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Multiple instance learning to predict immune
checkpoint blockade efficacy
using neoantigen candidates

Franziska Lang,1 Patrick Sorn,1 Barbara Schrörs,1 David Weber,1 Stefan Kramer,2 Ugur Sahin,3,4

and Martin Löwer1,5,*
SUMMARY

Previous studies showed that the neoantigen candidate load is an imperfect predictor of immune check-
point blockade (ICB) efficacy. Further studies provided evidence that the response to ICB is also affected
by the qualitative properties of a few or even single candidates, limiting the predictive power based on
candidate quantity alone. Here, we predict ICB efficacy based on neoantigen candidates and their neoan-
tigen features in the context of the mutation type, using Multiple-Instance Learning via Embedded
Instance Selection (MILES). Multiple instance learning is a type of supervised machine learning that clas-
sifies labeled bags that are formed by a set of unlabeled instances. MILES performed better compared
with neoantigen candidate load alone for low-abundant fusion genes in renal cell carcinoma. Our findings
suggest that MILES is an appropriate method to predict the efficacy of ICB therapy based on neoantigen
candidates without requiring direct T cell response information.

INTRODUCTION

Neoantigens are tumor-specific mutated gene products that are presented in the form of neoepitopes by the major histocompatibility

complex (MHC) proteins and recognized by CD8+ or CD4+ T cells. Upon neoepitope recognition, these neoantigen-specific T cells can

mediate tumor control in the presence of a favorable tumor microenvironment. Immune checkpoint blockade (ICB) drives tumor control

via the functional re-invigoration of neoantigen-specific T cells.1–4 We previously introduced a concept-based classification of neoantigens,

classifying neoantigens that are recognized by such pre-existing re-invigorated T cells and that are predictive for the clinical benefit of ICB

therapy as restrained neoantigens.5

Different types ofmutation sources can generate neoantigenswith diversemolecular characteristics.While neoantigens from single-nucle-

otide variants (SNVs) usually cause a single amino acid substitution, INDELs (small insertions or deletions) or fusion genes can generate frame-

shift neoantigens with completely altered amino acid sequences. INDELs can generate immunogenic neoantigens,6,7 and the INDEL burden

correlates with the response to ICB in melanoma patients.8,9 Furthermore, a head and neck cancer patient with clinical response to anti-PD-1

therapy harbored only one single immunogenic neoantigen from a fusion gene.10 These observations suggest that neoantigens of all

mutation types could act as restrained neoantigens. Previous studies investigating the characteristics of restrained neoantigens from

SNVs have shown that clonality,11 the difference in MHC-I binding affinity to the wild-type peptide (differential agretopicity index, DAI),12

and the ratio-based DAI in combination with the sequence similarity to epitopes from known pathogens13 correlated with survival upon

ICB therapy. Therefore, the response to cancer immunotherapy is driven not only by neoantigen candidate quantity but also by their quality.14

Further neoantigen features and prioritization methods have been published, and we recently developed a toolbox called NeoFox15 to

annotate neoantigen candidates with a variety of neoantigen features. An analysis of how these features characterize restrained neoantigens

is still missing—in particular in the context of non-SNV mutation types.

Standardized, unbiased, and systematic immunogenicity screenings of neoantigen candidates providing direct information about neoan-

tigen-specific T cell responses are still limited in their availability for such an in silico analysis. Therefore, we predicted neoantigen candidates

from raw whole-exome (WES) and RNA sequencing (RNA-seq) data from five ICB cohorts to examine if the clinical response can be predicted

based on the characteristics of neoantigen candidate profiles in the context of the mutation type.

Although traditional supervisedmachine learning approaches classify labeled instances, multiple instance learning is a special branch that

classifies labeled groups (so-called bags) that are formed by a set of instances with unknown labels.16 According to the standard assumption
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Figure 1. Identification of neoantigen candidates in immune checkpoint blockade cohorts

Publicly availableWES and RNA-seq from patient cohorts who had been treated with ICB therapy were collected. Neoantigen candidates from SNVs and INDELs

were identified with an in-house property pipeline25 (‘‘iCaM2’’), and candidates from fusion genes were identified with EasyFuse.26 Neoantigen candidates were

annotated with neoantigen features using NeoFox.15
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of multiple instance learning, positive bags harbor at least one instance with a hidden positive label and negative bags harbor exclusively

negative instances.16,17 For our analysis, patients are referred to as bags, the clinical response to ICB as the bag label, and neoantigen can-

didates as the instances. Multiple instance learning has been used in the field of cancer immunology for distinguishing tumor from normal

samples on their T cell receptor (TCR) sequence profiles18 and for predicting T cell infiltration on neoantigen candidate profiles.19

