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Abstract
Background: Long-range communication is very common in proteins but the physical basis of this
phenomenon remains unclear. In order to gain insight into this problem, we decided to explore
whether long-range interactions exist in lattice models of proteins. Lattice models of proteins have
proven to capture some of the basic properties of real proteins and, thus, can be used for
elucidating general principles of protein stability and folding.

Results: Using a computational version of double-mutant cycle analysis, we show that long-range
interactions emerge in lattice models even though they are not an input feature of them. The
coupling energy of both short- and long-range pairwise interactions is found to become more
positive (destabilizing) in a linear fashion with increasing 'contact-frequency', an entropic term that
corresponds to the fraction of states in the conformational ensemble of the sequence in which the
pair of residues is in contact. A mathematical derivation of the linear dependence of the coupling
energy on 'contact-frequency' is provided.

Conclusion: Our work shows how 'contact-frequency' should be taken into account in attempts
to stabilize proteins by introducing (or stabilizing) contacts in the native state and/or through
'negative design' of non-native contacts.

Background
There is a wealth of information that indicates that distant
sites in proteins are often coupled to each other energeti-
cally. Evidence for such coupling initially emerged
through studies of allosteric regulation of proteins [1]
when it became clear that allosteric control is often
achieved by ligand binding-induced conformational
changes that are propagated from one ligand binding site
to other distant sites. Later, it became possible to identify
distant sites in proteins that are coupled to each other
energetically by protein engineering through the use of

the double-mutant cycle (DMC) method [for review see
ref. [2]]. It has become clear from many such DMC studies
that distant sites in proteins are often coupled to each
other in a weak but significant manner [for review see ref.
[3]]. More recently, it has become possible to demonstrate
long-range coupling experimentally also by employing
NMR methods [4]. Finally, computational methods have
also indicated the presence of long-range communication
in proteins. One class of computational methods is based
on detection of co-evolving residues in multiple sequence
alignment data. Such methods were originally developed

Published: 29 January 2009

BMC Structural Biology 2009, 9:4 doi:10.1186/1472-6807-9-4

Received: 18 November 2008
Accepted: 29 January 2009

This article is available from: http://www.biomedcentral.com/1472-6807/9/4

© 2009 Noivirt-Brik et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 10
(page number not for citation purposes)

http://www.biomedcentral.com/1472-6807/9/4
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19178726
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Structural Biology 2009, 9:4 http://www.biomedcentral.com/1472-6807/9/4
in order to detect residues that are in physical contact [5,6]
but, more recently, have been used to reveal long-range
pathways of energetic connectivity in proteins [7-9]. Long-
range communication in proteins has also been revealed
in computational studies based on normal mode analysis
and its coarse-grained versions in which correlations
between fluctuations of distant residues are detected [10-
13].

Despite the wealth of evidence indicating that long-range
communication is extremely common in proteins, the
physical basis of this phenomenon is still unclear. In addi-
tion, there are some uncertainties associated with many of
the computational and experimental methods used to
detect such long-range interactions. For example, it is not
clear whether correlated mutations at distant positions
reflect long-range coupling or common ancestry [14-17].
In the case of the DMC method, there is always a concern
that the calculated coupling energy reflects a reorganiza-
tion energy in one or more of the mutants in the cycle and
not the true pairwise interaction energy [18]. Given these
reasons, we decided to explore whether long-range inter-
actions exist in 2D and 3D lattice models of proteins
although such interactions are not an input feature of
them. Simple lattice models of proteins have proven to
capture some of the basic properties of real proteins and,
although they ignore many important details, they have
been used successfully for elucidating general principles
of protein folding and stability [19-26]. Here, we show by
invoking computational DMC analysis that long-range
interactions are also common in lattice models of pro-
teins. Hence, our results indicate that long-range commu-
nication in proteins may also occur as a result of
interactions in the non-native states and not just via path-
ways by which information is transmitted through the
native state structure as other computational methods
suggest [7,12]. Our analysis also shows that the values of
the coupling energies of both short- and long-range inter-
actions have a linear dependence on their respective con-
tact frequencies in the conformational ensemble.

