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Nuclear factor erythroid-2–related factor-2 (NFE2L2/Nrf2) is a transcription factor that
regulates the expression of antioxidant genes. Both Kelch-like ECH-associated protein 1
(Keap1) mutations and Nrf2 mutations contribute to the activation of Nrf2 in non-small cell
lung cancer (NSCLC). Nrf2 activity is associated with poor prognosis in NSCLC. Metabolic
reprogramming represents a cancer hallmark. Increasing studies reveal that Nrf2
activation promotes metabolic reprogramming in cancer. In this review, we discuss the
underlying mechanisms of Nrf2-mediated metabolic reprogramming and elucidate its role
in NSCLC. Inhibition of Nrf2 can alter metabolic processes, thus suppress tumor growth,
prevent metastasis, and increase sensitivity to chemotherapy in NSCLC. In conclusion,
Nrf2 may serve as a therapeutic target for the treatment of NSCLC.

Keywords: nuclear factor erythroid-2–related factor-2, metabolic reprogramming, non-small cell lung cancer,
Kelch-like ECH-associated protein 1, reduction-oxidation balance
INTRODUCTION

Lung cancer is the leading cause of cancer-related death worldwide (1). Non-small cell lung cancer
(NSCLC) is the most common lung cancer type, including adenocarcinoma, squamous carcinoma,
adenosquamous carcinoma, and large cell lung cancer, etc. During the past two decades, targeted
therapy and immunotherapy have resulted in dramatic tumor response compared to conventional
chemotherapy and radiotherapy in patients with NSCLC. Nevertheless, numerous patients can
benefit from neither conventional and nor novel therapeutic approaches. More treatments are in
need to offer possible solutions to patients with dead ends.

Metabolic reprogramming is a hallmark of cancer (2). Half a century ago, Otto Warburg firstly
observed that unlike normal cells, tumor cells preferentially utilize glycolysis in an oxygen-rich
environment, as called Warburg Effect. Recent studies revealed that cancer cells use multiple
metabolic pathways to drive and maintain their malignant phenotypes. This metabolic shifting in
cancer cells is regarded as metabolic reprogramming. For example, tumor cells consume glucose,
lactate, pyruvate, hydroxybutyrate, acetate, glutamine, and fatty acids at much higher rates than
their non-tumor equivalents, which enables tumor cells to produce enough ATP as an energy source
and offer intermediate products for biosynthesis. Meanwhile, these processes also generate toxic
substances. Therefore, maintenance of the reduction-oxidation (redox) balance is indispensable to
promote tumor cell growth and metastasis (3, 4). Metabolic reprogramming is highly active and
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shows heterogeneity among patients with NSCLC (5). Thus,
targeting the altered metabolic pathways holds promise as a
novel strategy in NSCLC.

The Kelch-like ECH-associated protein 1-nuclear factor
erythroid-2–related factor 2 (Keap1-Nrf2) signaling pathway
plays a vital role in the protection against oxidative stress,
such as ROS. Under normal conditions, Nrf2 is constitutively
ubiquitinated by Keap1 and Cullin-3 E3 ligase and degraded
by the 26S proteasomal pathway (6). Under oxidative stress
conditions, Keap1-mediated Nrf2 degradation is abrogated by
the oxidation of Keap1. Keap1 has more than 20 free sulfydryl
(-SH) groups in its constituent cysteine residues, which are
highly reactive functional groups acting as stress sensors.
Intracellular ROS can modify Keap1 cysteine residues. These
modifications result in a conformational change of Keap1,
thereby preventing the proteasomal degradation of Nrf2 (7).
Increased Nrf2 translocates to the nucleus, heterodimerizes
with small Maf proteins, and induces the transcriptional
activation of target genes with antioxidant response
elements (AREs) in their gene regulatory regions (8). Thus,
the Keap1-Nr f2 pa thway ma in t a in s in t r a c e l l u l a r
redox homeostasis.

