, 14] was used to reprocess the 

SARS-CoV-2 AP-MS data by Gordon et al. [2]. The reanalysis resulted in a more than two-fold 

increase in identified spectra compared to the originally reported results, allowing more accurate 

PPI filtering. Additionally, several modified viral peptides were identified. Phosphorylation, 

ubiquitination, and S-nitrosylation were selected to be investigated in more detail, in view of their 

putative importance during a viral infection. For each of these PTMs, we detected novel PTM sites 

on SARS-CoV-2 proteins, revealing potential functional insights. 

 

Experimental procedures 

Experimental design and statistical rationale 

A previously generated AP-MS dataset to study the SARS-CoV-2 virus–host interactome [2] was 

retrieved from the PRIDE repository (PXD018117) [16]. For the full experimental details, see the 

original study by Gordon et al. [2]. In brief, affinity purification was performed using 27 SARS-

CoV-2 proteins that were individually tagged and expressed in triplicate (biological replicates) in 

HEK-293T cells. Bead-bound proteins were denatured, reduced, carbamidomethylated, and 

enzymatically digested using trypsin, and each sample was injected via an Easy-nLC 1200 

(Thermo Fisher Scientific) into a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific). 

The SARS-CoV-2 proteins that were included are: all mature nonstructural proteins (Nsps), except 

for Nsp3 and Nsp16; a mutated version of Nsp5 to disable its proteolytic activity (Nsp5_C145A); 

and all predicted SARS-CoV-2 open reading frames (Orfs), including the spike (S), membrane 

(M), nucleocapsid (N), and envelope (E) protein. Spectrum identifications were 

filtered at 1% FDR and PPIs were filtered using a SAINTexpress Bayesian 
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false-discovery rate (BFDR) ≤ 0.05, an average spectral count ≥ 2, and 

a MiST score ≥ 0.7 (see further). 

 

Spectrum identification using open modification searching 

First, the downloaded raw files were converted to MGF files using ThermoRawFileParser (version 

1.2.3) [17]. Next, OMS was performed using the ANN-SoLo spectral library search engine 

(version 0.2.4) [13, 14]. A combined human–SARS-CoV-2 spectral library was used for searching. 

The MassIVE-KB library (version 2018/06/15) was used as human spectral library. This is a 

comprehensive human HCD spectral library containing 2,154,269 unique precursors 

corresponding to 1,114,503 unique peptides, derived from publicly available mass spectrometry 

data in the MassIVE repository [18]. SARS-CoV-2 spectra were simulated by generating all 

possible tryptic peptide sequences from the SARS-CoV-2 protein sequences downloaded from 

UniProt (version 2020/03/05) using Pyteomics (version 4.3.2) [19] and predicting the 

corresponding spectra using Prosit (version prosit_intensity_2020_hcd; collision energy 33 as 

determined by Prosit collision energy calibration) [20]. A simulated spectral library for the green 

fluorescent protein was generated in a similar fashion. A final spectral library was compiled by 

merging all spectra using SpectraST (version 5.0) [21] and adding decoy spectra in a 1:1 ratio 

using the shuffle-and-reposition method [22]. ANN-SoLo was configured to use a 20 ppm 

precursor mass tolerance during the first step of its cascade search and a 500 Da precursor mass 

tolerance during its open search. Other search settings were to filter peaks below 101 m/z, above 

1500 m/z, and in a 0.5 m/z window around the precursor mass; a 0.02 m/z fragment mass tolerance; 

and a bin size of 0.05 m/z. The remaining settings were kept at their default values. Peptide-
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spectrum matches (PSMs) were filtered at 1% FDR using ANN-SoLo’s built-in subgroup FDR 

procedure (Supplementary Table 1). 

 

Additionally, OMS was performed using MSFragger (version 3.5) [15] and FragPipe (version 

18.0) against a concatenated FASTA file containing human protein sequences (Uniprot reviewed 

sequences downloaded on 2020/02/28) [23], the SARS-CoV-2 protein sequences (version 

2020/03/05), and the green fluorescent protein sequence. An equal number of decoy protein 

sequences were generated using FragPipe. The MSFragger search settings included a precursor 

mass tolerance between -150 Da and 500 Da, a fragment mass tolerance of 0.02 Da, and trypsin 

cleavage with up to two missed cleavages. Cysteine carbamidomethylation was used as a fixed 

modification, and oxidation of methionine and N-terminal acetylation were used as variable 

modifications. Other search settings were kept at their default values. PSMs were processed using 

PeptideProphet (version 4.4.0) [24] with the FragPipe default settings for open searches and 

filtered at 1% FDR. 

