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Abstract: With the advent of improved tools to examine the
astrocytes, which have been believed to play a supportive
role in the central nervous system (CNS) for years, their
participation in the operation of the CNS and drug addiction
was unveiled. Assisting the formation and function of the
CNS, astrocytes are involved in physiological and patholog-
ical brain activities. Drug addiction is a pervasive psychiatric
disorder, characterized by compulsive drug-taking behavior
and high rate of relapse, impacting individual health and
society stability and safety.When exposed to drugs of abuse,
astrocytes go through a series of alterations, contributing to
thedevelopment of addiction.Herewe reviewhowastrocytes
contribute to the CNS and drug addiction. We hope that
understanding the interaction between addictive drugs and
astrocytes may help discover new mechanisms underlying
the addiction and produce novel therapeutic treatments.

Keywords: astrocytes; central nervous system; drug
addiction; synaptic plasticity.

Introduction

The two mainstreams of cells that build up the central
nervous system are neurons and glia, the latter of which for

quite a long time are supposed to act as the background of
the former, supporting, nourishing and protecting the
neurons [1]. However actually, glia has much more func-
tions. The star-shaped astrocyte, one dominant type of glia,
has been implicated in myriad biological processes of the
central nervous system (CNS) by interacting with almost all
elements of the CNS, including neurons, synapses, glial
cells and blood vessels [2]. Widely distributed in the whole
brain, astrocytes function complexly varying from physi-
ological activities to pathological changes.

Drug addiction is a chronic relapsing disorder, account-
ing for the loss of 18 million years of healthy life in 2019 [3].
According to World Drug Report 2021, it was estimated that
about 36.3 million people were suffering from drug use dis-
order in 2019 and the number had rapidly accelerated year by
year [3]. Apart from endangering the health of individuals,
drugaddiction canalso lead to crimeandviolence, and speed
up the spread of infectious diseases, seriously affecting social
stability and safety [3]. Hence, it is of great significance to
reveal the mechanism behind drug addiction, and thanks to
the advancing technology in the neuroscience, accumulating
studieshelppeopleunderstandhowversatile astrocyteswork
in drug addiction indeed [4].

In the current review, we describe the astrocytic
involvement in the operation of the CNS, and then focus
on how astrocytes contribute to drug addiction through
diversified pathways. Finally, we further discuss the
existing problems and prospects of research in astro-
cytes and drug addiction.

How astrocytes contribute to the
operation of the CNS

Astrocytes are involved in shaping the CNS

Neurogenesis and axon guidance

During the development of the CNS, astrocytes could secrete
a variety of trophic factors to support neuronal life, such as
brain-derived neurotrophic factor (BDNF), epidermal growth
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factor (EGF), fibroblast growth factor 2 (FGF‐2) and somato-
statin [5–8]. In addition to promoting the growing process of
neurons which are created earlier than glia, astrocytes
mediate adult neurogenesis as well [9, 10]. Song et al. [11]
first proved that astrocytes within adult hippocampus are
able to accelerate the proliferation of stem cells and instruct
them to become neurons. Following generation, neurons
need to extend axons in order to establish synaptic con-
nections, crossing long distances and complicated environ-
ment [12]. Astrocytes were also found to be critical for right
pathfinding of axons. Minocha et al. [13] showed that
Nkx2.1-positive astrocytes could guide axons through the
expression of Slit2.

Synapse formation and synapse elimination

Since axons have reached the exact origin, neurons begin
to form synapses with the help of astrocytes once again. In
terms of the sequence of events, synaptogenesis happens
right after the production of astrocytes and the time win-
dow of synapse formation overlaps that of the astrocyte
maturation [14].

First of all, astrocytesmake local contact with immature
neurons, permitting them to receive and response to
astrocyte-encoded signals. Switch of the receptivity may
involve propagation of protein kinase C (PKC)
signaling [15, 16]. The signals can be divided into prosy-
naptogenic ones and antisynaptogenic ones [17]. Prosy-
naptogenic signals include thrombospondins (TSP1 and
TSP2) andHevin, which could help construct the structure of
synapses which contain presynaptic vesicles, N-methyl-
D-aspartic acid receptors (NMDARs) and other ele-
ments [18, 19]. The synapses are presynaptically active;
however, they are postsynaptically inactive so far, due to
lack of α-amino-3-hydroxy-methyl-4-isoxazolepropionic
acid receptors (AMPARs) [18]. Only with the aid of other
prosynaptogenic signals, which could promote AMPARs
localization to postsynaptic sites, such as glypicans 4 and 6,
can synapses be fully functionally active [20]. Competitively,
antisynaptogenic signals like secreted protein acidic rich in
cysteine (SPARC) negatively regulate synapse formation [19].
Other astrocyte-secreted molecules also work during the
synaptogenesis, including neuroligins, tumor necrosis fac-
tor-α (TNF-α), cholesterol, and transforming growth factor β-
1 (TGFβ-1) [21–23].