Loss-of-function mutations of Keap1 and gain-of-function
mutations of Nrf2 have been observed in lung cancer. Frank R
et al. used next-generation sequencing (NGS) to analyze the
tumor tissue of 1,391 patients with non-small cell lung
carcinoma (NSCLC) and found that Keap1 mutations occurred
in 11.3% (n = 157) and NRF2 mutations occurred in 3.5% (n =
49) of NSCLC patients (9). Both loss-of-function mutations of
Keap1 and gain-of-function mutations of Nrf2 result in
constitutive Nrf2 activity. Besides, other mechanisms, such as
epigenetic hypermethylation of the promoter of Keap1, may also
contribute to the accumulation and activation of Nrf2 in lung
cancer. Chien MH et al. analyzed 238 lung cancer specimens
using immunohistochemistry and revealed an inverse correlation
between Nrf2 and Keap1 expression. They reported that patients
with lung adenocarcinoma exhibiting a high expression level of
Keap1 and a low expression level of Nrf2 had significantly better
overall survival and disease-free survival than patients exhibiting
a low expression level of Keap1 and a high expression level of
Nrf2 (10).

Although Nrf2 has been widely recognized as an oxidative
stress regulator, increasing studies have shown its role in
manipulating cancer metabolism (2, 11–13). Nrf2 regulates
multiple key metabolic genes in cancer cells directly through
its ARE function or indirectly through the crosstalk with other
transcription factors. Notably, Nrf2 controls multiple key
enzymes in the network of metabolism, thereby altering the
metabolic cascade, including carbohydrates, amino acids, lipid,
and nucleic acid metabolism. As a result, Nrf2 alters the redox
balance, providing a new plateau that favors tumor progression
in NSCLC.

In this review, we outline the role of Nrf2 in cancer
metabolism regulation, elucidate the crosstalk between Nrf2
and metabolic reprogramming, and discuss the potential
therapeutic targets in NSCLC.
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NRF2-MEDIATED METABOLIC
REPROGRAMMING IN LUNG CANCER

As mentioned above, Nrf2 accumulates in the nucleus,
heterodimerizes with small Maf proteins, and induces the
expression of genes harboring an ARE in their regulatory
regions. Well-known genes regulated by Nrf2 include NAD(P)
H dehydrogenase, quinone 1 (NQO1), glutamate-cysteine ligase,
modifier subunit (GCLM), heme oxygenase (decycling) 1
(HMOX1), etc. (14–16).

Namani A et al. analyzed Chip-Seq and microarray data of
A549 cells and performed KEGG pathways analysis. They found
that target genes of Nrf2 are involved in metabolic pathways,
including porphyrin and chlorophyll metabolism, glycolysis/
gluconeogenesis, pentose phosphate pathway (PPP), pyruvate
metabolism, fructose, and mannose metabolism, metabolism of
xenobiotics by cytochrome P450, glutathione metabolism,
arachidonic acid metabolism, ascorbate, and aldarate
metabolism, pentose and glucuronate interconversions, and
steroid hormone biosynthesis (17).

Reactive Oxygen Species
Reactive oxygen species (ROS) are produced in eukaryotic cells
through aerobic metabolism, including superoxide, hydrogen
peroxide, hydroxyl radical, singlet oxygen, peroxyl radical, alkoxyl
radical, lipid hydroperoxide, peroxynitrite, and hypochlorous acid
(18). They can be generated both in the cytoplasm by NADPH
oxidases (NOX), xanthine oxidase, cyclooxygenases, and
cytochrome P450 enzymes, and in the mitochondria by the
respiratory chain, monoamine oxidases (MAOs), p66shc, and
NOX4 (19). ROS are important signaling molecules. The tight
regulation of ROS levels is crucial for cell fate determination.
Under normal conditions, moderate ROS enhances cell
proliferation and differentiation. However, when ROS production
increases rapidly or ROS elimination decreases heavily, cells
encounter a condition known as oxidative stress. Excessive ROS
cause oxidative damage to proteins, lipids, and DNA (20). In
NSCLC, abundant energy production and synthesis of biological
molecules are indispensable to maintain the malignant behavior of
tumor cells. The levels of ROS are thought to be well-regulated in
order to drive tumor progression in NSCLC.