 

Protein inference and protein-protein interaction filtering 

Protein inference was performed using the Protein Inference Algorithms (PIA) tool (version 

1.3.13) [25] based on Occam’s razor. Only proteins with minimum two unique peptides were 

retained, while other settings were kept at their default values (Supplementary Table 2). Combined 

scoring of interacting proteins using SAINTexpress (version 3.6.3) [26] and MiST 

(https://modbase.compbio.ucsf.edu/mist/, version main.e2da2b0) [27] was used to filter high-

confidence PPIs (Supplementary Table 3). Scoring thresholds were a SAINTexpress 
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Bayesian false-discovery rate (BFDR) ≤ 0.05, an average spectral count 

≥ 2, and a MiST score ≥ 0.7 (Supplementary Table 4). 

  

To validate the filtered PPIs, a list of SARS-CoV-2–human interactions reported in seven 

alternative MS-based SARS-CoV-2 virus–host interactome studies [7-10, 28-30] were obtained 

from the BioGRID repository [31]. Additionally, PPIs from a previous reanalysis of the original 

AP-MS study were included [12]. Human interaction partners were queried in the VirHostNet 

database (version 3.0) [32] to investigate whether these proteins are also targeted by other viruses. 

 

 

Gene ontology enrichment analysis 

Gene Ontology (GO) enrichment analysis was performed for the human proteins that interact with 

each viral protein, using the enrichGO function of the clusterProfiler package (version 4.0.5) in R. 

Significant GO terms corresponding to the biological process category (1% Benjamini-Hochberg 

false discovery rate) were extracted and further refined to select non-redundant terms using the 

rrvgo package (version 1.4.4) with default parameters [33]. 

 

Investigation of post-translational modifications 

The precursor mass differences observed in the ANN-SoLo results were referenced against the 

Unimod database [34] to determine the modifications that were present. PSMs that included 

specific PTMs (phosphorylation, ubiquitination, and S-nitrosylation) were manually investigated 

in more detail to disambiguate between alternative PTM assignments with near-identical mass and 
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determine the modification site by visual inspection using the spectrum_utils Python package 

(version 0.3.3) [35]. 

  

Identified PTM sites were verified using PTM prediction tools and through literature study. 

Phosphorylation results were compared to three independent SARS-CoV-2 phosphoproteomic 

studies [36-38]. Phosphorylation site prediction was performed using NetPhos (version 3.1) [39, 

40]. Additionally, GPS (version 5.0) [41] was used to predict kinase-specific phosphorylation sites 

(with a “high” threshold) for each of the SARS-CoV-2 proteins that were found to interact with 

known human kinases, retrieved from the KinHub database [42] (Supplementary Table 5–6). 

Ubiquitination results were compared to two independent SARS-CoV-2 ubiquitination studies [7, 

43] and ubiquitination sites predicted by BDM-PUB (version 1.0) [44] (Supplementary Table 7). 

To our knowledge, to date there have been no S-nitrosylation sites reported on SARS-CoV-2. S-

nitrosylation site prediction was performed with iSNO-PseAAC (version 1.0) [45], to validate 

observed S-nitrosylation sites (Supplementary Table 8–9). 

 

Results 

Increased spectrum identification rate using open modification searching 

boosts protein–protein interaction confidence 

Open modification searching using ANN-SoLo succeeded in identifying 830,743 of 2,503,010 

total MS/MS spectra at 1% FDR (33% identification rate). This represents a 214% increase in 

identified spectra compared to the originally reported results [2] obtained by standard searching 

using MaxQuant [46] (Figure 1A). Notably, 402,586 PSMs correspond to modified peptides with 
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non-zero precursor mass differences from open modification searching (Figure 1C, Supplementary 

Table 10). Besides the increase in identified spectra, an important advantage of open modification 

searching is its ability to identify any type of PTM in an unbiased fashion, without the need to 

explicitly specify a limited number of variable modifications. This makes it possible to explore the 

general presence of PTMs in the context of the SARS-CoV-2 virus–host interactome. Frequently 

observed PTMs include modifications that were likely artificially introduced during sample 

processing [47], such as oxidation, dioxidation, and acetylation. Such ubiquitous modifications are 

typically included as variable modifications during standard searching. The OMS results also 

include unique observations of biologically relevant modifications at lower abundances, such as 

phosphorylation, ubiquitination, and S-nitrosylation. 

