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In this review, the state of the art for compounds
affecting the endocannabinoid (eCB) system is
described with a focus on the treatment of pain.
Amongst directly acting CB receptor ligands, clin-
ical experience with Δ9-tetrahydracannabinol and
medical cannabis in chronic non-cancer pain indi-
cates that there are differences between the benefits
perceived by patients and the at best modest effect
seen in meta-analyses of randomized controlled
trials. The reason for this difference is not known
but may involve differences in the type of patients
that are recruited, the study conditions that are
chosen and the degree to which biases such as

reporting bias are operative. Other directly acting
CB receptor ligands such as biased agonists and
allosteric receptor modulators have not yet reached
the clinic. Amongst indirectly acting compounds
targeting the enzymes responsible for the synthesis
and catabolism of the eCBs anandamide and 2-
arachidonoylglycerol, fatty acid amide hydrolase
(FAAH) inhibitors have been investigated clinically
but were per se not useful for the treatment of pain,
although they may be useful for the treatment of
post-traumatic stress disorder and cannabis use
disorder. Dual-acting compounds targeting this
enzyme and other targets such as cyclooxygenase-
2 or transient potential vanilloid receptor 1may be a
way forward for the treatment of pain.

Keywords: Δ9-tetrahydrocannabinol, anxiety, cannabi-
noid receptors, endocannabinoid, fatty acid amide
hydrolase, pain.

Introduction

Cannabis sativa has been used for recreational
and medicinal purposes for centuries [1]. Follow-
ing the identification of the structure of Δ9-
tetrahydrocannabinol (THC), the main psy-
chotropic ingredient in cannabis [2] and the
identification and cloning of a cannabinoid (CB)
receptor in the late 1980s–early 1990s [3,4],
anandamide (arachidonoylethanolamide, AEA)
was identified as an endogenous CB receptor
ligand in 1992 [5] followed by 2-arachidonoyl-
glycerol (2-AG) in 1995 [6,7] (for a review of the
discovery of the structure of plant-derived (phyto-
) and endogenous cannabinoids, see [8]). Since
then, a massive scientific effort has delineated the
‘endocannabinoid’ (eCB) system, and how it can
be modulated pharmacologically. In the present
review, the current state of the art with respect to
drug development in the eCB system is dis-
cussed, primarily with respect to the treatment
of pain.

The eCB system

In this review, the eCB system is defined as the CB
receptors, the main eCB ligands AEA and 2-AG,
and their synthetic and degradative enzymes. This
can be considered as the minimalist approach,
since other endogenous CB ligands have been
described [8], as have other targets for AEA and
2-AG, such as the transient potential receptor
vanilloid 1 (TRPV1) [9] (for a review of the extended
eCB system, see [10]), but it is of necessity in order
to keep this review to a manageable size. Using the
minimalist definition, pharmacological manipula-
tion can be considered in terms of directly acting
compounds (i.e. those interacting directly with the
CB receptors as agonists, neutral antagonists,
inverse agonists, biased agonists, or allosteric
modulators) and of indirectly acting compounds
(i.e. those affecting the concentration of eCBs
available to interact with the receptor). These will
be considered, in turn, together with a description
of the targets themselves.
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CB receptors

The name ‘CB receptors’ is something of a mis-
nomer, since it implies that it is a receptor for
cannabinoids. Whilst this of course is true for eCBs
and for synthetic cannabinoids designed to target
the receptor, most of the 110 or so phytocannabi-
noids [11] do not in fact interact with CB receptors.
The International Union of Pharmacology recom-
mends that novel receptors are named after ‘the
endogenous agonist, or the appropriate collective
term when a family of related substances may
interact with the receptor’ [12]. CB receptors are
admittedly not novel, but naming them after the
endogenous agonist with the highest efficacy would
suggest the use of 2-AG1 and 2-AG2 for CB1 and
CB2 receptors, respectively. Such a change in
nomenclature would resolve the confusion, but is
unlikely to be particularly popular.1

CB1 receptors, the receptor subype mediating the
psychotropic effects of THC, are found in high
abundance (at concentrations similar to those of
striatal dopamine receptors) in the brain [13]. The
distribution is, however, heterogeneous, with high
expression being found in regions such as the
substantia nigra, moderate expression in the hip-
pocampus and low expression in the thalamus and
pons [13]. The distribution of receptors reflects the
myriad pharmacological effects of THC on percep-
tion, cognition, anxiety, gait, et cetera [14,15],
whilst the low expression in the medullary nuclei
[13] means that respiration is largely unaffected.
CB1 receptors are found on presynaptic nerve
terminals, where they regulate neurotransmitter
release, and a key role of 2-AG in the brain is to act
as a retrograde transmitter, whereby postsynaptic
2-AG release results in activation of presynaptic
CB1 receptors which in turn inhibit the release of
the neurotransmitter from the presynaptic nerve
terminal [16] It would be wrong, however, to
consider CB1 receptors as exclusively neuronal in
the brain, since functional CB1 receptors are also
expressed on astrocytes [17] It would also be
incorrect to consider CB1 receptors as being
restricted to the brain and spinal cord – they have
a wide distribution in the periphery with important

functional properties in, for example, the auto-
nomic nervous system, the gastrointestinal tract,
adipose tissue, and bone [18-20] CB2 receptors,
first cloned in 1993 [21], are primarily found in
immune cells (including microglia) but are also
found in sensory, enteric and some central neu-
rons [14,22].