Nrf2 is often considered as the main regulator of ROS (21).
Increased levels of ROS in the cytoplasm lead to disassociation of
Keap1 and Nrf2. Thereby, Nrf2 enters the nucleus to function as
an anti-oxidative transcription factor (22). Nrf2-regulated genes
prevent the oxidation of Cys residues directly or indirectly
through the cascade reaction of enzymes to reduce the ROS
modification of Cys. The knockdown of Nrf2 in NSCLC cell lines
can increase the endogenous level of ROS dramatically
and enhance their sensitivity to radiation therapy (23). Nrf2-
mediated ROS homeostasis results in paclitaxel chemoresistance
via PI3K/Akt pathway in NSCLC (24). Besides, through the
regulation of ROS, Nrf2 also affects cholesterol synthesis by
preventing the silencing of 3-hydroxy-3-methylglutaryl-CoA
(HMG-CoA) reductase, the rate-limiting enzyme of cholesterol
synthesis, by the inhibition of ROS (25).
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NADPH Synthesis
Nicotinamide adenine nucleotide phosphate (NADPH), one of the
most important elements of cell metabolism, is required in lipid,
glucose, and nucleotide biosynthesis and regulation (26, 27). Nrf2
plays a crucial role in NADPH metabolism. Most NADPH-related
genes are regulated by Nrf2, including four NADPH generating
enzymes glucose-6-phosphate dehydrogenase (G6PD), isocitrate
dehydrogenase (IDH1), malic enzyme 1 (ME1), and
phosphogluconate dehydrogenase (PGD). The knockdown of Nrf2
expression decreases the NADPH level and the NADPH/NADP+

ratio (27, 28). Further studies suggested that Nrf2 related
chemoresistance can be induced when the degradation of NOX2 is
interfered, thereby less ROS is produced to perform the cytotoxic
effect and become chemoresistance (29). In NSCLC, NADPH-
related genes, NOX2, and NOX4 are overexpressed, which play as
ametabolic promotor in glycolysis, glutamine, and lipidmetabolism,
thereby resulting in tumor progression and resistance (30, 31).

Pentose Phosphate Pathway
The PPP is crucial for cancer, not only providing NAPDH for
biosynthesis but also working as the major nucleic acid supplier
(32). As mentioned, Nrf2 regulates the major NADPH produce
enzyme,G6PD, andPGD,which are from the oxidative phase of PPP
(11). This suggests the ability of Nrf2 to control the NADPH level in
cell metabolism. The non-oxidative stage of PPP is also regulated by
Nrf2, where transaldolase 1 (TALDO1) is directly regulated by Nrf2
with its ARE function (33, 34). In KrasG12D mutated lung cancer,
Keap1mutation leads tohighNrf2 levels therebypositively regulating
TALDO1 levels to promote oncogenesis and cancer development via
PPP levels. Moreover, the adoption of PPP inhibitor 6-
aminonicotinamide (6-AN) can reverse cancer-promoting events
and prevent cancer progression in vivo (35).

Glutathione Regulation
As a powerful antioxidant, glutathione (GSH) plays a vital role in
tumor growth and metastasis. Tumor samples of NSCLC have
higher levels of GSH compared with normal lung tissues, along
with higher GSH uptake ability (36). Moreover, patients with
NSCLC who underwent standard chemotherapy were found with
higher levels of GSH in plasma (37). In the scenario of
radiotherapy, GSH acts as the key protector of radiation injury.
Nrf2 is one of the key regulators of GSH metabolism. GSH
synthesis enzyme glutamate-cysteine ligase and glutathione
synthetase are target genes of Nrf2 (38, 39). Glutaminase (GLS),
which can catalyze glutamine into glutamate is also promoted by
Nrf2 (11). Besides, the expression of SLC7A11, the light chain
subunit of the Xc- antiporter system (xCT) is activated by Nrf2.
xCT performs as the translocator of cystine and glutamate, while
cystine is imported into the cell by xCT, and glutamate is exported
(40). In Keap1 mutant NSCLC, high levels of Nrf2 enhance the cell
dependency on GSH. A high level of Nrf2 expression can result in
stronger radiotherapy resistance through the effect of GSH (23).