 

Similar beneficial results can also be achieved with alternative OMS tools, such as MSFragger 

[15]. Performing an open search using MSFragger instead of ANN-SoLo succeeded in identifying 

574,394 of 2,503,010 total MS/MS spectra at 1% FDR (23% identification rate). This represents a 

148% increase in identified spectra compared to the originally reported results [2] (Supplementary 

Figure 1A). Furthermore, there is a strong correspondence in identification results between ANN-

SoLo and MSFragger (Supplementary Figure 1B–C), which indicates the robustness of open 

modification searching, irrespective of the search engine that is employed. For simplicity of the 

downstream analyses and because ANN-SoLo was more sensitive than MSFragger, the ANN-

SoLo results were used to investigate protein interactions during viral infection by SARS-CoV-2. 

  

PPI filtering is crucial to separate true interactors from non-specific binders and contaminants. A 

combination of SAINTexpress and MiST filtering of the open modification searching results 
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produced 375 high-confidence PPIs (Supplementary Table 4). These results contain 164 PPIs that 

overlap with the previously reported results [2] and 211 novel PPIs (Supplementary Figure 2). 

Notably, a previous reanalysis of these AP-MS data using alternative 

bioinformatics tools reported a similar overlap with the original PPI 

results [12]. The difference in detected PPIs is partly due to the 

difference in spectrum identification and PPI filtering strategies. In 

the original analysis a two-step filtering strategy was used. In the 

first step, the PPIs were filtered by a SAINTexpress BFDR ≤ 0.05, an 

average spectral count ≥ 2, and a MiST score ≥ 0.7. All proteins that 

fulfilled the first filtering step were searched in the CORUM [48] 

database of known protein complexes, and information was extracted 

about the stable protein complexes that they participated in. In the 

second step, all the proteins that formed known complexes with 

interactors identified in the first step were subjected to a filtering 

step with a lower stringency (MiST score ≥ 0.6) [2]. In contrast, in the 

reanalysis only a single filtering step was performed using a 

SAINTexpress BFDR ≤ 0.05, an average spectral count ≥ 2, and a MiST 

score ≥ 0.7. 

 

When compared to the unfiltered PPI data of the original analysis [2], 199 of the 211 novel PPIs 

were previously detected as well but failed the original PPI filtering thresholds (Supplementary 
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Figure 3). Most discarded PPIs (~88%) did not pass the minimum threshold for the MiST score, 

which is a linear combination of the prey abundance, the prey reproducibility across repeated runs, 

and the specificity of the prey relative to other baits [49]. About 28% of the discarded PPIs did not 

pass the SAINTexpress BFDR filter, which is based on the abundance of the preys and control 

proteins [26]. The difference in filtered PPIs in the reanalysis is driven by the increased number of 

PSMs per identified protein from the open modification results, which resulted in a more reliable 

identification of both background proteins and potential interaction partners. This influences the 

PPI filtering and results in a more robust identification of true interactors. 

 

The PPIs were validated against seven alternative MS-based SARS-CoV-2 virus–host interactome 

studies [7-10, 28-30] and the results from a previous reanalysis [12]. The largest overlap was found 

with the previous reanalysis and the original analysis, as these studies make use of the same 

experimental data and only differ in the computational tools that were employed (Figure 2A). 