Here, we used multiple instance learning to predict the clinical response to ICB based on neoantigen candidates of cancer patients in the

context of the mutation type. We further identified features that are relevant to predict ICB efficacy and that may characterize restrained neo-

antigens (i.e., neoantigens that are recognized by ICB reinvigorated T cells).5

RESULTS

Neoantigen candidate loads are heterogeneous in cancer patients

To investigate the characteristics of neoantigen candidates in the context of the mutation type, we identified neoantigen candidates from

SNVs, INDELs, and fusion genes in raw WES and RNA-seq data from five melanoma or renal cell carcinoma patient cohorts treated with

a-PD-1,20–22 a-CTLA-4,23 or a-PD-L120,24 cancer immunotherapy. We then annotated these neoantigen candidates with neoantigen features

(Figure 1).

The distribution of the neoantigen candidate load per patient varied between mutation types and datasets (Figures 2 and S1 and

Table S1). Although the median load of neoantigen candidates derived from SNVs was 208 in the three melanoma datasets (‘‘Hugo’’,

‘‘Riaz’’, ‘‘Van Allen’’), the median SNV-derived neoantigen candidate load was 39 in the two renal cell carcinoma datasets (‘‘Miao’’, ‘‘McDer-

mott’’) (Figure 2A; Table S1). Neoantigen candidates from INDELs or fusion genes were in general rarer than SNV-derived neoantigen

candidates in all datasets. The relative proportion of neoantigen candidates from INDELs or fusion genes per patient with respect to

neoantigen candidate load of all mutation types was higher in patients of the renal cell carcinoma datasets (‘‘RCC’’) in comparison to the

melanoma datasets (‘‘MEL’’) (Figures 2B and 2C).

Next, we combined neoantigen candidates from the five ICB cohorts and compared the density distribution of selected neoantigen fea-

tures between SNV-, INDEL-, and fusion-gene-derived candidates (Figures 2D–2I). The distribution of the best-predicted MHC-I and MHC-II

binding rank was comparable for SNV-, INDEL-, and fusion-gene-derived neoantigen candidates, indicating that neoantigen candidates from

different mutation types shared comparable MHC binding ability (Figures 2D and 2E). INDELs and fusion genes were associated with higher

amplitude MHC-II (rank) values in comparison to SNVs (Figures 2G). This suggested that the non-SNV mutation types are more likely to

generate predicted MHC-II epitopes with improved MHC-II binding ranks compared with their wild-type counterpart. As expected, the

best-predicted MHC-I and MHC-II epitopes of INDEL- and fusion-gene-derived neoantigen candidates were less similar to their wild-type

counterpart in comparison to SNV-derived candidates (Figures 2H and 2I).

The neoantigen candidate load is an imperfect predictor of the response to ICB

We systematically evaluated whether the predicted neoantigen candidate load significantly differed between responders and non-re-

sponders to ICB for each mutation type and dataset. The neoantigen candidate load was defined with respect to different MHC-I and

MHC-II binding affinity thresholds, while considering either all or only expressed neoantigen candidates (Figures 3A–3D and S2A‒S2F).
In general, patients responding to ICB therapy harbored significantly higher SNV-derived neoantigen candidate loads compared

with non-responding patients when combining all analyzed ICB cohorts independent of the thresholds for MHC binding affinity and
2 iScience 26, 108014, November 17, 2023
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Figure 2. Overview of neoantigen candidates in the context of the mutation type in cohorts treated with immune checkpoint blockade

(A) The neoantigen candidate load from SNVs, INDELs, or fusion genes per patient in five ICB cohorts.

(B and C) The proportion of neoantigen candidates from each mutation type (SNV, INDEL, or fusion genes) relative to neoantigen candidate load from all

mutation types was determined for each patient in the (B) melanoma (‘‘MEL’’) cohorts and (C) renal cell carcinoma cohorts (‘‘RCC’’). The proportion is shown

on the y axis, and indexed patients are shown on the x axis.

(D‒I) Density plots showing the density distribution of (D) MHC-I binding rank, (E) MHC-II binding rank, (F) MHC-I amplitude, (G) amplitude MHC-II, (H) self-

similarity MHC-I, and (I) self-similarity MHC-II of neoantigen candidates from SNVs, INDELs, and fusion genes in a combined dataset of all ICB cohorts. See

also Figure S1.
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expression to define the neoantigen candidate load (p < 0.05) (Figures 3D and S2A‒S2C). Interestingly, the INDEL-derived neoantigen

candidates with good MHC-I or MHC-II binding properties correlated with ICB efficacy in one individual melanoma cohort (‘‘Riaz’’)

(Figures 3A–3D). The fusion-gene-derived neoantigen candidate load generally did not correlate with ICB efficacy (Figures 3D and

S2D‒S2F).
These observations support previous findings by other studies27–29 that the SNV or SNV-derived neoantigen candidate load alone is an

imperfect predictor of the response to ICB.
iScience 26, 108014, November 17, 2023 3
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Figure 3. Neoantigen candidate load is an imperfect predictor of the response to immune checkpoint blockade

(A‒C) The INDEL-derived neoantigen candidate load was compared between responder and non-responder in the Riaz cohort based on (A) all predicted

neoantigen candidates, (B) candidates with MHC-I or MHC-II binding affinity <50 nM, and (C) expressed candidates with MHC-I or MHC-II binding affinity

<50 nM.