Lipid Metabolism
Although the main physical lipid metabolism organ is the liver, it
plays a dramatic role in the functioning of the lung, especially on
the surface of pulmonary alveoli. Lipid metabolism is also
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involved in NSCLC development. Studies showed that lipid
synthesis is the metabolic liability of lipid metabolism in
NSCLC (41). Different from normal tissue, NSCLC shows an
enhanced lipid synthesis ability to favor its lipid demand due to
rapid cell proliferation. When cancer cells are in a glucose
deprived scenario, lipid oxidation becomes the main source of
ATP, NADPH, and FADH2 (42).

In general, Nrf2 plays as a negative regulator to lipid levels.
Nrf2 regulates several lipases at the lung site, including lipase,
member H (LIPH), phospholipase A2, group vii (PLA2G7), and
patatin-like phospholipase domain containing 2 (PNPLA2) (43).
Biologically these lipases are involved in the starvation response
to triglycerides and phospholipids degradation. On the other
hand, stearoyl CoA desaturate 1 (SCD1), the rate-limiting
enzyme in lipid synthesis, is reported negatively regulated by
Nrf2, no matter in genetic and pharmacological activated model
(44). The knockout of Nrf2 shows high levels of SCD1
expression, thereby a higher triglyceride level is observed (45).
SCD1 can deactivate AMP kinase (AMPK), thus activate acetyl-
CoA carboxylase 1 (ACC1) activity, resulting in the formation of
complex lipids (46). ACC1 is another key enzyme in de novo
lipid synthesis, which is also regulated by Nrf2 (27). ACC1
catalyzes acetyl-CoA to malonyl-CoA. In the scenario of
NSCLC, the ACC family is highly expressed in many cell lines.
ACC is observed as participated in tumor proliferation (41).
Inhibition of ACC1 expression by CRISPR-Cas9 system shows
markedly proliferation defects, but this phenomenon can be
rescued by the treatment of outsourcing fatty acid, suggesting
the irreplaceable role of ACC1 in NSCLC development (47).
Moreover, increasing of ACC1 will lead to apoptosis of cisplatin-
resistant lung cancer cells (48).

In addition, Nrf2-mediated downregulation of ACC1 and
SCD1 will decrease the levels of malonyl-CoA, thereby result in
higher fatty acid oxidation. Malonyl-CoA is a natural inhibitor of
carnitine palmitoyltransferase 1 (CPT1), which mediates lipid
transportation into mitochondria and undergo oxidation (49).
CPT1 is considered as the rate-limiting enzyme of mitochondrial
oxidation of lipids. Another Nrf2-mediated translocase CD36
also participated in lipid oxidation in the same manner (50).
Other Nrf2 target genes that regulate lipid oxidative include
nuclear receptor retinoid X receptor alpha (RXRa) and
peroxisome proliferator-activated receptor-gamma (PPARg)
(51). In summary, Nrf2 can mediate lipid oxidation through its
downstream gene expression directly or indirectly manipulate
mitochondrial transportation of lipids.

Glycolysis and Gluconeogenesis
The Warburg effect depicts the dependency of the glycolysis of
tumor cells. In NSCLC, inhibition of Nrf2 leads to a low
glycolysis condition in cell metabolism, suggesting the role of
Nrf2 in maintaining basic energy supply in NSCLC. As
mentioned in Pentose Phosphate Pathway, whether glucose will
be utilized through glycolysis or PPP will be affected by Nrf2
since its downstream control of G6PD activity, the PPP
determinator. Another target regulated by Nrf2 in glycolysis is
pyruvate kinase (PK), the key enzyme of glycolysis which
catalyzes phosphoenolpyruvate to pyruvate (44). However,
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affecting PK activity, the rate-limiting enzyme of glycolysis will
channel glucose metabolism toward PPP, which will lead to
phospholipid synthesis. In the scenario of cancer, PK inhibition
leads to PPP promoting will end up with carcinogenesis related
biosynthesis and redox defense through high NADPH level (52).