Although most independent studies contributed unique PPIs, there is a strong correspondence in 

the superset of detected PPIs across all independent studies, with 317 of the 375 PPIs that were 

detected in this study previously reported in one or more of the other studies (Figure 2A, 

Supplementary Figure 2). Additionally, investigating the overlap with the 

VirHostNet database [32] shows that 328 of the human interaction 

partners are also targeted by other viruses (Figure 2B). These results 

are significantly enriched in the VirHostNet database (Fisher’s exact 

test, p-value ≪ 0.001), which is expected as different viruses have 

similar strategies to hijack the host, for example, through functional 

conservation or viral recombination [32]. 
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GO enrichment analysis based on the human interacting proteins for each SARS-CoV-2 protein 

indicates how viral infection might hijack major cellular processes, including metabolic processes 

involving non-coding RNA (ncRNA; Nsp8) and glycoproteins (Orf8), and RNA export from the 

nucleus (Orf6) (Figure 3). Both microRNA and long non-coding RNA are ncRNA that can regulate 

gene expression and exhibit different expression profiles in COVID-19 patients compared to 

healthy people [50, 51]. Additionally, they have recently been found to act as viral modulators, 

regulating viral infection and host defense [52, 53]. Glycoprotein metabolic processes are expected 

to be relevant to Orf8, as induction of proinflammatory cytokine production by secreted Orf8 is 

glycosylation dependent [54]. RNA export from the nucleus is also relevant, as SARS-CoV-2-

infected cells have an increased level of nuclear mRNA accumulation. Confirming our detected 

interactions between Orf6 and the mRNA export factors Rae1 and Nup98, a recent study found 

that Orf6 uses this process to trap host mRNA [55]. In addition to these major cellular processes, 

other biological processes relevant during viral infection were found, including viral transcription 

and viral gene expression (Supplementary Figure 4). 

 

Interaction between human kinases and phosphorylated viral proteins 

Phosphorylation is a common PTM that impacts many basic cellular processes [56]. It usually 

results in a functional change of the target protein, interfering with its enzymatic activity, cellular 

location, and/or association with other proteins. Several studies have indicated that also the 

function of viral proteins can be affected by their phosphorylation status. For example, association 

of the SARS-CoV-2 nucleocapsid protein with the 14-3-3 host proteins depends on its 
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phosphorylation status [57] and phosphorylation of the SARS-CoV-1 nucleocapsid protein has 

been proven to be important for the regulation of the viral life cycle [58]. 

  

Twenty phosphorylated viral peptides were identified using open modification searching, and 

phosphosites were localized to specific residues using visual inspection where possible 

(Supplementary Table 5, Supplementary Figure 5–24). Notably, despite the fact that no 

phosphopeptide enrichment protocol was used during the original AP-MS study, we identified 

several phosphorylation sites that match results from specialized phosphoproteomics studies 

performed on SARS-CoV-2 infected cells [36-38] (Figure 4A). 

  

Phosphorylation status is determined by the interplay between kinases and phosphatases. Kinases 

catalyze the attachment of phosphate groups to target proteins and phosphatases remove phosphate 

groups from target proteins [59]. SARS-CoV-2 does not encode any kinases or phosphatases, and 

thus relies on host proteins for its phosphorylation status. Several kinases and phosphatases have 

been identified as potential drug targets and a few kinase inhibitors are currently being used to 

treat COVID-19. For example, baricitinib is recommended by the World Health Organization for 

patients with severe or critical COVID-19. It is a JAK inhibitor that suppresses overstimulation of 

the immune system by preventing phosphorylation of key proteins involved in the signal 

transduction that leads to immune activation and inflammation [60], and it is able to prevent SARS-

CoV-2 from entering the cell by inhibiting clathrin-mediated endocytosis [61]. 

  

We detected multiple interactions between SARS-CoV-2 proteins and host kinases and 

phosphatases (Supplementary Tables 11–12), including RIPK1 (Nsp12) and TBK1 (Nsp13), both 

Jo
urn

al 
Pre-

pro
of



 

 

of which have previously been linked to SARS-CoV-2. Active phosphorylated RIPK1 was found 

in epithelial cell samples from COVID-19 patients [62], and a recent study discovered that Nsp12 

promotes activation of RIPK1, which in turn enhances viral replication by stimulating the 

expression of viral receptors, such as ACE2 and EGFR [63]. Furthermore, Nsp13 is found to limit 

the activation of TBK1 by directly binding to TBK1 [64]. Additionally, we uncovered previously 

unknown interactions with host kinases, such as the interaction between Nsp12 and TLK1 (Figure 

4B). This interaction is particularly interesting as kinase-specific phosphorylation site prediction 

revealed that an observed phosphorylation site on Nsp12 (T21) is most likely caused by TLK1. 