Another important step in synaptic development is the
elimination of weakened or redundant synapses, main-
taining a proper number of synapses [23]. Astrocytes
phagocytose excessive synapses in the developing brain
through their phagocytic receptors multiple epidermal
growth factor-like domains 10 (MEGF10) and Mer tyrosine

kinase (MERTK) [24]. In the adult hippocampus, astrocytes
continue to engulf impaired excitatory and inhibitory
synapses for circuit homeostasis in an activity-dependent
manner [25]. Hevin, which has been mentioned before in
the synapse formation, is also a pivotal synapse refinement
mediator. During early development, cortical dendritic
spines often receive excitatory inputs from both cortex and
thalamus, whereas Hevin can stabilize thalamic inputs,
eventually forming single-input synapses [26]. On the
contrary, in Hevin knockout mice, thalamic inputs are
unable to compete with intracortical inputs, and thus ul-
timately resulting in a situation where the total number of
cortical inputs increases and multiple excitatory input
synapses persist [26]. Apart fromdirectmechanisms above,
astrocytes can indirectly regulate synapse pruning through
initiating microglia [27]. Astrocyte-secreted Interleukin-33
(IL-33) promotes microglial synapse engulfment during
neural circuit maturation and remodeling [28].

All in all, astrocytes are involved in the formation of
the CNS, assisting in the generation and development
of neurons and regulating the synapse formation and
elimination.

Astrocytes assist in the running of the CNS

Neuro-glial-vascular coupling

The astrocyte iswidely distributed in theCNS. Its direct contact
with neurons and blood vessels makes it a modulator in the
neurovascularunit, forming theneuro-glial-vascular coupling,
which is essential in regulating blood flow, substance and
energy metabolism and brain barrier construction [29].

Reliable neural activity within the CNS demands strictly
controlled environment and the blood-brain barrier (BBB) is
a major interface that isolates brain compartment and
circulating blood, adjusting the influx and efflux of sol-
utes [30–32]. The astrocyte, with its endfeet physically
ensheathing the capillaries, is located at a strategic position
between neurons and endothelial cells [33]. Nutrients can be
transported from blood to brain and waste compounds
reversely via astrocytes [34, 35]. When the neuronal activity
is enhanced, with abundant glutamate released, uptake of
glucose by astrocytes from the bloodstream via glucose
transporter type 1 (GLUT1) couples with the uptake of gluta-
mate [36]. Through aerobic glycolysis, the glucose is converted
to lactate which can be transferred by monocarboxylate
transporters (MCT) from astrocytes to neurons [37]. Subse-
quently, lactate can be oxidized to pyruvate, which is utilized
via the tricarboxylic acid cycle to produce vast adenosine
triphosphate (ATP) to meet the great demand of energy.
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Meanwhile, the endfeet which express water channel
aquaporin 4 (AQP4) andKir4.1 K+ channel play a special role
in ion and volume regulation [31]. Potassium ions released
from excited neurons reach astrocyte processes and then
diffuse to the perivascular endfeet. Spreading K+ to a larger
area achieves a spatial buffering effect [38]. Water influx,
together with ion entry is tuned with water efflux through
AQP4 [31]. The highly coordinated work of K+ channels and
AQP4 realizes the clearance of extracellular K+ and balances
ions and water in the microenvironment.

Homeostasis of the brain microenvironment

Aside fromAQP4 andKir4.1 at the endfeet, astrocytes have a
mass of other transporters, channels, and enzymes to
maintain the homeostasis of the brain microenvironment,
such as ions, water, pH and neurotransmitters [39]. Besides
the K+ channel, astrocytes can transfer K+ through trans-
porters, such as Na+/K+ ATPase and Na+/K+/Cl− cotrans-
porter 1, the former of which is also responsible for
maintaining transmembrane Na+ gradient necessary for
driving other transporters [40]. CO2 from neurons can be
turned to HCO3

− by carbonic anhydrase and HCO3
− can be

released by Na+/bicarbonate cotransporter to balance the
pH [39]. Moreover, astrocytes remove and inactivate neu-
rotransmitters, which include glutamate, norepinephrine,
γ-aminobutyric acid (GABA) and adenosine, and release
gliotransmitters like glutamate, ATP, D-Serine, as well as
glutamine, an important source of glutamate andGABA [41].