Theory
The energy of a sequence in a specific lattice conforma-
tion, E(C), is calculated by summing all the pairwise con-
tact energies, eij (see Table 1), between neighboring lattice
points excluding consecutive residues in the sequence, as
follows:

where |ri - rj| is the distance in lattice units between resi-

dues i and j that are separated in sequence by at least two

residues and . The free energy of

folding, ΔG, of the native conformation of a sequence was
calculated using [21]:

where PN is the probability that the chain is in its native

state. This probability is given by: ,

where  (Z is the ensemble of all possible

conformations on the relevant lattice), E(N) is the energy
of the native conformation, T is the temperature and k is
the Boltzmann constant. Eq. (2) can be written as follows:

. It, therefore, follows that:

ΔG = E(N) + kTln(Q - e-E(N)/kT) (3)

We designate the sum over all the non-native conforma-
tions by Q' where Q' = Q - e-E(N)/kT.

The strength of a pairwise interaction can be estimated
from DMC calculations or by computing the perturbation
energy, ΔΔGper = ΔGwt - ΔGm, where ΔGwt and ΔGm are the
respective free energies of the wild-type native conforma-
tion before and after a particular pairwise interaction is
removed ('turned off') without affecting any other interac-
tions. For simplicity, the derivation that follows is for this
measure termed 'perturbation energy' and not for the cou-
pling energy calculated from DMC that involves more
algebraic terms (see Methods). It is important to note,
however, that the perturbation energy of a pairwise inter-
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Table 1: Pairwise residue interaction energies.

H P + - B

H -1 0 0 0 0

P 0 -0.75 -0.25 -0.25 0

+ 0 -0.25 +1 -1.25 0

- 0 -0.25 -1.25 +1 0

B 0 0 0 0 0

The interaction energies (eij) between pairs of residues in contact 
reflect in a qualitative manner the strengths of interactions between 
different types of amino acids: hydrophobic (H), neutral polar (P), 
positively charged (+), negatively charged (-) and blank (B) for the use 
of mutations.
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action is almost equal to the coupling energy calculated
from DMC for that interaction since in the DMC method
the effects of the different mutations on other interactions
tend to cancel out [18]. We show in the Results that our
derivation holds for perturbation energies as well as for
coupling energies that, in contrast with the perturbation
energies, can be determined in experiments. The perturba-
tion energy can be expressed, as follows:

ΔΔGper = Ec - kTln(Q'm/Q'wt) (4)

where Ec is the energy of the contact that was removed. It

is convenient to partition the sum of all the non-native
conformations of the mutant, Q'm, into the sets of C1 and

C2 conformations (|C1| + |C2| = N) in which the interac-

tion being targeted is either absent or present, respec-

tively, as follows: Q'm = ,

where λ is the contact energy of the perturbed interaction
(Table 1). The expression for Q'm can be rewritten, as fol-

lows:

 .

Eq.(4) can, therefore, be rewritten as:

Taylor series expansion (ln(1+x) ≈ x for |x| < 1) of Eq. (5)
and multiplication of the resulting expression by

 (= 1) yields:

The Boltzmann weighted contact frequency, BWCF(i, j), is

defined as: , where i and

j are two positions in the sequence and each occurrence of
a contact is multiplied by the Boltzmann weight of the
conformation (C) in which it occurs. Hence, inspection of
Eq. (6) shows that plots of the perturbation energy (or
coupling energy) as a function of BWCF(i, j) are expected
to be approximately linear with a slope that is a function

of λ.