 

Ubiquitination of SARS-CoV-2 proteins 

Ubiquitination is a common PTM that can affect the localization, stability, and function of proteins 

[65]. It regulates a variety of cellular processes, including protein degradation, protein trafficking, 

transcription, cell-cycle control, and cell signaling [66]. Depending on the cellular context, 

ubiquitin attachment may either promote or inhibit the viral life cycle. Viruses have developed 

means to exploit protein ubiquitination by enhancing or inhibiting ubiquitination of specific 

substrates depending on their needs. They can redirect protein degradation towards proteins with 

antiviral activity [67] or use ubiquitination to regulate viral proteins. For example, transcriptional 

function of the HIV type-1 Tat protein is increased by the addition of a single ubiquitin molecule 

[68]. More recently, it has been discovered that the inhibition of IFN-α signaling by SARS-CoV-

2 Orf7a depends on the ubiquitination of K119 [69]. 

 

Ten ubiquitinated viral peptides were identified, and, where possible, ubiquitination sites were 

localized to specific residues using visual inspection (Supplementary Table 7, Supplementary 
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Figure 25–34). Notably, all ubiquitination sites that could be confidently localized have been 

previously reported in independent studies [7, 43] (Figure 5A) or could be predicted. Interestingly, 

although ubiquitination of K16 on Orf9c has not been reported in SARS-CoV-2 yet, this site has 

been observed to be ubiquitinated in SARS-CoV-1 [7]. 

  

The final step of ubiquitination is performed by a ubiquitin (E3) ligase. This enzyme is particularly 

important as it determines to which substrate protein the ubiquitin is attached. A ubiquitin can be 

removed by deubiquitinating enzymes (DUBs). Both host E3 ligases and DUBs were found to 

interact with SARS-CoV-2 proteins (Supplementary Tables 13–14), suggesting that SARS-CoV-

2 might hijack the host ubiquitination system. For example, Nsp13 was found to interact with the 

DUB USP13 (Figure 5B). According to a recent study, Nsp13 likely hijacks USP13 to prevent 

itself from degradation. Both knockdown of USP13 and its inhibition through spautin-1 resulted 

in decreased levels of Nsp13, suggesting that USP13 deubiquitinates and consequently stabilizes 

Nsp13 [70]. 

 

S-nitrosylation of SARS-CoV-2 proteins 

A promising compound currently undergoing clinical trials for COVID-19 is nitric oxide (NO) 

[71]. Besides its role as an important vasodilator, to prevent blood clot formation, it functions as a 

vital immune mediator, exerting broad spectrum antiviral effects [72]. Nitric oxide potentially 

prevents infection by SARS-CoV-2, as it was suggested for SARS-CoV [73]. The surprisingly low 

prevalence of smokers among hospitalized COVID-19 patients [74] could be attributed to the 

intermittent burst of high nitric oxide concentration in cigarette smoke [75]. Also nitrate-rich 
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nutrition, exercise, and breathing through your nose is hypothesized to prevent a SARS-CoV-2 

infection, as they all increase the nitric oxide concentration [73, 76]. 

  

The general antiviral mechanism appears to be the NO-mediated S-nitrosylation of viral and host 

proteins [77]. S-nitrosylation is the reversible, covalent attachment of nitric oxide to the thiol side 

chain of cysteine. It is one of the most important and universal PTMs, and it can act as a global 

regulator of protein function akin to phosphorylation and ubiquitination [78]. Interestingly, 

reactive cysteine residues are present in many viral and host proteins, representing possible targets 

for nitric oxide [77]. Results of an in vitro study suggest that S-nitrosylation of the SARS-CoV-2 

3CL protease (Nsp5) can directly inhibit its protease activity and reduce viral replication [79]. 