Synaptic function and plasticity

There is a growing body of evidence that astrocytes are not
merely supporting neurons, but also are intimately involved
in themodulation of neuronal activity through bidirectional
communicationwith synapses. Araque et al. [42] proposed a
term ‘tripartite synapse’ to refer to the functional and
physical structure of the presynaptic membrane, post-
synaptic membrane and surrounding astrocyte. Unlike
neurons, astrocytes show little electrical excitability, but
their Ca2+ can be elevated as a result of activation [43]. In the
‘tripartite synapse’ model, elevation of astrocytic Ca2+ level
is triggered by neurotransmitters released during synaptic
activation, and in turn, activated astrocytes release glio-
transmitters to influence synaptic transmission [44]. It is
estimated in rodent brain that a single astrocyte oversees 20
to 120 thousand synapses, making it in close relationship
with synaptic function and plasticity [45].

Classic long-term potentiation (LTP) relies on NMDA
receptors, whose activation needs binding of both gluta-
mate and co-agonist D-serine, and astrocyte-derived

D-serine modifies NMDAR plasticity in excitatory synap-
ses nearby [46, 47]. Depletion of D-serine in an individual
astrocyte blocks LTP formation, while supply of D-serine
rescues LTP blockade induced by clamping astrocytic Ca2+

signals [47]. Astrocyte-derived glutamate occurring upon
rise of Ca2+ level could transiently increase the releasing
probability of transmitter, and this short-term plasticity
can be transformed to LTP due to the pairing of neuronal
depolarization and astrocyte activation [48, 49]. ATP,
which is rapidly converted to adenosine extracellularly, is
another gliotransmitter. Astrocytes in the hippocampus
CA1 region elicit ATP/adenosine, followed by upregulated
basal synaptic transmission through presynaptic A2A re-
ceptors [50]. In the amygdala of mice, ATP/adenosine
could even play different roles by depressing excitatory
synapses via A1 receptors and enhancing inhibitory syn-
apses via A2A receptors [51]. Actually, a single astrocyte
could release different gliotransmitters depending on the
neuronal activity [52]. For instance, low frequency or short
interneuron stimulation induces glutamate release from
astrocytes leading to a short-term potentiation, whereas
high frequency or prolonged stimulation also induces ATP/
adenosine release leading to a short-term depression [52].

Additionally,morphology plasticity of astrocytes plays a
key role in local synaptic activity through the structure per-
isynaptic astrocytic processes (PAPs). PAPs express a large
amount of proteins relevant to synaptic transmission,
including metabotropic glutamate receptors (mGluRs),
glutamine synthetase, glutamate transporters, and GABAB

receptors [45]. The extent to which astrocytes enwrap syn-
apse elements affects the efficacy and activity of transmitter
release, further influencing synaptic plasticity [2]. For
example, in the supraoptic nucleus of lactating rats, the
coverage of PAPs on synapses are reduced, leading to
glutamate spillover and reduction of D-serine availability in
the postsynaptic NMDARs and thus long-term synaptic
changes [46]. A recent study shows that LTP induction
prompts withdrawal of PAPs, which boosts extrasynaptic
glutamate escape, therefore enhancing nearby synapses [53].

In summary, astrocytes mediate the function of the CNS,
participating in neuro-glial-vascular coupling and main-
taining the homeostasis of brainmicroenvironment. Besides,
astrocytes are capable of detecting neuronal activity and
playing an active role in modulating synaptic transmission.

How astrocytes contribute to drug
addiction

Addictive drugs strongly activate dopamine signaling, and
recent studies have also shown that astrocyte activity is
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fundamental for dopamine-evoked synapse regulation,
suggesting that astrocytes may have an emerging role in
drug addiction and may serve as a potential therapeutic
target [54, 55].

GFAP expression and astrocyte morphology

Astrocytes can be identified by many markers, among
which glial fibrillary acidic protein (GFAP) is upregulated
after biological injury or during activation by harmful
stimuli including drugs of abuse [56, 57]. Almost all kinds
of addictive drugs could lead to changes in astrocyte GFAP
expression and astrocyte morphology remodeling, yet it is
difficult to define specific change patterns in distinct brain
regions and in response to different drugs with various
training paradigms [58–62].