Results and discussion
DMC have been used extensively to determine experimen-
tally the strengths of various pairwise interactions in pro-
teins [2]. Here, DMC were invoked in order to evaluate,
for the first time to the best of our knowledge, coupling
energies between all possible pairs of positions in 2D and
3D lattice models of proteins (Figure 1). Evidence for cor-
relations between distant sites in lattice models has been
reported before in the context of protein aggregation [27].
The distributions of the values of the coupling energies for
all possible pairs of positions in the different native states
of 10 sequences with 16 residues on a 2D lattice with full
enumeration and 10 sequences with 27 residues on a 3 ×
3 × 3 3D lattice are shown in Figure 2a and 2b, respec-
tively. It can be seen that the values of the coupling ener-
gies for pairs in contact are mostly negative whereas the
values of the coupling energies for pairs that are not in
contact are mostly (but not exclusively) positive and
smaller in absolute terms. Pairs that are in contact in a
given native conformation could, therefore, be identified
with high confidence using this procedure.

The fraction of conformations in the ensemble in which
residues at two positions in a sequence are in contact is
termed the 'contact frequency'. The 'contact frequency' is
not defined for pairs of consecutive positions in a
sequence since the interaction energy of such pairs is by
definition zero (see Eq. (1)). It is also not defined for pairs
of even or odd positions in a sequence since they cannot
interact on a square or cubic lattice and, thus, have a con-
tact-frequency of zero. Therefore, only pairs of residues
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with non-zero values of contact-frequency are considered
here. A more accurate measure of the frequency of a con-
tact in a conformational ensemble is the 'Boltzmann
weighted contact frequency', BWCF, where the occurrence
of each contact is multiplied by the Boltzmann weight of
the conformation (C) in which it is found (see Theory). In
the Theory section it was shown that the strength of a pair-
wise interaction is expected to have a linear dependence
on its BWCF. Such linear plots of different measures of the
strength of pairwise interactions as a function of BWCF are
depicted in Figure 3 for several representative examples of
lattice models.

In the first example (Figure 3a and 3b), a set of sequences
with a length, L, of 30 residues that have the same native
structure was constructed (such structure-based sequence
sets are designated SBSS) and the coupling energy was
determined for every possible pair of positions in each
sequence. The average value of the coupling energy for
each pair of positions in the SBSS was then calculated in

order to improve the signal-to-noise ratio. In this exam-
ple, only conformations that fit into a 5 × 6 lattice were
considered. It may be seen that a strong linear correlation
is found between the average coupling energy for each
pair of positions in the SBSS and the corresponding aver-
age BWCF index. This correlation holds for pairs of resi-
dues that form native contacts (Figure 3a, r = 0.78; P-value
= 5.5 × 10-5) and also, surprisingly, for pairs of residues
that are not in contact in this particular native conforma-
tion (Figure 3b, r = 0.87; P-value = 1.3 × 10-55). Such linear
correlations (with average correlation coefficients of
about 0.84 (± 0.05) for the non-contacting pairs and 0.62
(± 0.15) for the pairs in contact) were also found for SBSS
that correspond to 8 other native conformations (i.e. 2
SBSS for sequences with L = 30 on a 5 × 6 lattice, 4 SBSS
for sequences with L = 25 on a 5 × 5 lattice and 2 SBSS for
sequences with L = 25 on a 5 × 6 lattice) when only the
conformations that fit into the lattice were considered.

In the second example, the coupling (Figure 3c) and per-
turbation (Figure 3d) energies for all residue pairs not in
contact in the native state of a sequence with L = 20 on a
2D lattice are plotted as a function of their BWCF. Here,
values of the BWCF were calculated for the entire confor-
mational ensemble (|Z| = 41,889,578) and not just for the
relatively compact states as in Figure 3a and 3b. The color-

Scheme of a double-mutant cycle for a 2D lattice model pro-teinFigure 1
Scheme of a double-mutant cycle for a 2D lattice 
model protein. Two residues, i and j, are mutated (the 
mutations are designated by B on a dark background) either 
singly or in combination. ΔG(i,j→B,j) and ΔG(i,B→B,B) are 
the respective free energy changes upon mutation of residue 
i when residue j is present and when it has also been 
mutated. If these free energy changes are equal to each other 
then residues i and j are not coupled. Otherwise, residues i 
and j are energetically coupled. The same is true for the dif-
ference between the free energy changes ΔG(i,j→i,B) and 
ΔG(B,j→B,B). In this scheme, residues i and j form a direct 
contact in the native structure of the wild-type sequence. 
The double-mutant cycle method can be applied, however, 
also for residues that are distant in space in the native struc-
ture as carried out in the paper.