 

To the best of our knowledge, there are currently no reported S-nitrosylation sites on SARS-CoV-

2 proteins. Because cysteine residues are typically considered using a fixed carbamidomethylation 

modification (+57.021464 Da) introduced during sample processing by alkylation with 

iodoacetamide [47], Prosit [20]—which was used to simulate SARS-CoV-2 spectra—always 

considers cysteine residues to be carbamidomethylated. However, the presence of a prior 

modification can block reduction and alkylation of cysteine residues [80]. Therefore, rather than 

identifying S-nitrosylation directly based on its mass difference of +28.990164 Da, this 

modification is represented by a mass difference of -28.031300 Da (28.990164 Da - 57.021464) 

in the open modification searching results. Because the corresponding S-nitrosylation mass 

difference is identical to the mass difference observed from the valine to alanine and methionine 

to cysteine amino acid substitutions, careful visual inspection to localize the modification to 
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specific amino acid residues was performed to confirm three S-nitrosylation sites (Supplementary 

Table 8, Supplementary Figure 35–52). 

  

Interestingly, one of these S-nitrosylation sites (C45) is located on the main protease Nsp5, 

specifically, near the catalytic site. Nsp5 is one of two cysteine proteases necessary for viral 

replication and assembly, and its protease activity is suggested to be directly inhibited by S-

nitrosylation [79]. A recent study found that C45 is a hyper-reactive cysteine with a higher 

nucleophilicity than C145—the catalytic cysteine of Nsp5—and identified C45 as an attractive 

binding site for the development of a covalent inhibitor [81]. 

 

Discussion 

Mass spectrometry research can help to provide insights into the etiology of SARS-CoV-2 

infection and identify potential therapeutic targets by investigating the roles of viral and host 

proteins during infection, their protein interactions, and post-translational modifications [12]. 

Additionally, it can be used to develop diagnostic strategies, such as through efforts of the CoV-

MS consortium [82]—a partnership by multiple academic and industrial groups to increase 

applicability, accessibility, sensitivity, and robustness of a mass spectrometry-based diagnostic test 

that detects proteolytically digested SARS-CoV-2 proteins. 

  

Here we have used open modification searching to reprocess SARS-CoV-2–human AP-MS data 

to investigate post-translational modifications in the context of protein–protein interactions 

between SARS-CoV-2 and its human host. Studying these two aspects in tandem is especially 

relevant to understand the mechanisms of viral infection, because although PTMs are essential for 
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viral replication, coronaviruses lack the enzymes to introduce these themselves. Whereas most 

SARS-CoV-2 studies so far have only considered a limited number of modifications commonly 

introduced during sample processing, our open modification searching strategy enabled the 

unbiased investigation of any PTM. This increased the number of identified spectra by more than 

two-fold, corresponding to newly identified modified peptides, and enabled us to put these PTMs 

in the context of the virus–host PPI network. 

  

We discovered several combinations of relevant protein interactions and PTMs that hint at 

functional roles during viral infection. Specifically, we investigated phosphorylation, 

ubiquitination, and S-nitrosylation in more detail. These are reversible PTMs that are essential for 

a variety of cellular processes and could be of importance during viral infection. We found 

interactions between phosphorylated SARS-CoV-2 proteins and host kinases, between 

ubiquitinated SARS-CoV-2 proteins and host E3 ligases, and novel S-nitrosylation sites on SARS-

CoV-2 proteins. Notably, even though no specialized modification enrichment was performed, we 

were able to confidently detect and localize multiple PTM sites that have been previously reported 

in independent enrichment studies, as well as novel PTM sites on SARS-CoV-2 proteins. 

  

An important consideration in this study is the overlap in PPI results with the original study [2], 

which used standard searching instead of open modification searching. Although the vast majority 

of original spectrum identifications (79%) could be replicated using open modification searching, 

the overlap in PPIs was smaller (49%). Notably, another recent reanalysis of these data using 

alternative bioinformatics software tools showed a similarly limited overlap with the original PPI 

results [12]. Besides using stringent FDR control and other PPI filtering settings during all data 

Jo
urn

al 
Pre-

pro
of



 

 

processing steps, we validated the detected protein interactions through comparison with 

alternative MS-based SARS-CoV-2 studies and general virus–host interactions in the VirHostNet 

database. This showed a highly significant overlap between our PPI results and these independent 

sources, reinforcing the validity of the newly detected interactions. 