CB receptors are G protein coupled receptors
coupling primarily to Gi/Go and producing inhi-
bitory effects on adenylyl cyclase and calcium
channels as well as activating potassium channels
and the mitogen activated kinase pathway [14].
However, the signalling produced by CB receptor
activation is nuanced, given the presence of func-
tionally active intracellular receptors [23,24],
receptor heterodimerization [25], regulation by
receptor-interacting proteins [26], coupling to
different signalling pathways at different receptor
expression levels [27] and negative-feedback
mechanisms [28]. This has been extensively inves-
tigated in tumour cells, where both mitogenic and
apoptotic effects mediated by CB receptors have
been reported in the literature (e.g. [29,30]; for
schematics showing the complex effects of
cannabinoids upon intracellular signalling and
the results thereof in cancer cells, see Fig. 1 of [31]
and [32]).

A final note in this section concerns possible
additional CB receptors, such as the orphan
receptor GPR55, which, when transfected into
human embryonic kidney cells, was originally
reported to bind and respond (increased GTPcS
binding) to THC, AEA, 2-AG and some synthetic
cannabinoid receptor ligands [33]. However, these
data are controversial [34] and the International
Union of Pharmacology, in their review in 2010,
argued that the current data were insufficient to
warrant the expansion of CB receptors to include
additional receptors [35], and GPR55 remains an
orphan receptor [36].

CB receptor ligands

Table 1 shows a selection of CB receptor ligands
based upon their source and pharmacological
effects. The discovered ligands run the entire
gamut from pure agonists to inverse agonists and
have been invaluable in characterizing the roles
played by CB1 and CB2 receptors in the body. For
readers unused to the terms ‘inverse agonists’ and
‘biased agonists’, see Fig. 1 for a mechanistic
explanation.

1At the 20th annual symposium of the International
Cannabinoid Research Society held in Lund, Sweden in
2010, a lighthearted debate with the title “to CB or not to
CB” discussed this issue. The assembled delegates voted
that in their view the present nomenclature should be
kept, despite the best efforts of this author and others on
the “not to CB” team to persuade them otherwise.
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The prototypical CB receptor ligand is of course
THC, which acts as a partial agonist at CB1 and
CB2 receptors [37]. This differs from the synthetic
compounds such as 5F CUMYL-PICA and MDMB-
FUBINACA and MDMB-CHIMICA which have been
rationally designed as recreational drugs [38] and
which generally have greater efficacy than THC
[38–40]. This difference in efficacy, together with
potential off-target effects of the compounds per se
and/or their metabolites and impurities in the
preparations, accounts for the more severe adverse
effects of such compounds, including ‘zombie-like’
behaviours, hallucinations, neurological distur-
bances and possibly even death [41–43].

Clinical use of THC, cannabidiol (CBD) and cannabis-based
medicines

Synthetic THC (dronabinol) and nabilone, a close
analogue of THC, have long been used for the
treatment of anorexia in AIDS patients and for
chemotherapy-induced nausea and vomiting, and
more recently, nabiximols (an oromucosal spray
with plant-derived THC and CBD) has been
approved for the adjunctive treatment of spasticity
in multiple sclerosis and in Canada for the treat-
ment of pain associated with multiple sclerosis and

cancer. CBD has recently been approved as an
orphan drug in Europe and the USA as an add-on
treatment of Dravet and Lennox-Gastaut syn-
dromes although its efficacy is more likely due to
effects upon ion channels than upon CB receptors
[44-46]. Pharmacokinetic interactions with the
first-line drug clobazam secondary to inhibition
by CBD of CYP3A4 and CYP2D6 have been
described (see [46]), but the clinical significance
of this with respect to the beneficial effects of CBD
in these rare syndromes is as yet unclear.

There is an increasing acceptance in different
countries, driven more by societal rather than by
rigorous evidence-based scientific considerations,
to allow the compassionate use of medicinal
cannabis. The degree of such acceptance varies
considerably from country to country (see [47] for a
discussion with respect to the status in Europe of
cannabis-based medicines for the treatment of
chronic pain as of 2017). An important aspect is
the difference in benefit as perceived by specialists
and by the patients themselves. Thus, with respect
to the use of cannabinoids and cannabis for non-
cancer pain, a recent meta-analysis [48] of 47
randomized controlled trials reported a number
needed to treat (NNT) for a 30% reduction pain of

Fig. 1 Different conformations of G-protein-coupled receptors and their responses. In this simple example (Panel a), the
receptor is in three conformations: an inactive and two active conformations that couple to different transduction pathways
and responses. These conformations are in equilibrium with each other, and in ‘rest’ conditions, most of the receptor is
usually in the inactive form. Agonists have high affinities for the active forms and shift the equilibrium to the right (i.e. the
active forms), whereas inverse agonists have high affinities for the inactive form and shift the equilibrium to the left. Neutral
antagonists are high-affinity compounds that bind to all forms with equal affinities and thus do not move the equilibrium,
but prevent agonists from doing so. Biased agonists bind with different affinities to the active forms and thus favour one of
the active forms [186]. This means that in theory the concentration-response curves for response A and B are similar for
agonists (‘balanced agonists’, Panel b), but different for biased agonists (Panel c). In practice, the curves for balanced
agonists are not necessarily the same due to factors such as coupling efficiencies, expression of target response proteins etc,
and so the degree of bias is often described relative to a standard compound (see [187] for examples with the CB1 receptor,
where Response A is recruitment of an engineered mini-Gai protein and Response B is recruitment of b-arrestin2).
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24 (95% confidence interval 15–61); for a 50%
reduction in pain, the active treatment was not
significantly better than placebo. Put another way,
the benefit corresponded to ~3 mm greater than
placebo on a 100 mm visual analogue scale [48].
The number needed to treat to harm (with respect
to all-cause adverse effects) was 6 (95% confidence
interval 5–8). The authors concluded that ‘it
appears unlikely that cannabinoids are highly
effective medicines for CNCP’ (chronic non-cancer
pain) [48]. Contrast this with a survey of 1748
Australian participants using cannabis prepara-
tions for pain, mental health, sleep problems and
neurological conditions, where a very large major-
ity of participants reported very much or much
improved symptoms as a result of their cannabis
use [49]. Their reported adverse effect profile