(D) The neoantigen candidate load was compared between responder and non-responder with respect to the mutation type, MHC binding ability, and RNA

expression. The plot represents the resulting p value from each comparison. Comparisons that resulted in a p value <0.05 are shown in purple, whereas non-

significant comparisons are shown white. The y axis represents a definition of the neoantigen candidate load. Neoantigen candidates with MHC-I or MHC-II

binding affinity lower than the respective threshold (‘‘MHC affinity cutoff’’) were used. The column ‘‘only expressed’’ indicates if all neoantigen candidates

(‘‘�’’) or only neoantigen candidates confirmed in the RNA-seq (‘‘+’’) were used. All comparisons were performed in each individual ICB cohort and in a

combined dataset of all cohorts (‘‘all’’), the melanoma cohorts (‘‘MEL’’), or the renal cell carcinoma cohorts (‘‘RCC’’). The letters A–C refer to respective

subpanel above. Statistical testing was performed with Wilcoxon signed ranked test. P-values were corrected for multiple testing on the same dataset with

Benjamini Hochberg method. Statistical tests resulting in p values <0.05 after multiple testing correction were considered as significant. See also Figure S2.
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Multiple-Instance Learning via Embedded Instance Selection to predict the response to ICB on neoantigen candidates

The imperfect correlation between neoantigen candidate load and the response to ICBmotivated us to examine whether ICB efficacy can be

predictedby considering the qualitative features of neoantigen candidates.14 Therefore, all patients were represented by their predicted neo-

antigen candidates annotated with selected neoantigen features. We used 29 neoantigen features that were annotated with NeoFox15 such

as MHC binding properties or the self-similarity (Table 1).

Then, we used multiple instance learning to predict ICB efficacy based on the set of annotated and unlabeled neoantigen candidates.

Patients are referred to as bags with the response to ICB as their label (Figure 4A). Each bag is a collection of unlabeled instances, i.e., neo-

antigen candidates with unknown anti-tumoral activity. Themultiple instance learning standard assumptionmeets the biological assumptions

that responders (‘‘positive bags’’) must harbor at least one true neoantigen (‘‘positive instance’’), whereas non-responders (‘‘negative bags’’)

must harbor only neoantigen candidates that cannot trigger anti-tumoral activity (‘‘negative instances’’).17 The MILES (Multiple-Instance

Learning via Embedded Instance Selection)47 algorithm was chosen as the algorithm of choice in this study as it performed well in a previous

benchmarking study related to cancer detection based on TCR sequences.18

For a robust performance estimation, the MILES algorithm was trained and evaluated on neoantigen candidates with a nested cross-vali-

dation approach across multiple hyperparameter sets48 (Figure 4B). The median area under the receiver operating characteristic curve

(AUROC) across the nested cross-validation was used to evaluate the performance of the learning method.
4 iScience 26, 108014, November 17, 2023



Table 1. Description of neoantigen features

Feature Description Reference

rnaExpression RNA expression –

rnaVariantAlleleFrequency Variant allele fraction –

Best_rank_MHCI_score Best predicted MHC-I binding rank per

neoantigen candidate

Reynisson et al.30

Best_rank_MHCII_score Best predicted MHC-II binding rank per

neoantigen candidate

Reynisson et al.30

MixMHCpred_best_rank Best predicted MixMHCpred rank per neoantigen Bassani-Sternberg et al.31

MixMHC2pred_best_rank Best predicted MixMHC2pred rank per neoantigen Racle et al.32