After both acute and chronic cocaine exposure, GFAP
elevation has been observed in the hippocampus [63]. Even
after 7 days of cocaine treatment followed by a 3 week
withdrawal period, GFAP is found to increase in the pre-
frontal cortex and both core and shell of the nucleus
accumbens (NAc) [59]. However, in a model of cocaine self-
administration and extinction training, Scofield et al. [64]
pointed out reduction in GFAP expression in the NAc core,
making it controversial on the effects of cocaine on changes
in GFAP expression. In comparison, the majority of studies
which have investigated GFAP expression following drug
administration have reported increases consistently in
amphetamine, methamphetamine and morphine [60–62].
Further, in human alcoholics, GFAP expression was signif-
icantly higher than controls in NAc [65]. Likewise, more
GFAP is expressed in rat NAc core during abstinence from
ethanol self-administration [66].

With regard to the morphology, astrocytes generally
have a decrease in volume and length of processes after drug
treatment. Chronic cocaine injection leads to reduced area
and length of processes of dorsal hippocampal astro-
cytes [63]. In the NAc core, cocaine self-administration and
extinction reduce astrocyte surface area and volume, as well
as communication between astrocytes and synapses. In the
same way, the extent of contact made by PAPs is decreased
following methamphetamine self-administration and
extinction [64, 67]. However, the reduction seems to be
region-specific, for no differences in the prelimbic region of
the medial prefrontal cortex and basolateral nucleus of the
amygdala were observed [68]. As for nicotine, the condition
goes totally different. In the prefrontal cortex, CA1 of the
hippocampus and the substantia nigra, long-term exposure
to nicotine induces extension of processes and increase of
cell volume [69].

To sum up, drugs of abuse induce changes in astro-
cytes from GFAP expression to cell morphology, indicating
that astrocytes perform certain functions in drug addiction.
Although current outcomes demonstrate distinct re-
sponses to drugs, future studies are still needed to explore
the influence of different kinds of drugs, administration
doses and routes on the properties of astrocytes.

Maladaptive glutamatergic homeostasis

Among the maladaptive responses to addictive substances
is the severely impaired glutamatergic homeostasis in the
NAc, which is indispensable to the reinstatement of drug-
seeking behavior induced by drug-associated cues, con-
texts, stress and drug itself [70–72].

Three crucial transporters or receptors are responsible
for the astrocytic and synaptic glutamate release and elim-
ination. They are glutamate transporter 1 (GLT-1), the
cystine/glutamate exchanger (xCT) and mGluR2/3. After
presynaptic membrane releases glutamate to postsynaptic
membrane, astrocytes could remove extra glutamate from
the synapse cleft through Na+-dependent GLT-1, which is in
charge ofmore than 90%glutamate uptake in the brain [73].
Another transporter controlling extracellular glutamate
levels is xCT, one of the several ways of astrocyte releasing
glutamate, but the most influential one, through 1:1 ex-
change for extracellular cysteine, providing approximately
60% of the extrasynaptic glutamate in the NAc core [74].
Besides, mGluR2/3 distributed in presynaptic membranes
could limit synaptic release of glutamate and its activation is
related with xCT activity [75].

Upregulatedglutamatergic transmissionwithin theNAc
underlies the reinstatement of drug-seeking behavior [59].
Numerous studies have shown that chronic exposure to
drugs of abuse reduces the expression of GLT-1 and induces
PAPs retraction, resulting in glutamate spillover in the cleft,
accelerating that pathological process [75, 76]. In the same
manner, the level of xCT is lowered after administration of
drugs [77]. Accordingly, the reduced extracellular glutamate
disinhibits regulation of presynaptic mGluR2/3 and en-
hances glutamate signaling, contributing to relapse behav-
iors [78]. Ceftriaxone or N-acetylcysteine that could restore
expression of GLT-1 and xCT have proved to attenuate the
reinstatement in cocaine, methamphetamine and heroin
seeking [79–84]. Furthermore, chemogenetic activation of
astrocytes by Gq-designer receptors exclusively activated by
designer drugs (DREADDs) selectively drives astrocytes
glutamate release and inhibits cue-induced cocaine seeking
by stimulatingmGluR2/3 [85]. Endocannabinoid signaling is
another possible pathway to restore glutamate homeostasis,
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through which mGluR2/3 function is maintained and prim-
ing or cue-induced reinstatement of cocaine seeking is
diminished [86].