(approximately 3/4 of the participants reported
increased appetite; 2/3 drowsiness; 2

/5 ocular
irritation; 3/8 lack of energy; 1/3 memory impair-
ment; 1/6 palpitations, paranoia; 1/8 confusion,
decreased appetite; 1/10 dizziness; 1/10 anxiety
being the most common [49]) was the expected
profile for THC-containing preparations [14,15].
The study was undertaken prior to Australian
legislation allowed prescription of cannabis-based
medicines, but a follow-up study taken after the
legislation produced similar findings, albeit with
the interesting observation that only 2.4% of the
participants had used legally prescribed medical
cannabis [50]. There were several reasons for this,
but almost half of the respondents stated that they
did not know a medical practitioner willing to
subscribe medicinal cannabis, and 1/8 did not

Table 1. CB receptor ligands

Mechanism

Endogenous

compounds

Phyto-

cannabinoids Synthetic ligands

Partial non-selective agonist AEA [188–190] THC [37]

Full non-selective agonists 2-AG [189,190] CP55,940 [188]

5F CUMYL-PICA [39]

Selective CB1 receptor agonists ACEA [191]

O-1812 [192]

Selective CB2 receptor agonists JWH133 [193]

A-796260 [61]

Biased CB receptor agonists EG-018 [187]

PNR-4-20 [70]

LY2828360 [72]

Non-selective neutral antagonist THCVa [194]

CB1 receptor-selective neutral

antagonist

AM4113 [195]

Selective CB1 receptor inverse agonists Hemopressin [196] Rimonabant (SR171416A)

[197]

AM251 [198]

Selective CB2 receptor inverse agonists SR144528 [199]

AM630 [200]

CB1 receptor allosteric modulators Pregnanolone [28]

Lipoxin A4 [201]

CBDb [202] Org27569 [203]

PSNCBAM-1 [204]

GAT100 [205]

The references refer to the characterization of efficacies of the compounds rather than to their first discovery. Thus for
example, rimonabant was initially described as a CB1 receptor-selective antagonist [206], before being recategorized later
as an inverse agonist. Note also that in vitro efficacies are not always mirrored in vivo (see [45]).
aΔ9-tetrahydrocannabivarin; efficacy refers to CB1 receptors.
bCannabidiol.
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want the healthcare providers to know about their
use of medicinal cannabis. This is problematic,
since it raises the spectre of prescribed drug-
medicinal cannabis interactions, not least sec-
ondary to the inhibitory effects of CBD on the
CYP oxidase enzymes, that could be detrimental to
the well-being of the patient.

To readers who are not clinicians (including this
author, who is a basal pharmacologist by trade),
the large difference between the findings of [48] and
[49] may be puzzling. Randomized clinical trials,
when conducted well, provide good evidence for
efficacy without problems of bias, but the patients
that are recruited and the study conditions that are
implemented may not mirror the real world. On the
other hand, studies like [49] show use of medicines
that unselected patients have chosen and, in this
case, dosed individually to suit themselves, but
bias such as selection and reporting bias is a real

issue (see Table 2 as a theoretical illustration, with
emphasis on the word ‘theoretical’, of reporting
bias).

Whatever the explanation(s) for the difference
between [48] and [49] (and other studies), they
highlight a gap between recommendations of
health specialists (for example, the Faculty of Pain
Medicine of the Australian and New Zealand Col-
lege of Anaesthetists who state ‘At the present time,
the scientific evidence for the efficacy of cannabi-
noids in the management of people with chronic
non-cancer pain is insufficient to justify endorse-
ment of their clinical use’ [51]) and changes in the
legal status of medicinal cannabis in many coun-
tries [47], with general practitioners caught in the
middle [52,53]. Two quotes are worth citing to
illustrate this dilemma: ‘Unless we learn from the
history of opioids and their use, we run the risk of
replicating a non-evidence based approach to pain

Table 2. Simulated data set to illustrate reporting bias

Range (units) (≥+2)

(+1.2

to + 1.99)

(+0.4

to + 1.199

(�0.4

to + 0.39)

(�1.2 to

�0.41)

(�2 to

�1.21) (<�2)

‘Perceived effect’ +++ ++ + �0 - -- ---

Number [%] of individuals:

Treatment paradigm (score 0 � 1) 104 450 1153 1585 1122 463 123

[2%] [9%] [23%] [32%] [22%] [9%] [2%]

+ placebo effect (score 1 � 1) 762 1394 1528 936 312 58 10

[15%] [28%] [31%] [19%] [6%] [1%] [0.2%]

% of participants responding to

questionnaire (‘repliers’)