Amplitude_MHCI_affinity Ratio of the MHC-I affinity score between the

best predicted MHC-I neoepitope and its

corresponding wild-type peptide

Łuksza et al.,13 Balachandran et al.33

Amplitude_MHCII_rank Ratio of the MHC-II rank score between the best

predicted MHC-II neoepitope and its

corresponding wild-type peptide

Adapted from Łuksza et al.,13

Balachandran et al.33

DAI_MHCI_affinity Difference in the MHC-I affinity score between

the best predicted MHC-I neoepitope and

its corresponding wild-type peptide

Duan et al.34

PHBR_I The harmonic mean of best predicted MHC-I

binding rank across the MHC-I genotype

Marty et al.35

PHBR_II The harmonic mean of best predicted MHC-II

binding rank across the MHC-II genotype

Marty Pyke et al.36

Generator_rate_MHCI Number of predicted MHC-I neoepitopes

per neoantigen candidate

Rech et al.37

Generator_rate_MHCII Number of predicted MHC-II neoepitopes

per neoantigen candidate

Rech et al.37

Selfsimilarity_MHCI Similarity to the self-proteome of the best predicted

MHC-I neoepitope per neoantigen candidate

Bjerregaard et al.38

Selfsimilarity_MHCII Similarity to the self-proteome of the best predicted

MHC-II neoepitope per neoantigen candidate

Adapted from Bjerregaard et al.38

Dissimilarity_MHCI Similarity to the self-proteome of the best predicted

MHC-I neoepitope per neoantigen candidate

Richman et al.39

Pathogensimiliarity_MHCI_9mer Similarity of the best predicted MHC-I neoepitope

per neoantigen candidate to known pathogens

Łuksza et al.,13 Balachandran et al.33

Pathogensimiliarity_MHCII Similarity of the best predicted MHC-II neoepitope

per neoantigen candidate to known pathogens

Adapted from Łuksza et al.,13

Balachandran et al.33

Hex_alignment_score_MHCI Similarity of the best predicted MHC-I neoepitope

per neoantigen candidate to known pathogens

Chiaro et al.40

Hex_alignment_score_MHCII Similarity of the best predicted MHC-II neoepitope

per neoantigen candidate to known pathogens

Adapted from Chiaro et al.40

IEDB_Immunogenicity_MHCI IEDB immunogenicity score for the best

predicted MHC-I neoepitope

Calis et al.41

IEDB_Immunogenicity_MHCII IEDB immunogenicity score for the best

predicted MHC-II neoepitope

Adapted from Calis et al.41

vaxrank_binding_score Cumulative MHC I binding score per

neoantigen candidate

Rubinsteyn et al.42

vaxrank_total_score Combination of vaxrank binding score with variant

allele expression

Rubinsteyn et al.42

Priority_score Combinatorial score of MHC-I binding rank and

variant allele expression

Bjerregaard et al.43

(Continued on next page)
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Table 1. Continued

Feature Description Reference

Recognition_Potential_MHCI_9mer Combinatorial score of amplitude

MHC-I and pathogen similarity

Balachandran et al.33

Neoag_immunogenicity Machine learning model Łuksza et al.,13 Smith et al.44

T cell_predictor_score Machine learning model Besser et al.45

PRIME_best_rank Machine learning model Schmidt et al.46

MHC, major histocompatibility complex; DAI, differential agretopicity index; PHBR, Patient Harmonic-mean Best Rank; IEDB, Immune Epitope Database.
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We predicted the response to ICB with MILES on neoantigen candidates from SNVs, INDELs, or fusion genes separately or by a combi-

nation of all mutation types in tumor-entity-specific datasets (‘‘MEL’’; ‘‘RCC’’) or in a dataset combining all ICB cohorts (‘‘MEL+RCC’’) (Fig-

ure 4C; Table S2). The set of hyperparameters with the best performance differed for the learning approaches trained on SNV, INDEL, fusion

genes or on all mutation types (Table S2). Training and evaluating the MILES approach on SNV-derived neoantigen candidates from all ICB

cohorts (‘‘MEL+RCC’’) achieved a median AUROC of 0.62 (Figure 4C; Table S2). We observed an even better performance when evaluating

MILES on a dataset restricted to the three melanoma cohorts (‘‘MEL’’) for SNV-specific (median AUROC = 0.69) and combined (median

AUROC = 0.75) approach (Figure 4C).

Next, we wanted to directly compare the performance of MILES and using the neoantigen candidate load to predict ICB efficacy. There-

fore, we performed an ROC-curve analysis in a nested CV on the neoantigen candidate load as a predictor of ICB efficacy as well (Figures 4D

and 4E). This analysis suggested that theMILES approach performed superior to neoantigen candidate load for the mutation-type combined

and melanoma-specific dataset (‘‘MEL’’, Figure 4E).

As an additional control, we trained the MILES algorithm on datasets with randomized neoantigen candidates but original distribution of

neoantigen candidate load (Figure S3). When neoantigen candidates were randomized across patients, MILES performed randomly (e.g.,

median AUROC = 0.44 for the SNV-specific approach in the ‘‘MEL+RCC’’ cohort).