To sum up, the disruption of glutamatergic homeo-
stasis, which is strictly regulated by astrocytes, promotes
vulnerability to reinstatement. Both the augmented syn-
aptic glutamate release and reduced elimination from the
synapse cleft could engender abnormal overflow of gluta-
mate linked to the reinstatement of drug seeking behavior.

Astrocyte-neuron signaling in drug addiction

Under physiological circumstances, a huge number of
gliotransmitters, transporters and receptors of astrocytes
are conducive to its regulation to neuronal activity. Under
the pathological conditions of drug abuse, thesemolecules
also work in the reciprocal crosstalk between astrocytes
and neurons.

Addictive drugs, despite of distinct action mechanisms,
activate the dopamine system consistently [87]. Recently,
Corkrum et al. [55] showed that astrocytes in the NAcmediate
dopamine-induced synaptic depression throughD1 receptors.
With elevation of intracellular Ca2+ level, activated astrocytes
release ATP/adenosine binding to presynaptic A1 receptors to
depress excitatory synapse transmission, which is necessary
for amphetamine-related manifestations [55]. Astrocytic
adenosine signaling has a significant role in the transition
from habitual to goal-directed reward-seeking behavior and
alcohol-seeking behavior [88, 89]. In the early stage of drug
abuse, drug seeking is controlled and goal-directed, but it
gradually turns habitual and compulsive as the addiction
develops [90]. Kang et al. [88] demonstrated that chemo-
genetic activation of astrocytes in the dorsomedial striatum
regulates the activity of medium spiny neurons, shifting the
reward-seeking behavior patterns from habitual actions to
goal-directed ones via adenosine signaling.

Astrocyte-derived D-serine, closely related to synapse
plasticity, is also a signal molecule of drug addiction.
Curcio et al. [91] proved that exposure to cocaine results in
reduced D-serine levels, and therefore subsequently
impaired NMDAR-dependent potentiation and depression
of glutamatergic synaptic transmission in the NAc. For this
reason, exogenous D-serine supply succeeds in rescuing
the damaged plasticity and interfering cocaine-related
behaviors. As revealed by Kelamangalath & Wagner [92],
D-serine treatment facilitates the extinction training and
attenuates cocaine-primed drug-seeking behavior. Same
effects have been found in cocaine-induced conditioned
place preference (CPP) and locomotor sensitiza-
tion [93, 94]. Moreover, morphine inhibits D-serine release

from astrocytes, suppressing the excitability of post-
synaptic GABAergic neurons [95].

Lactate is a novel mediator in learning and memory,
synapse plasticity and drug addiction, which has been
considered only as an energy substrate in brain energy
metabolism for long [36]. Since Suzuki et al. [96] found
astrocyte-neuron lactate transport is of great importance for
long-termmemory formation, its role in drugmemory, which
is associatedwithdrugabuse and relapse, has aroused lots of
attention of scientists. Pharmacological inhibition of glyco-
genolysis in the basolateral amygdala disrupts the lactate
production, along with the impaired acquisition and persis-
tence of cocaine-induced CPP [97]. Meanwhile, disruption of
astrocyte-neuron lactate transport abolishes the reconsoli-
dation of cocaine reward memory and subsequent expres-
sion of cocaine-induced CPP [98]. Lactate is also supposed to
be involved in glucocorticoid receptor (GR) –mediated al-
terations in synapse transmission caused by morphine [99].
While astrocytic GR knockdown inhibits glucocorticoid-
induced lactate release, it enhances morphine-induced CPP
at the same time, and lactate supplementation could reverse
that action [99].

There are still some other astrocyte-related molecules
that participate in drug addiction, such as TSP2 andAQP4. By
activating itsneuronal receptorα2δ-1, astrocyte-secretedTSP2
could promote generation of silent synapses [18]. Through
this way, cocaine triggers synaptogenesis in the NAc shell,
and disrupting TSP2-α2δ-1 signaling could effectively prevent
cue-induced relapse after extinction or withdrawal [100].
Furthermore, ablation of AQP4 reduces heroin consumption
in self-administration training and morphine-induced
behavioral sensitization, which may be achieved by upre-
gulated expression of dopamine transporter [101].

In conclusion, astrocytes could affect neuronal and
synaptic activity through multiple ways to respond to the
development of drug addiction. There’s no doubt that
astrocyte-neuron interaction via glutamate, ATP/adeno-
sine, D-serine, lactate etc., is an essential mechanism of
drug addiction.