Distributions of the values of the pairwise coupling energies for all possible pairs of positions in sequences with different native states on 2D and 3D latticesFigure 2
Distributions of the values of the pairwise coupling 
energies for all possible pairs of positions in 
sequences with different native states on 2D and 3D 
lattices. The values of the coupling energies for all possible 
pairs of positions in 10 sequences of 16 residues with differ-
ent native states on a 2D lattice with full enumeration (a) and 
10 sequences of 27 residues with different native states on a 
3 × 3 × 3 3D lattice (b) were calculated. The distributions of 
the values of the pairwise coupling energies for positions in 
contact and not in contact in these native conformations are 
shown by filled and empty bars, respectively.
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coding designates the different contacts that have a given
value of λ (Table 1). It may be seen (Figure 3d) that almost
perfect correlations (r ≈ 1) are found between the pertur-
bation energies and the BWCF for each given value of λ as
predicted by Eq. (6). The correlations between the cou-
pling energies and the BWCF for each given value of λ
(except for λ = 0) are also excellent (Figure 3c, r > 0.97; P-
value < 10-6) but not perfect as those in Figure 3d for the
perturbation energies. Plots for residue pairs in contact in
the native state are not shown since the number of such
pairs is small and the correlations are, thus, not signifi-
cant.

In the third example, the coupling (Figure 3e) and pertur-
bation (Figure 3f) energies for all residue pairs not in con-
tact in the native state of a sequence with L = 27 on a 3 ×
3 × 3 lattice are plotted as a function of their BWCF. Here,
too, almost perfect correlations (r ≈ 1) are found between
the perturbation energies and the BWCF for each given
value of λ (Figure 3f) whereas the correlations for the cou-
pling energies (Figure 3e) are excellent (r = 0.92, 0.85,
0.92, 0.58 and 0.97 for λ values of -1.25, -1, -0.75, -0.25
and 1, respectively, with P-values < 2 × 10-3 except for λ =
-1.25 where the number of data points, n, is small (n = 4))
but not perfect as those in Figure 3f. In summary, there-

Plots of different measures of the strength of pairwise interactions as a function of measures of contact frequency for several representative examples of lattice modelsFigure 3
Plots of different measures of the strength of pairwise interactions as a function of measures of contact fre-
quency for several representative examples of lattice models. In panels a and b, the average coupling energies, 
<ΔΔGint>, of all the pairs in contact (a) and not in contact (b) are plotted against their respective average BWCF in the case of 
a set of sequences with 30 residues that have the same native conformation on a lattice of 5 × 6. In panels c and d, the coupling 
(c) and perturbation (d) energies, ΔΔGint and ΔΔGper, are plotted against the BWCF for all the pairs of positions not in contact 
in the case of a sequence with L = 20 on a 2D lattice with full enumeration. In panels e and f, the coupling (e) and perturbation 
(f) energies are plotted against the BWCF for all the pairs of positions not in contact in the case of a sequence with L = 27 on 
a 3 × 3 × 3 cubic lattice. The data in panels c-f corresponding to different values of λ are color coded, as follows: λ = -1.25, red; 
λ = -1, blue; λ = -0.75, green; λ = -0.25, magenta; λ = 0, black; λ = 1, cyan.
Page 5 of 10
(page number not for citation purposes)