The MILES algorithm performed randomly on datasets restricted to data from ‘‘RCC’’ cohorts (Figure 4C). The RCC cohorts had a higher

fraction of patients with stable disease in comparison to theMEL cohorts (Figures S4A and S4B).We hypothesized that stable disease leading,

e.g., to survival benefit may be mediated by neoantigens and re-trained and evaluatedMILES on datasets excluding patients with stable dis-

ease (Figure 4F; Table S2). Of note, MILES achieved amedian AUROCof 0.75 in the fusion-gene-specific approach in RCC cohort, performing

superior to the neoantigen candidate load (Figures 4F and 4G). MILES performed randomly on randomized neoantigen candidates in the

RCC cohort (Figures S4C and S4D).

Next, we examinedwhich neoantigen featureswere important to predict ICB efficacywithMILES (Figure 4A). Because the embedding step

in the MILES algorithms involves a nonlinear transformation,47 the feature importance could not be estimated internally within the algorithm.

Therefore, we repeated the nested cross-validation approach on datasets in which the neoantigen feature of interest was permutated. Then,

we approximated feature importance by the delta AUROC of the original learning method and the approach without the feature of interest

and considered features achieving a delta AUROC >0.05 as relevant.

We focused the feature importance analysis on MILES approaches that achieved a median AUROC >0.6 as non-random approaches

(Figures S5A and S5B). The differential agretopicity index (DAI)34—the difference in MHC binding affinity between the mutated and non-

mutated neoepitope candidate—was predicted as important feature in all approaches, suggesting its general relevance (Figures S5A and

S5B). Also, the similarity of the best-predicted MHC-II peptide to known pathogenic epitopes in terms of the HEX score40 achieved delta

AUROCs higher than 0.05 for the learning approach on SNVs in theMEL and RCC combineddataset (delta AUROC= 0.06) and on all mutation

types in the RCC-specific dataset without SD patients (delta AUROC = 0.15). Furthermore, features such as the RNA expression (delta

AUROC = 0.06) and PHBR-II36 (delta AUROC = 0.06) and vaxrank42 (delta AUROC = 0.06) were predicted to be relevant in the combined

set of neoantigen candidates from all mutation types, specifically in the context of RCC (Figure S5B).
DISCUSSION

Predicting ICB therapy efficacy with neoantigens is still challenging due to lack of appropriate models. We tackled this challenge by predict-

ing—in the context of mutation type and tumor entity—the response to ICB with neoantigen candidate load or with a multiple instance

learning approach that relies on neoantigen candidates annotated with neoantigen features.

We identified the SNV-derived neoantigen candidate load as a predictor of the response to ICB in a combined set of all ICB cohorts but

not in an individual ICB cohort. This work supported previous findings that the neoantigen candidate load from INDEL mutations correlates

with the response to ICB in particular in the context of melanoma.8,9 Furthermore, we observed that the neoantigen candidate load derived

from fusion genes was not an indicator for the response to ICB as observed previously.49 The limitations of the mutation or neoantigen candi-

date load as a predictor of the response to ICB has been extensively studied and discussed in particular in the context of SNVs.27–29 It is

conceivable that technical shortcomings in the tools used for mutation calling and in the definition of the neoantigen candidate load limit

its predictive power in our and other studies. The observation that patients with low neoantigen candidate load also harbor immunogenic
6 iScience 26, 108014, November 17, 2023
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Figure 4. Multiple-Instance Learning via Embedded Instance Selection to predict the response to immune checkpoint blockade (ICB) using neoantigen

candidates

(A) Multiple instance learning was used to distinguish responder from non-responder, given their neoantigen candidate profiles represented by the annotated

neoantigen features.

(B) Models were trained and evaluated in a nested cross-validation (CV) loop for multiple hyperparameter sets on the full dataset. The hyperparameter set with

the bestmedian area under the receiver operating characteristic curve (AUROC) across the nested CV approach was selected to represent the performance of the

learning method.

(C) The median performance of MILES to predict ICB efficacy on a dataset of SNVs, fusion genes, or INDELS only and a dataset combining all mutation types

(‘‘all’’) in terms of the AUROC for all cohorts (‘‘MEL+RCC’’), the melanoma cohorts (‘‘MEL’’), and the renal cell carcinoma cohorts (‘‘RCC’’).

(D and E) Comparison of the performance of MILES and the neoantigen candidate load alone on a dataset of SNVs, fusion genes, or INDELS only and a dataset

combining all mutation types (‘‘all’’) in terms of the AUROC for (D) all cohorts (‘‘MEL+RCC’’) and (E) the melanoma cohorts (‘‘MEL’’).

(F) The previous analysis was repeated on a dataset without patients with stable disease. The median AUROC values of MILES over a nested cross-validation.