Future perspectives

For decades, the main character in the neuroscience
research has always been the neuron, whose electrical
activity is considered to be the foundation of brain activity,
while glia plays a secondary and supportive role. However,
improved techniques to visualize andmanipulate glia have
thoroughly expanded our knowledge of glial functions in
physiological and pathological conditions, especially
those of the astrocytes, the most abundant glial cells [102].

Chen et al.: Astrocytes in the CNS and drug addiction 421



Fruitful findings have prompted us to appreciate the
prominent role of astrocytes in the CNS. In terms of shaping
the CNS, astrocytes assist neurogenesis and axon guid-
ance, as well as controlling an appropriate number of
synapses by participating in synapse formation and elim-
ination. As for the CNS function, astrocytes own diversified
receptors, transporters, channels, enzymes and glio-
transmitters involved in neuro-glial-vascular coupling,
microenvironment homeostasis maintenance, synapse
plasticity regulation and many others. These gratifying
progresses allow us to re-examine the nervous system and
neuropsychiatric diseases from a different perspective.

Since the past few years have witnessed inspiring
achievements in acknowledging the function of astrocytes,
people began to explore their roles in drug addiction. Most
drugs of abuse could activate the astrocytes and alter their
morphology and functions towards aberrant levels, which
contributes to the development of maladaptive drug-
related behaviors. Specifically, the patterns of astrocyte
releasing gliotransmitters, such as glutamate, ATP/aden-
osine and D-serine, are impacted. Among those sub-
stances, glutamate has been studied extensively in
particular, for the disruption of its homeostasis is believed
to promote vulnerability to relapse.

Better understanding of the molecular and cellular
changes induced by drugs allows the seeking of effective
treatments for drug addiction, among which manipulating
astrocytes has risen as a unique approach to prevent relapse.
Although growing evidence has demonstrated that some
pharmacological means of restoring glutamatergic homeo-
stasis can successfully prevent relapse in rodents, the results
of clinical trials in humans are still limited. N-acetylcysteine
treatment could potently reduce drug desire following either
cocaine cue exhibition or intravenous cocaine injec-
tion [103, 104]. In another trial, N-acetylcysteine administra-
tion failed to reduce cocaine use in active users, but was able
to decrease drug craving in those who had achieved absti-
nence [105]. Combined with cognitive behavioral therapy,
N-acetylcysteine treatment for 8 weeks significantly lessened
the craving in veterans with substance use disorder [106].
Recent findings substantiate that N-acetylcysteine could
attenuate cocaine-cue attentional bias by reducing the
incentive salience of cocaine, and decrease cocaine-seeking
behavior possibly by modulating glutamate levels in the
rostral anterior cingulate [107, 108]. Although above results
are inconsistent, N-acetylcysteine, which is well-tolerated
with only mildly adverse effects, displays its potential in pre-
venting drug relapse [109]. Besides N-acetylcysteine, in
methamphetamine users, electroacupuncture has the ability
to normalize glutamate levels by enhancing astrocytic

glutamate clearance in the dorsal hippocampal CA1, sug-
gesting thatnon-invasiveelectroacupuncturemightbeanovel
approach to manage drug addiction [110].

As a matter of fact, drug addiction is also a disorder of
learning and memory [111]. A major obstacle in addiction
treatment is the high rate of relapse due to the persistence
ofmaladaptive drug-associatedmemories [112]. Even after
a long period of withdrawal, individuals have a pro-
pensity to generate drug-taking and drug-seeking be-
haviors when exposed to drug-associated cues and
environment [113]. Recently, converging evidence of
astrocytic role in memory has been obtained with
advanced techniques (including translating ribosome
affinity purification, RiboTag, single-cell transcriptomic
analyses, super-resolution microscopy, neuron-astrocyte
proximity assay, etc. [4]), indicating that astrocyte may
also play a part in drugmemory aswell, whichmay open a
completely new area in pathological mechanism and
clinical treatment research [25, 114–116].

In short, it has lately come to light that astrocytes are
key participants in drug addiction and they are emerging as
a promising therapeutic target of drug addiction.

Conclusions

Here, we highlighted diverse roles of astrocytes in many
aspects of theCNSanddrugaddiction.Notwithstanding that
extensive efforts have been made to disentangle the inter-
action between astrocytes and addictive drugs, further
precise exploration in the circuit, cellular, molecular and
genetic mechanism of astrocyte-mediated addiction is still
needed.With the emergence of new strategies to interrogate
astrocytes in vivo, a more comprehensive understanding of
the roles of astrocytes in drug addiction will be achieved,
holding considerable promise for developing feasible ther-
apeutic treatments of drug addiction in the future.
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