Phosphoenolpyruvate carboxykinase (PCK1) is the key
enzyme of gluconeogenesis, which can regulate Nrf2 level
negatively in cancer cell lines (52). Nrf2 will thereby regulate
thioredoxin reductase 1 (TXNRD1) to induce cell proliferation.
The downstream targets of Nrf2 function also include several
gluconeogenesis genes. Studies about in vivo diabetic model
suggested that Nrf2 is associated with the cAMP-CREAB
pathway, which negatively regulates gluconeogenesis through
FBP1 (fructose-1,6-bisphosphatase 1), PGC1a (peroxisome
proliferator-activated receptor g coactivator 1-a), and NR4A2
(nuclear receptor subfamily 4, group A, member 2) (53).

Nrf2 in Iron Metabolism and Ferroptosis
Iron is one of the microelements of the human body, which is
well known as a functioning unit in heme as an oxygen carrier.
Iron also participates in several metabolic diseases. Lack of iron
will cause anemia, hypotrichosis, while overload of iron will
result in hepatic fibrosis or hepatic cancer (54). Nrf2 was firstly
identified as an erythroid gene regulator, where ATP binding
cassette subfamily B member 6 (ABCG6) and Ferrochelatase
(FECH) are enzymes that participated in heme synthesis.
Biliverdin reductase A and B (BLVRA and BLVRB), HMOX1
are downstream genes of Nrf2 in heme catabolism. ferritin heavy
chain (FTH1) and ferritin light chain (FTL) is in charge of iron
pool homeostasis (55). Lignitto L et al. showed that heme causes
the degradation of Bach1, a pro-metastatic transcription factor
by promoting its interaction with the ubiquitin ligase Fbxo22.
They found that Nrf2 overexpression in lung cancer promotes
the stabilization of Bach1 by inducing HO1, the enzyme
catabolizing heme (16). Wiel C et al. found that long-term
supplementation with the antioxidants N-acetylcysteine and
vitamin E promotes lung cancer metastasis by reducing levels
of free heme and stabilizing BACH1. Moreover, they revealed
that BACH1 activates the transcription of Hexokinase 2 and
GAPDH and increases glucose uptake ability, glycolysis rates,
and lactate secretion, resulting in glycolysis-dependent
metastasis of lung cancer cells (56). These studies revealed that
Nrf2 participates in metabolic reprogramming in NSCLC.

In the past decade, increasing studies suggest the appealing role of
ironhomeostasis incancerdevelopmentandprogression (45,57–59),
whileNrf2 plays a critical role in shifting ironmetabolism toward the
cancer phase (55). Studies have shown HMOX1 has a non-enzyme
function to promote chemoresistance in lung cancer (60). Nrf2 and
HMOX1 synergy will induce angiogenesis through the activation of
thymidine phosphorylase in lung cancer cells (61). FTH1 and FTL
lead iron deficiency will start cascade events to proliferate gene
activation and tumor necrosis factor a (TNFa) tolerance (55).

Recently, an iron-dependent, programmed cell death was
discovered and named ferroptosis (62). The accumulation of
free iron in cell plasma will cause lipid peroxidation through
Fenton Reaction, thus lipid peroxidation will sabotage the
integrity and functions of the membrane system and lead to
Frontiers in Oncology | www.frontiersin.org 4
cell death (63). The morphology of ferroptosis will start with
mitochondrial shrinkage. Lipid peroxidation in ferroptosis can
also be initiated by ROS, especially hydroxyl radical and
hydroperoxyl radical. By contrast, lipid peroxidation can be
reduced by glutathione peroxidases, such as glutathione
peroxidase 4 (GPX4). Ferroptosis has been confirmed as one of
the major pathways related to chemoresistance and radiotherapy
resistance in lung cancer (64). During lung cancer progression,
ferroptosis also has a role as a selector to tolerate a high oxygen
environment (65).