(G) Comparison of the performance of MILES and the neoantigen candidate load alone on a dataset of fusion genes for the renal cell carcinoma cohorts (‘‘RCC’’).

Data are shown over a nested CV in C–G. Median AUROC with interquartile range as error bars is shown in C and F. AUROC values resulting from the nested CV

were compared betweenMILES and the neoantigen candidate load withWilcoxon signed ranked test in D, E, and G. Nomultiple testing correction was applied.

See also Figures S3–S5.
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neoantigens and can respond to ICB therapy10 suggests that, aside from technical shortcomings, disregarding qualitative traits limits and

pursuing solely the neoantigen candidate load would limit predictive power.

Previous studies have used different approaches and prior assumptions to predict the response to ICB based on neoantigen candidates,

e.g., based on the best-predicted neoantigen candidate,13,33 the mean across all predicted candidates,12 or by the Cauchy-Schwarz index.50

Here, we predicted the ICB therapy efficacy dependent on neoantigen candidates with multiple instance learning. This approach relies only

on the prior assumption that a responder to ICB harbors at least one immunogenic neoantigen, whereas a non-responder lacks immunogenic
iScience 26, 108014, November 17, 2023 7
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neoantigens. Evaluating MILES on neoantigen candidate data demonstrated that this approach is able to achieve non-random performance

independent of the underlying neoantigen candidate load, as suggested by the evaluation of MILES on randomized data. The MILES

approach on the neoantigen candidates from fusion genes improved the prediction of clinical benefit, as compared with that based on

the fusion-gene-derived neoantigen candidate load. In particular, predicting the ICB efficacy in RCC by fusion-gene-derived neoantigen can-

didates was superior to neoantigen candidate load if patients with stable disease were excluded from the analysis.

Previously, we defined neoantigens that are predictive of the clinical outcome of ICB therapy as restrained neoantigens.5 Apart from pre-

dicting ICB efficacy, the multiple instance learning approach supports to investigate the features of neoantigen candidates that may

contribute to ICB efficacy. We analyzed the relevance of neoantigen features for the learning method and confirmed a previous observation

that the DAI of the best-predictedMHC-I neoepitope is a descriptor of neoantigen candidates from all mutation types that may contribute to

ICB efficacy.12 Furthermore, the similarity of the best-predicted MHC-II neoepitope to viral epitopes in terms of the HEX algorithm40

appeared to be a relevant neoantigen feature in our analysis. This observation could indicate that at least a subset of the neoantigens in

patients responding to ICB may be cross-recognized by heterologous T cells.40,51 However, the external-permutation-based method to

estimate feature importance comes with two main limitations: (1) feature importance results might change with permutation and (2) some

features might correlate and affect the importance measure of each other. Overcoming these limitations may guide the understanding

that qualitative neoantigen features characterize restrained neoantigens in the future.

Here, we showed that multiple instance learning can be used to predict immunotherapy efficacy based on qualitative neoantigen candi-

date profiles covering multiple mutation types, and we provide the basis for future investigation. In our study, MILES outperformed the

neoantigen candidate load only in a few investigated cases. Integrating the potentially complementary neoantigen candidate load and

the qualitative multiple instance approach may improve the prediction of the response to ICB in other use cases. A limited set of neoantigen

features was integrated into the model approach in this study, mostly targeting the linear sequence of neoantigen candidates and rather

focusing on the interaction withMHCmolecules.15 Integrating clonality information,11 structural features,52 and novel features that specifically

model the interaction between the MHC-bound neoepitope and the TCR repertoire may improve predictions in the future. This could be in

particular applicable in the cases for which we retrieved random performance or unimproved performance compared with the neoantigen

candidate load in this study. Furthermore, when more data are available, systematic benchmarks may identify the best suitable multiple

instance learning algorithm. However, one interesting characteristic of the MILES algorithm used in this study is its internal instance selection

approach and its ability to be used for instance classification.47 Therefore, multiple instance learning with instance selection could empower

not just prediction of ICB efficacy but also the identification of immunogenic neoantigens in the future.
Limitations of the study

This study comes with certain limitations. The major limitation of our work is the size of the used dataset that leads to large variation while

estimating the performance of the neoantigen candidate load orMILES in predicting ICB efficacy with a nested cross-validation. Furthermore,

we manually pre-selected neoantigen features used in this study. Neoantigen features such as clonality11 were not considered in our work.