BMC Structural Biology 2009, 9:4 http://www.biomedcentral.com/1472-6807/9/4
fore, the data depicted in Figure 3 for different types of lat-
tice models (2D or 3D lattices with or without full
enumeration of all the conformational states in the
ensemble and for single sequences or averaged for a SBSS)
support the general result described by Eq. (6) that the
free energies of both direct (in contact in the native state)
and indirect pairwise interactions are linearly dependent
on their Boltzmann-weighted contact frequencies. It
should be pointed out that only weak or no correlations
are observed when pairwise energies taken directly from
Table 1 are plotted against the BWCF, thereby providing
further justification for the approach in this study that is
based on the coupling or perturbation energies. The corre-
lations in Figure 3 indicate that rare native contacts have
more negative coupling energies than abundant native
contacts. Likewise, rare non-contacting pairs have less
positive coupling energies than abundant non-contacting
pairs. Therefore, one may infer that native states can be
stabilized by stabilizing contacts with low contact-fre-
quency and destabilizing non-contacting pairs with a high
contact-frequency.

Given that the interaction energy of a sequence in a spe-
cific lattice conformation is calculated by summing over
all pairwise interactions between neighboring lattice
points, it may seem surprising that non-direct interactions
with significant positive coupling energies are found to
exist (Figure 3). However, it has been pointed out that the
strengths of pairwise interactions in the native state deter-
mined by DMC are always relative to the unfolded state
[28]. Hence, the positive coupling energies observed here
in the case of non-contacting pairs reflect, to a large extent,
pairwise interactions in the non-native conformations in
the ensemble. Surprisingly, however, positive coupling
energies are also observed in the case of residue pairs such
as P, H that have interaction energies of zero (Table 1)
and, therefore, should not be coupled even when they are
in contact in non-native conformations. These non-zero
coupling energies arise owing to non-additivity in entropy
calculations [29].

The correlations shown in Figure 3 can be understood
more intuitively by considering several extreme cases and
keeping in mind that the free energy of the native state is
a function of both the energy of the native conformation
and the energies of all the other non-native conforma-
tions in the ensemble (see Eq. (3)). For simplicity, the
Boltzmann weights of the different states will be neglected
in the discussion that follows and we will, therefore, refer
to the contact-frequency (and not the BWCF) of residue
pairs. The following four extreme cases of perturbations
will be considered: (i) elimination of a native contact with
a contact-frequency of 1/|Z|; (ii) elimination of a native
contact with a contact-frequency that approaches one;
(iii) elimination of a non-native contact with a contact fre-

quency of 1/|Z|; and (iv) elimination of a non-native con-
tact with a contact-frequency that approaches one.

In the first case, a contact that exists only in the native state
is perturbed and, therefore, only the energy of the native
state is affected. Hence, the gap between the energy of the
native conformation and the energies of the non-native
conformations is reduced (Figure 4, case (i)). Such a per-
turbation reduces ΔH by the value of the contact energy,
Ec, and has no effect on ΔS (which is a function of the
sum, Q', over all the non-native states). The perturbation
energy, ΔΔGper, in this case is, therefore, equal to Ec.