90% 60% 10% 5% 5% 10% 30%

+ placebo effect x repliers 686 836 153 47 16 6 3

[39%] [48%] [9%] [3%] [0.9%] [0.3%] [0.2%]

The simulation models a situation where a questionnaire is posted targeting individuals who have accessed a treatment
paradigm without involvement of the health profession. A series of 5000 randomly generated data points following a
normal distribution of 0 � 1 (standard deviation) was used to simulate a perceived change following the treatment
paradigm for 5000 individuals, assuming that the paradigm is without any benefit. The number [%] of data points within
the ranges shown in the Table are determined, with each range being characterized as a given level of ‘perceived benefit’.
Next, an average placebo effect of + 1 unit is included (by random generation of 5000 data points following a normal
distribution of +1 �1), which increases the total % of cases in the +++ and ++ groups from 11% (treatment paradigm) to
43% (treatment paradigm + placebo effect). Finally, a reporting bias has been added, assuming that the individuals with
extreme outcomes in the generated data are more likely to fill out the questionnaire (‘repliers’) to tell people about the
beneficial effects, or to warn people about the negative outcome, than those where outcomes were marginal at best. The
numbers shown in the ‘+ placebo effect x repliers’ are the + placebo effect data multiplied by the % repliers, and is the
result that study designers would obtain. The % reply rates chosen are not unreasonable if the treatment paradigm in
question was illegal at the time of the study, so participants may have been reticent to respond to the survey unless they
felt that the outcomes were extreme and thereby worth reporting. With these reply rates, the % of cases in the +++ and ++
groups is 87% of the total number of repliers. It is important to stress that this simulation is not designed to dismiss
studies of this type as merely reflecting a placebo effect + a reporting bias, but rather to highlight the importance of
consideration of bias in their interpretation.
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management (with cannabis, my note), which will
ultimately let down patients in need’ [54] and
‘important that health providers understand that
their patients’ experiences of medical cannabis
may not accord with reported clinical findings’ [49].

Two other issues should be mentioned: whether or
not THC enhances the analgesic effects of opioids
and whether or not the changes in legislation have
impacted the opioid epidemic in the USA. With
respect to the former, population and observational
studies have given conflicting results [55,56], and in
their review, Babalonis and Walsh [57] concluded
that ‘the extant controlled clinical data do not
support the role of cannabinoids for opioid replace-
ment or opioid-sparing effects when treating opioid
use disorder or chronic pain’. With respect to the
latter, data suggesting this to be the case in USA
states that adopted medical cannabis early was not
found in states that changed their medical cannabis
laws at a later date, possibly because of the degree
of regulation of dispensaries was different in the
later states [58]. The type of opioid in question was
also an important parameter in determining the
impact of cannabis on opioid-based overdoses and
deaths [58].

Peripherally restricted CB receptor agonists and CB2 receptor-
selective agonists

The unwanted central effect profile of THC places a
ceiling on dosage. In order to avoid this issue, a
peripherally restricted CB1 and CB2 receptor ago-
nist, AZD1940, was developed and investigated
clinically in acute pain (lower third molar surgical
removal, capsaicin-induced pain and hyperalgesia)
[59,60]. In both cases, the effects of AZD1940 were
not better than placebo, a perhaps unsurprising
result given the doubtful efficacy of THC itself in
acute pain [57].

CB2 receptor-selective agonists do not produce the
central effects of THC and are in theory a poten-
tially attractive approach to therapies whereby
engagement of this target can lead to beneficial
outcome. At the outset, this approach looked very
promising, with several different CB2 receptor-
selective agonists producing beneficial effects in
animal models of chronic inflammatory, neuro-
pathic, postoperative and osteoarthritic pain [61–
64]. However, the trail ended at the clinic. To my
knowledge, the only published clinical studies for a
CB2 receptor-selective agonist or biased agonist are
those of Ostenfeld et al. [65] who reported that

GW842166 was not efficacious in acute pain (third
molar extraction) and Pereira et al. [66] who in an
abstract reported a lack of efficacy of LY2828360 in
osteoarthritic knee pain. The ‘loss in translation’
between preclinical promise and clinical reality is
not restricted to CB2 receptor agonists but is a
general problem [67]. One of several factors in play
concerns the predictive validity of the preclinical
animal models, which usually measure evoked
hypersensitivity, which is only one (and not the
most important) aspect of the pain seen in human
neuropathic pain [68] (for a discussion of the
preclinical and clinical disparity with respect to
CB2 receptor agonists, see [69]).

Biased agonists as a way forward?

The notion that biased agonists can produce
different degrees of activation along different path-
ways is attractive for drug development, particu-
larly if such an approach can discriminate
beneficial from adverse effects. CB receptor biased
agonists have been investigated with respect to
tolerance upon chronic use. Thus Ford et al. [70]
described a non-selective CB receptor agonist,
PNR-4-20, that stimulated G-protein mediated
signalling but was less efficacious for b-arrestin 2
recruitment in Chinese hamster ovary cells trans-
fected with human CB1 receptors. b-arrestin 2
recruitment correlates with agonist-induced inter-
nalization of CB1 receptors [71], and PNR-4-20
treatment of the cells caused and less down-
regulation and desensitization of CB1 receptors
than the ‘balanced’ agonist CP-55940 [70]. Another
compound, LY2828360, produced biased sig-
nalling and a lower degree of CB2 receptor inter-
nalisation than CP55,940 [72]. In vivo, PNR-4-20
produced less tolerance to its hypothermic effect
than seen with THC and the non-selective agonist
JWH-018, and also produced less inverse agonist-
induced withdrawal symptoms than JWH-018 fol-
lowing repeated exposure [70] Although early days,
these data suggest that a biased partial CB1

receptor agonist might be useful as a THC-mimic
but with more moderate issues of tolerance and
withdrawal effects than THC itself.