In general, Nrf2 plays as a protector of lung cancer cells from
ferroptosis. Nrf2 regulated iron pool-related genes including
FTH1 and FTL can control ferroptosis through the level of free
iron in the cytosol. On the other hand, the NADPH level
regulated by Nrf2 will also affect the process of ferroptosis
through the GSH level. Solute carrier family 7 member 11/
System xCT (SLC7A11) promoted by Nrf2 can increase
intracellular cysteine, which also leads to a high GSH level to
protect lipid peroxidation. A recent study shows antioxidator
NOX4, downstream gene of Nrf2, can reverse lipid peroxidation
with NADPH.

Mitochondrial Metabolism
The role of Nrf2 in mitochondrial structure and function has
attracted extensive interests recently. Knockdown of Nrf2 results
in the decrease of ATP production in cancer cells (66). By contrast,
activation of Nrf2 leads to increased ATP production, high basal
mitochondrial membrane potential, and low GSH level in lung
cancer cell lines (65, 66). Nrf2 modulates mitochondrial metabolism
not only by manipulating substrates providing, such as NADPH
and FADH2, but also directly by regulating genes that participate in
the respiratory chain complex (67). Nrf2 positively regulates the
transcription of nuclear respiratory factor 1, which is the key
regulator of the expression of respiratory complexes (68, 69),
including subunits of complex IV cytochrome c NADH
Dehydrogenase 1 Alpha Subcomplex (NDUFA4), cyclooxygenase-
2 (COX2) and cyclooxygenase 4I1 (COX4l1) (70) Moreover, studies
suggest that Nrf2 also participate in mitochondria biogenesis (69,
71). Under oxidative stress, Nrf2 controls the expression of the gene
encoding uncoupling protein 3 (UCP3), which maintains an inner
mitochondrial membrane function to relieve superoxide production
(72). These studies indicate that the intricate role of Nrf2 in
regulating the bio function of mitochondria. However, whether
Nrf2-mediated mitochondrial metabolism reprogramming affects
NSCLC growth and progression remains unclear.

Therapeutic Approaches
As we discussed above, Nrf2 has been recognized as an important
driver in the development and progression of NSCLC. Therefore,
targeting Nrf2 and its downstream molecules is a hot research
topic now and various types of Nrf2 inhibitors have been
developed in the field of cancer therapy. Singh A et al.
developed a small molecule inhibitor of Nrf2, ML385 (73).
ML385 can bind to Neh1, the Cap “N” Collar Basic Leucine
Zipper (CNC-bZIP) domain of Nrf2, and interfere the binding
with the V-Maf Avian Musculoaponeurotic Fibrosarcoma
Oncogene Homologue G (MAFG) to regulatory bind with
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target DNA sequences. In vitro and in vivo experiments, ML385
selectively inhibits the proliferation of NSCLC cells with Keap1
mutation. Further study showed that ML385 substantially
enhances paclitaxel, doxorubicin, or carboplatin cytotoxicity
against lung cancer cells with Keap1 mutation (73). Romero R
et al. found that KRAS-driven lung tumors that bear Keap1 or
Nrf2 mutations depend heavily on glutaminolysis for
carcinogenesis (74). Pooled CRISPER/Cas9 sgRNA library
revealed that Solute carrier family 1 member 15 (SLC1A5), a
glutamine transport enzyme, is the key element responsible for
this effect. CB-839, a glutaminase inhibitor, inhibits the growth
of KARS and Keap1 co-mutated lung cancer (75, 76). Another
small molecule with anti-cancer efficacy is ND-646, an ACC
inhibitor (77). ND-646 can bind to the BC domain that contains
phosphorylated AMPK interaction target, thereby preventing
ACC from dimerization and downstream activation to fatty
acid synthesis. In vivo studies showed that ND-646 inhibits the
growth of NSCLC cells. Moreover, the detailed analysis
demonstrated that ND-646 has better anti-cancer efficacy in
NSCLC with KRAS mutation.