Effects of different perturbations on the energy spectrum of the native state and the ensemble of non-native conforma-tionsFigure 4
Effects of different perturbations on the energy spec-
trum of the native state and the ensemble of non-
native conformations. The effects of four different 
extreme cases of perturbations are depicted. In case (i), a 
native contact with a contact-frequency of 1/|Z| (|Z| is the 
ensemble size) is eliminated, thereby causing the energy of 
the native state, En, to increase to E'n but not affecting the 
energies of the non-native states. The gap between the 
energy of the native state and the energies of all the non-
native states is, therefore, reduced by E'n-En. In case (ii), a 
native contact with a contact-frequency value that 
approaches one is eliminated, thereby causing the energies of 
the native state and most of the non-native states to increase 
by E'n-En without changing the energy gap. In case (iii), a non-
native contact with a contact frequency of 1/|Z| is eliminated 
without changing the energy gap as there is no change in the 
energies of the native state and most of the non-native 
states. In case (iv), a non-native contact with a contact-fre-
quency value that approaches one is eliminated, thereby 
increasing the energies of most of the non-native states and 
also the gap in energy between these states and the native 
state.
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In the second case, a contact that exists in both the native
state and in most of the non-native states is perturbed
and, therefore, the gap between the energy of the native
conformation and the energies of the non-native confor-
mations hardly changes (Figure 4, case (ii)). In this case,
Q'm/Q'wt < 1 and the perturbation energy, ΔΔGper = Ec -
kTln(Q'm/Q'wt), therefore, increases (note that Ec is nega-
tive) in accordance with the plot in Figure 3a. Native con-
tacts with a low contact-frequency, therefore, contribute
more than those with a large contact-frequency to the gap
between the energy of the native state and the energies of
the non-native conformations, thereby explaining why
they have more negative coupling energies (Figure 3a).

In the third case of a perturbation of a non-native contact
with a low contact frequency, it is clear that the energies of
the native state and most of the non-native states do not
change and, therefore, the energy gap also remains
unchanged (Figure 4, case (iii)). In the fourth case of a
perturbation of a non-native contact with a high contact-
frequency, most of the non-native conformations are
destabilized but the energy of the native state is not
affected and the gap between the energy of the native con-
formation and the energies of the non-native conforma-
tions, therefore, becomes larger (Figure 4, case (iv)). In
cases such as (iii) and (iv), when a pairwise interaction
between residues that are not in contact in the native state
is removed, there is no effect on ΔH and the perturbation
energy is given by: ΔΔGper = - kTln(Q'm/Q'wt). If the con-
tact-frequency of the removed interaction is low (case
(iii)), then Q'm ≈ Q'wt and the perturbation energy will be
equal to approximately zero. If the contact-frequency of
the removed interaction is high (case (iv)), then Q'm/Q'wt
< 1 and the value of the perturbation energy will increase
in accordance with the plots in Figure 3. Non-native con-
tacts with a high contact-frequency, therefore, contribute
more than those with a low contact-frequency to the gap
between the energy of the native state and the energies of
the non-native conformations, thereby explaining why
they have more positive coupling energies (Figure 3). The
effects shown schematically in Figure 4 almost always
result in an increase of the energy of either the native state
(case (i)), the non-native states (case (iv)) or both (case
(ii)) since non-favorable pairwise interactions (Table 1)
are rare given the amino acid composition we used. It is
clear, however, that protein evolution might favor non-
favorable interactions in non-native conformations that
would destabilize them relative to the native state. Such
an evolutionary process termed 'negative design' [30-32]
would be reflected in negative (favorable) coupling ener-
gies between residues that are not in contact in the native
state.

How important is contact-frequency for protein stability?
In order to obtain some insight into this question, we

compared the stabilization achieved when optimizing a
sequence for a particular native conformation using two
different functions: (i) F1 (Eq. (8)) that minimizes the
energy of native contacts and maximizes the energy of
non-native contacts ('negative design'); and (ii) F2 (Eq.
(9)) in which the contributions of native and non-native
contacts is weighted by their contact-frequency. Both
functions have an adjustable parameter, Wc, which deter-
mines the relative weight of the contributions of the
native vs. non-native interactions to stability. It can be
seen (Figure 5) that for sequences with L = 30 on a 5 × 6
lattice, greater stability is achieved when contact-fre-
quency is taken into account across the entire range of Wc
values. Similar results were obtained in cases of other lat-
tice dimensions and sequence lengths when only the most
compact conformations were considered. A more general
scoring function will be needed for efficient design when
the entire conformational space is considered.