CB1 receptor inverse agonists and allosteric modulators

The pharmacology and clinical outcome of CB1

receptor inverse agonists and potential follow-up
compounds has been reviewed recently [19] and so
will only be dealt with briefly here. The well-known
effects of THC upon appetite (the ‘munchies’) raises
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the possibility that blockade of eCB signalling could
provide a useful way to produce weight reduction.
Over the years, it has been established that the eCB
system effects food intake and metabolism not only
due to central mechanisms mediated by CB1 recep-
tors, but also by peripheral mechanisms, not least
due to the CB1 receptor expression on adipocytes
[19]. A series of clinical trials led to the approval in
Europe in 2006 of rimonabant for the treatment of
obesity. Other CB1 receptor-selective inverse ago-
nists (taranabant, otenabant, ibipinabant and
surinabant) were also undergoing clinical trials for
treatment of obesity and as an aid to smoking
cessation. However, the field imploded when rimon-
abant was withdrawn from the market due to an
unacceptable risk of psychiatric side-effects, in
particular anxiety and depressive symptoms [73].
It is possible that peripherally restricted CB1 recep-
tor antagonists / inverse agonists may be a way
around this issue, and such compounds have been
described in the literature [19]. An alternative
approach is the use of CB1 receptor allosteric
negative modulators, which produce a less draco-
nian modulation of CB1 receptor signalling than
inverse agonists, and thereby may produce a more
acceptable wanted : adverse effect profile [74], the
operative word here being ‘may’.

Endocannabinoid synthesis and degradation: targets for indirectly
acting compounds

AEA belongs to the family of endogenous N-
acylethanolamines (NAE) and the canonical pathway
for NAE synthesis was established by Schmid and
colleagueswellbeforeAEAwasdiscovered [75–77]. In
this pathway, N-acylphosphatidylethanolamines
(NAPEs) are formed by the transacylation of mem-
brane phosphatidylethanolamine containing phos-
pholipids. NAPEs are then hydrolysed by NAPE-
hydrolysing phospholipase D (NAPE-PLD) to form
the NAEs (see Fig. 2). Three comments should be
made:

• Genetic deletion or inhibition of NAPE-PLD
reduces NAE levels in the brain, and its inhibi-
tion influences emotional behaviour in mice
[78,79]. However, there are alternative synthetic
pathways (reviews, see [80,81]).

• AEA synthesis is ‘on demand’ and is controlled by
the environment. Thus, for example, treatment of
cortical neuronal cultures with the combination of
glutamate and the acetylcholine receptor agonist
carbachol increases AEA formation in a manner

blocked by buffering of intracellular calcium [82].
NAPE-PLD itself can be regulated by bile acids [83]
and inflammatory stimuli [84].

• As implied by the fact that the canonical pathway
was established prior to the discovery of AEA, the
outputof thepathway isnotAEAalonebut a family
of NAEs, of which the most abundant are palmi-
toylethanolamide (PEA),oleoylethanolamide (OEA)
and stearoylethanolamide (SEA). Indeed, in most
tissues, levels of PEA, OEA and SEA are much
higher than the levels of AEA, a notable exception
being the mouse uterus, where AEA is predomi-
nant and where its levels are inversely associated
with uterine receptivity [85]. These compounds do
not interact directly with CB receptors. However,
they are biologically active, the most studied being
PEA which produces anti-inflammatory effects
mediated by activation of peroxisome proliferator-
activated receptor a and other targets, and which
has been reported to have beneficial effects upon
pain in humans (reviews, see [86,87]).

The synthesis of 2-AG (shown schematically in
Fig. 2) has similarities to AEA synthesis in that
there is a canonical pathway mediated by dia-
cylglycerol lipases (DAGLs) as well as alternative
pathways [80,81]; that its synthesis and release
is on demand although release from preformed
pools has been postulated [88]; that synthesis of
2-AG is accompanied by synthesis of close
homologues such as 2-oleoylglycerol and 2-
palmitoylglycerol that can modulate the activity
of 2-AG [89,90]; and that the expression of
DAGL, at least at the level of mRNA, can be
regulated by inflammatory mediators [91]. In the
brain, DAGL inhibition affects retrograde sig-
nalling and neuroinflammatory responses
[92,93].

The mechanism(s) responsible for the release and
uptake of eCBs have been a matter of contention
for many years. The two current trains of thought
are that there is a bidirectional transport across
the plasma membrane that is either mediated by
an as yet unknown protein or alternatively that the
current evidence is consistent with simple diffusion
across the plasma membrane [94,95]. What is clear
is that following uptake, AEA is transported within
the cell by carrier proteins such as fatty acid
binding protein 5, and that an inhibitor of this
protein, when given intracerebroventricularly,
increases brain AEA, OEA and PEA but not 2-AG
levels [96]. WOBE437, a potent inhibitor of AEA
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uptake has been described and shown to be active
in a mouse model of monoarthritis [97].