These studies showed that targeting Nrf2 and its downstream
molecules can interfere with cancer metabolisms, such as
Frontiers in Oncology | www.frontiersin.org 5
glutaminolysis and fatty acid synthesis. It may serve as an
effective strategy in the treatment of NSCLC.
CONCLUSION AND PERSPECTIVES

Metabolic reprogramming of tumor cells has undergone drastic
discussions during the past decade. However, the real scenario has
not been fully elucidated and still needs deeper exploration.
In this review, we summarize the role of Nrf2 in metabolic
reprogramming and propose that Nrf2 and its downstream
molecules may serve as potential therapeutic targets in NSCLC
(Figure 1). As the main factor in response to oxidative stress, the
functions of Nrf2 have been widely identified in the process of
tumor growth, progression, and resistance of NSCLC. In addition,
various studies have shown that Nrf2 plays an important role in
the metabolic reprogramming of NSCLC, including NADPH
synthesis, lipid metabolism, ROS equilibrium, glucose
metabolism, mitochondrial functioning and iron activity. The
crosstalk between Nrf2 and metabolic reprogramming is
considered as a decisive power during NSCLC development and
progression. Further studies may reveal the underlying
FIGURE 1 | Regulation of major metabolism pathways by Nrf2. Nrf2 plays an essential role in regulating major metabolism pathways. As shown in the figure, genes
in red and blue font indicate positive and negative regulation by Nrf2, respectively. In glycolysis, Nrf2 activation results in the downregulation of pyruvate kinase (PK).
In pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (PGD) is rate-limiting enzymes, which are
positively regulated by Nrf2. Nrf2 also controls the non-oxidative part of pentose phosphate pathway by increasing the levels of transaldolase 1 (TALDO1) and
transketolase (TKT). In terms of NAPDH metabolism, G6PD and PGD are key enzymes of NADPH production. Nrf2 also positively regulates malic enzyme 1 (ME1)
and isocitrate dehydrogenase 1 (IDH1), indicating that NADPH generation depends heavily on Nrf2. Nrf2 also participates in glutathione metabolism. Glutamate-
cysteine ligase catalytic (GCLC) and modifier (GCLM) subunits regulated by Nrf2 consume NADPH in the synthesis of glutathione. Other ingredients of glutathione
including glutamate and cysteine are leveled by system Xc- (xCT), another Nrf2 targeted gene, which can channel the movement of glutamate and cysteine. Iron
metabolism is controlled by Nrf2 in the heme metabolism arm and iron storage arm. ATP binding cassette subfamily B member 6 (ABCG6) and Ferrochelatase
(FECH) participate in heme synthesis. Biliverdin reductase A and B (BLVRA/B) and heme oxygenase (decycling) 1 (HMOX1) are enrolled in heme degradation. Ferritin
light chain (FTL) and ferritin heavy chain 1 (FTH1) engage in iron pool balance. These proteins are directly or indirectly regulated by Nrf2. Ferroptosis induced by the
accumulation of free iron results from peroxidized fatty acids, which can be rescued by glutathione peroxidase 4 (GPX4), regulated by Nrf2. Further, fatty acid
metabolism is negatively adjusted by Nrf2. ATP-citrate lyase (ACL), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FASN), and stearoyl CoA desaturase 1
(SCD1) are key enzymes in fatty acid synthesis. In terms of fatty acid oxidation, Nrf2 positively regulates carnitine palmitoyltransferase 1 (CPT1) and CD36, which
channel fatty acids through the membrane of mitochondria for oxidation. The influence of Nrf2 on fatty acid metabolism can alter ferroptosis, as it may affect the
distribution of fatty acids.
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mechanisms of Nrf2-mediated metabolic reprogramming and
offer therapeutic targets for the treatment of NSCLC.
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