Conclusion
It is shown in this study that long-range pairwise interac-
tions are also present in simple lattice models of proteins
despite the fact that the interaction energy of a sequence
in a specific conformation is based solely on direct inter-
actions (Eq. (1)). Double-mutant cycle analysis of these

Stabilization of 2D-lattice model proteins by taking into con-sideration the contact frequency of residue pairs in contact and not in contact in the native stateFigure 5
Stabilization of 2D-lattice model proteins by taking 
into consideration the contact frequency of residue 
pairs in contact and not in contact in the native state. 
The average free energy of folding of 100 sequences designed 
either with (❍) or without (�) taking into account the con-
tact frequency is plotted against the value of the contact 
weight, Wc (see Eqs. (8) and (9)), used in the design. The 
results shown here are for sequences with L = 30 on a 5 × 6 
lattice. Similar results were obtained in cases of other lattice 
dimensions and sequence lengths when only the most com-
pact conformations were considered. For more details, see 
Methods.
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lattice models and a mathematical analysis show that the
strength of both direct and indirect native interactions
increases (i.e. their coupling free energy becomes more
negative) in a linear fashion with decreasing contact-fre-
quency that is an entropic term. Hence, proteins can be
stabilized by introducing (or stabilizing) contacts in the
native state with a low contact-frequency and removing
(or destabilizing) contacts in non-native states with a high
contact-frequency, as shown in Figure 5. Although mani-
festations of the latter strategy of 'negative design' have
been recognized before [32] it has not been fully appreci-
ated how the choice of interactions to be introduced (sta-
bilized) or removed (destabilized) affects the extent of
stabilization. Our findings are not dependent on
sequence length and lattice dimensions that determine
the conformational ensemble size and are, thus, likely to
be relevant to the selection of folding pathways, folding
rates and the design of real proteins. It may be possible to
implement our findings using ensembles that are derived
computationally (such as with COREX [33]) before exper-
imentally characterized conformational ensembles
become available. The new approach described here, that
involves combining DMC analysis with lattice models,
may also pave the way for a rigorous analysis of other
complex aspects of protein behavior. For example, simu-
lation of protein evolution by subjecting lattice models to
rounds of mutagenesis followed by selection can be used
to assess the contribution of correlated mutations at dis-
tant positions to protein folding, stability and allosteric
communication. Employing lattice models to address this
issue has the distinct advantage that it renders possible
separating between correlated mutations due to common
ancestry and those due to biophysical factors. Such studies
may reveal relationships between contact-frequency, cor-
related mutations and other properties of proteins such as
contact-order [34].

Methods
The lattice model of proteins
2D or 3D lattice models that are similar to the one
described by Jacob and Unger [35] were used. In brief, the
protein sequence consists of an alphabet of five amino
acids: hydrophobic (H), neutral polar (P), positively
charged (+), negatively charged (-) and blank (B) for the
use of mutations. The pairwise interaction energies (eij)
are taken from Table 1 and reflect in a qualitative manner
the strengths of interactions between different types of
amino acids. Similar results were obtained using other
contact interaction matrices. The energies of all possible
conformations of a given sequence on a particular lattice
were calculated and the conformation with the lowest
energy, if a single such one exists, was considered as its
native conformation. A value of 1 was used for kT. It is
important to note that the size of the ensemble, |Z|, is
determined by the lattice dimensions and the same con-

formation of a given sequence may, therefore, have differ-
ent values of ΔG due to different lattice dimensions.