Much more is known about the hydrolytic enzymes
for AEA and 2-AG. Fatty acid amide hydrolase
(FAAH), was discovered and characterized origi-
nally with PEA and OEA as substrates [98,99]. It
has a wide substrate specificity and can hydrolyse
N-acylamides and N-acyltaurines as well as NAEs

[100,101]. Examples of FAAH inhibitors (of which
there are many [102]) are shown in Table 3.

A second FAAH, termed FAAH-2, has been identi-
fied [103]2. The enzyme, which is found in humans

Fig. 2 AEA and 2-AG turnover starting from the appropriate NAPE and diacylglycerol (DAG), respectively. The thick arrows
show the canonical pathway, with alternate pathways (reviewed in [80,81]) for the synthesis and degradation being shown
with the thin arrows. Abbreviations (when not given in the text): AA, arachidonic acid; EA, ethanolamide; GE, glyceryl ester.
Note that the PG-EA, PG and PG-GE species shown is F2a, but the corresponding D2 and E2 species are also formed. Note
also that the PG-GEs rapidly isomerize to form the corresponding PG-1-GEs, and this form dominates in PG-GEs
preparations that are commercially available.

2FAAH-2 is somewhat the poor cousin to FAAH in terms of
research interest: a PubMed search conducted in October
2020 with the search term “FAAH-2” returned 7 results,
as compared with 1706 results for FAAH.
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but not in mice or rats, hydrolyses oleamide as
effectively as FAAH. However, this is not the case
for AEA. Defining the rate of oleamide as unity for
both enzymes, the relative rates of hydrolysis of
AEA are 1.75 and 0.054, respectively [103]. A third
hydrolytic enzyme, N-acylethanolamine-hy-
drolysing acid amidase (NAAA) was described at
the turn of the century. This enzyme, which unlike
FAAH has a pH optimum ~ 5 (as opposed to ~ 9 for
FAAH), is found at high concentrations in macro-
phages, and hydrolyses PEA more avidly than AEA
[104]. The relative activities of FAAH, FAAH-2 and
NAAA are shown in Fig. 3a and examples of the
relative selectivity of some FAAH inhibitors for this
enzyme vs. FAAH-2 are shown in Fig. 3b.

The ability of the different enzymes to hydrolyse
AEA means at least in theory that their relative
contribution in a given tissue will be dependent

upon their relative expression. This has not been
explored in any great detail, but in T84 human
colon cells, expression of FAAH and NAAA is very
similar at the mRNA level, but inhibition of FAAH
by URB597 produces a robust increase in AEA and
other NAE levels, whereas the NAAA inhibitor
pentadecylamine produces a much smaller, albeit
significant increase [105]. In vivo, treatment with
either URB597 or PF-3845 increases AEA but not
PEA levels in the colon of mice with trinitrobenzene
sulfonic acid-induced colitis, whereas the reverse
is seen following treatment with the NAAA inhibitor
AM9053 [106].

FAAH can also hydrolyse 2-AG [107] although in
the brain, the primary hydrolytic enzyme is monoa-
cylglycerol lipase [108]. The development of FAAH
and MAGL-selective inhibitors (reviewed in [102],
see Table 3) has provided an invaluable tool in

Table 3. Examples of FAAH, MAGL (monoacylglycerol lipase) and dual-action inhibitors

Enzyme targeted Reversible inhibitors Irreversible inhibitors

FAAH-selective OL-135 [126]

AZ513 [207]

SSR411298 [208]

URB597 [133]

PF-3845 [127]

PF-04457845 [128]

JNJ-1661010 [129]

JNJ-42165279 [130]

MAGL-selective Compound 21 of [209]a

Compound 20b of [210]b

Compound 26 of [211]c

JZL184 [212]

KML29 [213]

ABX-1431 [176]

FAAH/MAGL Compound 8 of [214]d JZL195 [110]

FAAH/TRPV1 N-arachidonoylserotonin [164]e OMDM-198 (?) [165]f

FAAH/COX Ibu-AM5 [150]

Flu-AM1 [151]

ARN2508 [152]

FAAH-sEHg Compound 11 of [169]h

For the FAAH irreversible compounds, the irreversibility is generally determined by use of dialysis or substrate dilution
experiments and the demonstration of time-dependent inhibition. However, use of long dialysis times suggest that
compounds like JNJ-1661010 may be a slowly reversible compound despite covalent interaction with FAAH [215].
ASP3652 has been described as such a compound [216], although to my knowledge the data supporting this claim has not
been published.
aBenzo [d][1,3] dioxol-5-ylmethyl 6-([1,1’-biphenyl]-4-yl)hexanoate.
b(Z)-4-{[4,40’’-dimethoxy-(1,1’:4’,1’’-terphenyl)-2’-yl]methylene}-2-methyloxazol-5(4H)-one.
c(4-Benzylpiperidin-1-yl)(5-(4-hydroxyphenyl)-1-(3-methylbenzyl)-1H-pyrazol-3-yl)methanone.
d(�)-oxiran-2-ylmethyl 6-(1,10-Biphenyl-4-yl)hexanoate.
eReference is for the first report of its actions towards FAAH.
fOMDM-198 is compound 10 in this reference. The mechanism of action was not determined, hence the question mark by
the name, but I have classified it as irreversible on the basis of it being a carbamate compound.
gSoluble epoxide hydrolase.
hN-(4-(trifluoromethoy)phenyl)-4-(3-((5-(trifluoromethyl)pyridin-2yl)oxy)benzyl)piperidine-1-carboxamide.