  

The partial mismatch in PPI results can be largely explained by more complete identification of 

both background proteins and potential interaction partners using OMS. As such, the current study 

highlights the dependence of PPI filtering on the preceding protein identification results. First, 

open modification searching can be used to obtain high-quality identification data from which 

comprehensive PPI results can be obtained. Second, PPI filtering algorithms have to be able to 

robustly deal with uncertainty and missingness in the identification results when determining true 

protein interactions. Because OMS increased both the robustness of the PPI filtering results and 

enabled us to put PTM information in context of the protein interaction network, we suggest that 

this strategy is ideally suited for the analysis of MS-based PPI data. 

  

In conclusion, we have used open modification searching to reanalyze open SARS-CoV-2 virus–

host protein interaction data. The presented results enrich our knowledge of viral infection by 

SARS-CoV-2 by putting post-translational modifications in the context of the virus–host PPI 

network, which provides important hypotheses on the functional roles of PTMs during SARS-

CoV-2 infection. 
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Figure legends 

Figure 1. (A) Comparison in identification performance between the originally reported results 

using standard searching [2] and open modification searching. Open modification searching was 

able to identify more than twice as many spectra, corresponding to the identification of a large 

number of modified PSMs. (B) Comparison of the number of filtered PPIs. Half of the previously 

reported PPIs were reproduced [2], while 211 new PPIs were determined based on the extended 

identification results obtained using open modification searching. (C) Modifications can be 

derived from the precursor mass differences observed by open modification searching. Some of 

the most frequent delta masses are annotated with their likely modifications, sourced from Unimod 

[34], with modifications of artificial origin in black and relevant biological modifications in blue. 

The full list of observed precursor mass differences and their likely modifications is available in 

Supplementary Table 10. 

 

Figure 2. (A) Upset plot showing the overlap with seven alternative MS-based SARS-CoV-2 

virus–host interactome studies, the original analysis, and a previous reanalysis of the AP-MS data 

performed by Bittremieux et al. [12]. We observe the largest overlap in PPIs with the previous 

reanalysis and the original analysis, as all are based on the same AP-MS data. However, several 

novel detected PPIs have been observed in independent SARS-CoV-2 interactome studies as well, 

boosting the confidence in these interactions. (B) Upset plot showing the overlap of the detected 

human interaction partners with targets reported for different viruses in the VirHostNet database 

(excluding VirHostNet data for MERS-CoV, SARS-CoV-1, and SARS-CoV-2). 
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Figure 3. Heatmap showing the top GO terms from the GO enrichment analysis for each of the 

SARS-CoV-2 proteins. 

 

Figure 4. (A) Upset plot showing the overlap in phosphorylation sites between independent 

phosphoproteomic studies and the sites found in the current AP-MS reanalysis. (B) The PPI 

network of Nsp12 with highlighted kinases. Although RIPK1 and BCKDK were found in the 

original analysis, to our knowledge TLK1 has not been identified as an interaction partner of Nsp12 

yet. After kinase-specific phosphorylation site prediction, we found that one of the observed 

phosphorylation sites (T21) is predicted to be phosphorylated by TLK1. 

 

Figure 5. (A) Upset plot showing the overlap in ubiquitination sites between independent 

ubiquitination studies and the sites found in the current AP-MS reanalysis. The two novel 

ubiquitination sites were verified through in silico prediction. K16 on Orf9c has not been reported 

for SARS-CoV-2 yet, but was previously observed in SARS-CoV-1. (B) The PPI network of 

Nsp13 with the deubiquitinating enzyme USP13 highlighted. Jo
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Public mass spectrometry data were reanalyzed using open modification searching to investigate the 

presence of post-translational modifications during interaction of viral SARS-CoV-2 proteins and human 

host proteins. We examined several post-translational modifications, including phosphorylation, 

ubiquitination, and S-nitrosylation, in the context of the virus–host protein-protein interaction network 

to obtain novel hypotheses about the functional roles of these modifications during viral infection by 

SARS-CoV-2. 
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• Identification of protein interactions between SARS-CoV-2 and its human host. 

• Insights into the role of post-translation modifications during viral infection. 

• Human kinases interact with phosphorylated viral proteins. 

• Indications that SARS-CoV-2 hijacks the host ubiquitination system. 

• Hypothesis of antiviral mechanism related to S-nitrosylation of SARS-CoV-2 proteins. 
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