The results could be affected by the use of FPKM expression values and the combination of different expression scales when combining

mutation types. Moreover, the estimation of the feature importance in MILES models using a permutation-based approach could be impre-

cise, e.g., due to correlation between features. A direct comparison of mutation typesmight be imprecise due to uneven occurrence of SNVs,

INDELS, and fusion genes in patients.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Hugo dataset Hugo et al.21 SRP067938, SRP090294 (WES-seq) and SRP070710 (RNA-seq)

Riaz dataset Riaz et al.22 SRP095809 (WES-seq) and SRP094781 (RNA-seq)

Van Allen dataset van Allen et al.23 phs000452.v2.p1

Miao dataset Miao et al.20 phs001493.v1.p1

McDermott dataset McDermott et al.24 EGAS00001002928

Software and algorithms

Bwa v0.7.10 Li and Durbin53 https://github.com/lh3/bwa

Picard v1.110 Broad Institute http://broadinstitute.github.io/picard

strelka2 v2.0.14 Kim et al.54 https://github.com/Illumina/strelka

EasyFuse v1.3 Weber et al.26 https://github.com/TRON-Bioinformatics/EasyFuse

HLA-HD v1.2.0.1 Kawaguchi et al.55 https://www.genome.med.kyoto-u.ac.jp/HLA-HD/

STAR v2.4.2a Dobin et al.56 https://github.com/alexdobin/STAR

Sailfish vBeta-0.7.6 Patro et al.57 https://www.cs.cmu.edu/�ckingsf/software/sailfish/

NeoFox v0.5.3 Lang et al.15 https://github.com/TRON-Bioinformatics/neofox

Mil Mil https://github.com/rosasalberto/mil

R v4.1.0 R Core Team https://www.r-project.org/

Python v3.7.3 Python Software Foundation https://www.python.org/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Martin Löwer (Martin.Loewer@

TrOn-Mainz.DE).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing, publicly available data. The accession numbers for the datasets are listed in the key resources table. Analysis

code together with results of this study is publicly available at https://github.com/TRON-Bioinformatics/milneo_analysis. Any additional in-

formation required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Independent datasets from five immune checkpoint blockade trials were collected.20–24

Whole exome sequencing (WES) from tumor andmatched normal samples and RNA-seqdata of the tumor samplewere retrieved from the

respective repositories.

Clinical outcome data were collected from the original publications, and only patients with both availableWES and RNA-seq were consid-

ered in the downstream analysis. The response categories were transformed into a table of binary outcomes. Patients with complete (CR) or

partial (PR) response were defined as responders and patients with stable (SD) or progressive (PD) disease as non-responders.

Samples were restricted to ICB-therapy naive samples that were acquired pre-treatment in the Riaz cohort.22 Only patients treated with

atezolizumab as a single agent were considered in the analysis in the McDermott cohort.24

METHOD DETAILS

Prediction of neoantigen candidates

Neoantigen candidates were detected using an in-house built standardized pipeline that was described previously.25,58 The pipeline covers

the alignment of DNA reads to the reference genome hg19 using bwa (v0.7.10)53 and the removal of duplicated reads with Picard (v1.110)
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(http://broadinstitute.github.io/picard). An in-house developed proprietary software was used to detect high-confidence single nucleotide

variations. INDEL variations were detected with strelka2.54 The detected somatic nonsynonymous mutations were translated into 27mer pep-

tide sequences with the mutation at position 14. Frameshift INDELs were translated until the occurrence of the next stop codon. Unsolvable

technical issues arose for two patients; these were excluded from further analysis that included SNV- or INDEL-derived neoantigen

candidates.

Neoantigen candidates derived from fusion genes were predicted from RNA-seq data using EasyFuse.26 For the downstream analyses,

fusion gene-derived neoantigen candidates had to fulfill the following criteria: (i) an EasyFuse probability score >0.5, (ii) to not be a false-pos-

itive fusion gene call from a curated exclusion list of known fusion genes in normal tissue (iii) best break point per fusion gene pair based on the

prediction probability of the random forest classifier, (iv) breakpoints must be on the respective exon boundary, (v) frame is not ‘‘no_frame’’

and (vi) exclude neoantigen candidates with ‘‘neo_frame’’ in case ‘‘in_frame’’ neoantigen candidates were predicted for the same fusion gene.
HLA-typing

MHC -I and -II genotypes were detected for each patient with HLA-HD (v1.2.0.1) using the normal WES data.55
Transcript expression analysis

Transcript expression analysis was performed by aligning RNA-seq reads to the hg19 reference genome with STAR (v2.4.2a),56 followed by

quantification of transcripts in FPKM (fragments per kilobase of exon model per million reads mapped) with sailfish (vBeta-0.7.6).57

Transcript expression of fusion genes was approximated by the sum of spanning and junction reads.
Annotation of neoantigen candidates

Neoantigen candidates from all mutation types were annotated with published neoantigen features and prioritization algorithms using

NeoFox (v0.5.3).15 The predicted neoantigen candidates, MHC-I and -II genotypes of the patient and the tumor type were provided as input.