The endocannabinoid system and drug development / C. J. Fowler

10 ª 2020 The Authors. Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine

Journal of Internal Medicine, 2021, 290; 2–26



demonstrating that AEA and 2-AG are not simply
alternate eCBs within a given system, but in fact
play separate physiological roles. Thus, for exam-
ple, in rodents trained to discriminate THC from
vehicle, URB597 does not substitute for THC [109].
In mice, the MAGL-selective inhibitor JZL184 pro-
duces a partial substitution for THC whilst KML29
showed no substitution [110,111]. However,
administration of either a non-selective FAAH/
MAGL inhibitor (JZL195), the combination of
URB597 and JZL184, or the administration of
JZL184 to FAAH-/- mice substituted for THC in this
test [109,110].

Two other hydrolytic enzymes, the a/b-hydrolase
domain 6 and 12 (ABHD6 and 12) are also shown
in Fig. 2. In brain homogenates, they are minor
contributors to 2-AG hydrolysis [108]. However, in
mouse brain neurons in primary culture, ABHD6
contributes significantly to 2-AG hydrolysis [112];
even more so in the mouse BV2 microglial cell line
where MAGL is not expressed [112]; and in the
human SH-SY5Y neuroblastoma cell line, the
mRNA levels of ABHD6 and ABHD12 are much
greater than those of MGLL, coding for MAGL [113].
The ABHD6 inhibitor WWL70 produces biological
effects in vivo, but interpretation of these effects is
hampered by an off-target effect of the compound

upon the biosynthesis of prostaglandin E2 [114].
However, other inhibitors have been developed
[115] and will hopefully give more information as
to the importance of this 2-AG hydrolytic pathway
in vivo. Mutations in ABHD12 cause PHARC
(polyneuropathy, hearing loss, ataxia, retinitis
pigmentosa, and cataract), a neurodegenerative
disease [116]. ABHD12 can hydrolyse other lipids
in addition to 2-AG, not least lyso-phosphatidylser-
ine, and a recent paper utilizing mice lacking
ABHD12 and the lysophospholipid acyltransferase
LPCAT3 has suggested that dysfunction in the
regulation of lyso-phosphatidylserines underlies
PHARC [117].

The above discussion has considered the hydro-
lytic enzymes as ways to remove AEA and 2-AG,
but MAGL also has an anabolic function. Thus, in
several cancer cell lines, MAGL acts to catalyse the
production of long-chain fatty acids from the
corresponding monoacylglycerols, and this pro-
vides an energy source for the cells that aids their
proliferation in vivo in xenograft models [118,119].
In the brain, MAGL-catalysed hydrolysis of 2-AG
provides a key source of arachidonic acid needed
for prostaglandin production in neuro-inflamma-
tory disorders [120]. AEA and 2-AG are also
substrates for cyclooxygenase-2 (COX-2),

Fig. 3 Panel (a) relative rates of hydrolysis of the NAEs PEA, OEA and AEA by FAAH, FAAH-2 and NAAA. The data for
FAAH and FAAH-2 were taken from Table 2 of Wei et al. [103] who used COS-7 cells transfected with human FAAH-1-
pcDNA3 or FAAH-2-pFLAG.CMV6 constructs and an assay pH of 9 (the pH optimum for FAAH). The data for NAAA (right
axis) were estimated from Fig. 7 of Ueda et al. [104] who used NAAA purified from rat lung enzyme and an assay pH of 5 (in
the presence of Triton X-100) and expressed the activity with AEA and OEA relative to that with PEA as substrate. The error
bars (when not too small to be visible in the original study [AEA for NAAA] or when the activity was set to 100% [PEA for
NAAA]) represent SD. Panel (b) shows the potency ratio of four inhibitors towards FAAH and FAAH-2, calculated from [103]
and [129]. The higher the number, the greater the selectivity towards FAAH.
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lipoxygenases and CYP450 oxidases to produce
biologically active compounds [80,81,121,122].
Most work on these has been undertaken on the
COX-2-derived prostaglandins (PGs), the PG-etha-
nolamides (PG-EAs, prostamides) and the PG glyc-
eryl esters, which show both pro- and anti-
inflammatory activities (review see [123]). Thus,
for example, Gatta et al. [124] showed that kaolin/
k-carrageenan-induced inflammation of the knee
resulted in increased levels of PGF2a-EA in the rat
spinal cord, and that in control animals, the spinal
administration of this prostamide increased the
firing of dorsal horn nociceptive neurons. In con-
trast, PGD2-GE, but not PGD2, decreases the
mechanical hyperalgesia and oedema produced
by intraplantal injection of k-carrageenan in mice
[125].

Translation, or lack thereof, of FAAH inhibitors to the clinic for the
treatment of pain

Preclinical studies with FAAH inhibitors showed
great promise with respect to pain, since different

classes of compounds showed efficacy in animal
models of persistent, visceral, inflammatory and/
or neuropathic pain [126–131] (for details of all the
studies in pain models with FAAH inhibitors up to
2015, see Tables 1-5 of [132]), without producing
THC-like behaviours [110,133], substitution for
THC in drug discrimination tests [109], or rein-
forcing behaviour in squirrel monkeys trained to
self-administer THC or cocaine [134]. A molecular
genetic study associating a FAAH gene polymor-
phism with pain sensitivity [135] and a recent case
report of a woman with pain insensitivity who had
a heterozygous microdeletion downstream from the
3’ end of FAAH [136] also tie in FAAH with pain.