Sequences of length (L) 16, 20, 25 and 30 were used for
the 2D models and sequences with L = 27 for the 3D mod-
els. In the case of sequences with L = 16 or 20, all the
respective 802,075 and 41,889,578 non-symmetric con-
formations were enumerated. In the case of sequences
with L = 25 or L = 30 where the total number of conforma-
tions is too large to enumerate, we considered only the
conformations that could be fitted into 5 × 5 or 5 × 6 lat-
tices. Likewise, only the conformations that could be fit-
ted into a 3 × 3 × 3 lattice were considered in the case of
the 3D lattice models for sequences with L = 27. The num-
bers of all compact non-symmetric conformations of
sequences with L = 25 on 5 × 5 and 5 × 6 lattices are 1081
and 377,779, respectively. The numbers of all compact
non-symmetric conformations of sequences with L = 30
on a 5 × 6 lattice and L = 27 on a 3 × 3 × 3 lattice are 6431
and 103,346, respectively. The sequences were generated
by random rearrangements of L residues with composi-
tions of 44% H, 31% P, 12.5% (+) and 12.5% (-) in the
case of sequences with L = 16, 40% H, 28% P, 16% (+)
and 16% (-) in the case of sequences with L = 25, 42% H,
30% P, 14% (+) and 14% (-) in the case of sequences with
L = 30 and 40% H, 30% P, 15% (+) and 15% (-) in the
case of sequences with L = 20 or 27 (these compositions
correspond roughly to those in the PDB).

Generation of structure-based sequence sets (SBSS)
SBSS that contained more than 40 different sequences of
the same length and with the same native conformation
were generated. These SBSS have a mean sequence iden-
tity that is only between 0.29–0.34 since (as described
above) the sequences were generated by random rear-
rangements and, thus, represent a random sample of
sequence space. Nine different SBSS corresponding to dif-
ferent native conformations were examined.

Calculation of coupling energies using double-mutant 
cycles
The strength of a pairwise interaction between residues i
and j in the native conformation of a given sequence was
evaluated by constructing a DMC that comprises the orig-
inal wild-type sequence, two single mutants in which
either residue i or j are replaced with the blank (B) residue
and the corresponding double mutant in which both res-
idues are replaced with this residue. The blank residue cor-
responds to alanine which is usually chosen as a reference
state in experimental DMC since it is assumed that (i)
replacement by this residue tends, in general, to reduce
structural perturbations upon mutation and that (ii) inter-
actions between alanine at one position and any other
type of residue at the second position are minimal. The
coupling energy, ΔΔGint, which is a measure of the
Page 8 of 10
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strength of the pairwise interaction between residues i and
j was calculated, as follows:

ΔΔGint = ΔGi,j - ΔGi,B - ΔGB,j + ΔGB,B (7)

where ΔGi,j, ΔGi,B, ΔGB,j and ΔGB,B are the respective free
energies of folding of the wild-type protein, the two single
mutants and the double mutant that are calculated using
Eq. (2). The coupling energy is equal to the difference in
the free energies of two parallel processes in the cycle, Δ
G(i,j→B,j) and ΔG(i,B→B,B), that correspond to the effect
of mutating residue i (or j) when the other residue is
present or absent, respectively (Figure 1). In these calcula-
tions, negative and positive coupling energies reflect inter-
actions that stabilize or destabilize the native state,
respectively. We implemented such an experiment for
each given pair of positions so that a coupling energy
could be calculated for every possible pair of positions in
each sequence.

Calculation of perturbation energies
We also calculated a perturbation energy, ΔΔGper, = ΔGwt -
ΔGm, for every possible pair of positions in each sequence
where ΔGwt and ΔGm are the respective free energies of the
wild-type native conformation before and after a particu-
lar pairwise interaction is 'turned off' but without affecting
any other interactions. Under ideal circumstances [18],
the coupling energy, which can be determined experimen-
tally or calculated as described above, provides a good
estimate of the perturbation energy that can only be deter-
mined by computation.

Contact frequency-based protein stabilization
Sequences with a specific native conformation were gen-
erated by a Monte Carlo (MC) process that maximizes two
design scores, F1 and F2, that either ignore the contact fre-
quency or take it into account, respectively. The expres-
sions for the scores are:

where Wc is the contact weight, Nc and Nnon are the total
number of contacts and non-contacts in the specific con-
formation, respectively, and fc is the contact-frequency.
The values of Wc were varied between 0.05–0.95. For each
value of Wc, 100 designed sequences were generated in
10,000 MC steps and the average free energy of folding
was then calculated.
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