The wild type counterpart for neoepitope candidates from INDELs or fusion genes was defined by the best hit of the same length in a

BLAST (Basic Local Alignment Search Tool) search against the human proteome in NeoFox.

Twenty-nine neoantigen features that were annotated by NeoFox were included in the downstream analyses (Table 1). Features were

manually pre-selected to exclude highly coinciding features that derive from the exact same original tool. For instance, we used only the

best MHC-I binding rank (Best_rank_MHCI_score), and we neglected the best MHC-I binding affinity score determined by netMHCpan.
Multiple instance learning

The response to ICB was predicted with multiple instance learning on the annotated neoantigen candidates using the MILES (Multiple-

Instance Learning via Embedded Instance Selection) algorithm.

MILES was proposed by Chen et al.47 MILES embeds bags into an instance-based feature space using an instance similarity measure be-

tween each bag and instances. The dimensionality of this instance-based feature space equals the total number of instances, leading to a high

dimensional feature space when the total number of instances in the dataset is high. Not all of the features (instances) may be relevant for

classification. Relevant features are selected with a 1-norm support vector machine which is simultaneously used to construct the bag

classifier.47

In this work, we used the implemented MILES algorithm from the python library mil (https://github.com/rosasalberto/mil). In order to use

the library, we adjusted the function to load the data provided by the package and increased the number of iterations (max_iter) in the

LinearSVC of the miles function to 100,000.

Prior to training, the direction of scaling was harmonized for all neoantigen features, i.e., the scaling was reversed for Best_rank_MHCI_

score, Best_rank_MHCII_score, MixMHC2pred_best_rank, MixMHCpred_best_rank, Selfsimilarity_MHCI, Selfsimilarity_MHCII, PRIME_bes-

t_rank, PHBR_I, PHBR_II. Missing values were filled with the minimal value of a neoantigen feature across all predicted neoantigen candidate,

assuming that a missing value reflects biological irrelevance of the neoantigen candidate of interest.
QUANTIFICATION AND STATISTICAL ANALYSIS

Candidate load as a predictor of ICB efficacy

We compared the neoantigen candidate load between responder and non-responder to ICB therapy with Wilcoxon signed ranked test in

each individual ICB cohort, in tumor entity combined datasets (‘‘MEL’’, ‘‘RCC’’) and in a combined dataset of all cohorts (‘‘all’’). Neoantigen

candidate load was defined either by neoantigen candidates derived by fusion genes only, INDELs only, SNV only or by all mutation types.

Furthermore, the neoantigen candidate load was assessed under multiple MHC binding affinity cutoffs and if the neoantigen candidate load

were found in the RNA-seq data. This resulted in many tests on each dataset and p values were corrected for multiple testing with the Ben-

jamini Hochbergmethod59 in each examined dataset. Statistical tests resulting in p values <0.05 after multiple testing correction were consid-

ered as significant.

The number of patients per dataset investigated in this work and the number of predicted neoantigen candidate load (without filtering

with respect to MHC binding affinity or RNA expression) are provided in Table S1.
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Performance of multiple instance learning

Multiple instance learningmodels were trained with a plain 10-fold cross-validation on the full dataset to allow a robust estimation of the per-

formance of the learning method across the repeated splits.48

The MILES algorithm comes with the two hyperparameters sigma2 and l.47 To set the hyperparameters (l = [0.1,..,1], sigma2 = [50,

.,10000000]), an internal 10-fold cross-validation was used. Thus, a 10-fold external cross-validation was used for model validation and within

each "fold" another internal 10-fold cross-validation for hyperparameter estimation, amounting to in total 100 runs in a nested cross-

validation.

This approach was used to estimate the performance of the learning method in predicting the response to ICB on neoantigen candidates

restricted to SNVs, INDELs or fusion genes or on a combined dataset covering neoantigen candidates from SNVs, INDELs and fusion genes.

The performance of the learning method was represented by the median AUROC and its interquartile range across the nested cross-valida-

tion approach. An AUROC of 0.5 reflects random guessing while an AUROC of 1 reflects a classifier with optimal performance.

To compare the performance of the neoantigen candidate load as a predictor of ICB efficacy to multiple instance learning, ROC-curve

analysis was performed as described above for the neoantigen candidate load.
Feature importance

To estimate the importance of each neoantigen feature, the feature of interest was permutated and models were re-trained as described

above on that dataset using the best hyper-parameter setting of the original approach. This procedure was repeated 50x and approximated

the performance across the 50x nested cross-validations. Then, feature importance was approximated by the delta AUROC of the learning

method on the original data and the learning method on the data with permutated feature. Features with delta AUROC R0.05 were

considered as important in this work.
14 iScience 26, 108014, November 17, 2023
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