The initial clinical studies with FAAH inhibitors in
healthy volunteers indicated that compounds such
as PF-04457845, V158866 and JNJ-42165279
were well tolerated, increased plasma AEA and
other NAE levels, and, in the case of PF-04457845,
did not produce cognitive effects [137–139] consis-
tent with the pre-clinical studies. JNJ-42165279
was also found to produce a profound occupancy of
brain FAAH and to increase AEA levels in the
cerebrospinal fluid [139]. However, the Phase 2
clinical studies with FAAH and pain have been a
disappointment, with several studies showing a
negative outcome (Table 4). This somewhat
depressing picture was compounded in 2016 when
a Phase I multiple ascending dose trial of Bial’s
FAAH inhibitor BIA 10-2474 resulted in severe
neurological adverse effects and one death [140].
Such a tragedy was unexpected, given that all
other FAAH inhibitors are well tolerated by patients
(as had lower doses of BIA 10-2474 been in
previous cohorts). These severe adverse effects
are likely related to off-targets of BIA 10-2474
and/or its metabolite(s) [141,142], possibly cou-
pled to an overly rapid sequential dosing protocol
[143]. When the tragedy unfolded, the US Food and
Drug Administration halted ongoing clinical trials
with FAAH inhibitors, but later concluded that
‘based on the available information . . . BIA 10-2474
exhibits a unique toxicity that does not extend to
other drugs in the class, called fatty acid amide
hydrolase (FAAH) inhibitors’. [144].

Alternative approaches to harness FAAH inhibition for the
treatment of pain

The above discussion would suggest that FAAH
inhibition per se is not a useful approach to treat
pain despite the promising preclinical data. The
predictive validity of the standard pain models has

Table 5. Possible reasons for the lack of efficacy of FAAH
inhibitors in clinical trials of pain

Hypothesis Potential solutions

FAAH is not a suitable target

in the pain types

investigated

MAGL inhibitors

Suboptimal increase in AEA

due to alternative catabolic

pathways or due to

deleterious effects of

products of such pathways

Dual-action compounds

inhibiting FAAH and the

additional pathway

(NAAA, FAAH-2, COX-2)

or the receptor for the

downstream product

(PGF2a-EA)

Increased AEA levels alone

are not sufficient to

alleviate pain, and other

members of the extended

eCB system need also to be

potentiated sufficiently

NAAA or MAGL

inhibitors � FAAH

inhibitors

Beneficial effects of the

increased AEA

concentrations are negated

by effects at TRPV1

receptors

Dual-action FAAH

inhibitor / TRPV1

antagonists
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been discussed earlier with respect to CB2 receptor
agonists, and it is notable that in a model of non-
evoked pain (burrowing behaviour in a monoso-
dium iodoacetate model of osteoarthritis at a time-
point where the pain is mainly mediated by inflam-
mation), the FAAH inhibitor PF-04457845 was not
effective, in contrast to ibuprofen, celecoxib and an
antibody to tumour necrosis factor-a [145]. Animal
models aside, Table 5 summarizes some possible
explanations as to why FAAH inhibitors per se were
ineffective in clinical pain as a way of introducing
possible ways forward.

The simplest explanation is that FAAH does not
engage the target sufficiently at the doses used. Two
of the clinical trials with FAAH inhibitors in pain
reported increases in plasma AEA levels (Table 4),
but that does not prove target engagement else-
where. In extremis, the body may already have
undertaken locally what the FAAH inhibitor was

meant to do. This is in admittedly in the realm of
speculation, but FAAH expression and activity in
human lymphocytes is decreased following 24 h
in vitro treatment with either interleukin-12 or
interferon-c and increased with interleukins 4 and
10 [146], so the enzyme is clearly sensitive to the
inflammatory environment. An increased AEA con-
centration is not a universal response to FAAH
inhibition: for example, intraplantally administered
URB597 does not increase levels of AEA in the hind
paw of rats with spinal nerve ligation whereas an
increase is seen for sham-operated rats [147].

A variation of the above relates to the alternative
catabolic pathways shown in Fig. 2, namely that
AEA levels are increased as a result of FAAH
inhibition, but the increase is insufficient due to
its removal by other enzymes. In this respect,
Benson et al. [148] modelled the data from the
PF-04457845 clinical trial of Huggins et al. [149]

Fig. 4 Structures of dual-action FAAH / COX inhibitors based upon a) ibuprofen and b) flurbiprofen [150–153].
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and suggested that plasma AEA time curve
following PF-04457845 treatment, which included
a long plateau region, could not ‘be adequately
described without evoking an additional fatty acid
amide hydrolase (FAAH)-independent clearance
process’. Of course, the model is only as good
as the assumptions made, but it motivates con-
sideration of blockade of other AEA-catabolic
enzymes in addition to FAAH. Benson et al.
[148] suggested that NAAA could be the enzyme
responsible for removal of AEA following FAAH
inhibition by PF-04457845. An alternative could
be that inhibition of both FAAH and FAAH-2 is
required in humans. PF-3845, a potent and
highly selective FAAH inhibitor with a structural
similarity to PF-04457845, does not inhibit
FAAH-2 (IC50 value > 10 µmol L�1) [127]. Since
rats and mice do not express FAAH-2 [103], this
pathway would not be operative in the animal
pain models.

COX-2 may also provide an important alternative
pathway for AEA following FAAH inhibition in the
patients investigated in the clinical trials, not least
since it is induced in inflammatory conditions.
FAAH - COX dual-action inhibitors have been
designed [150–153], based upon increasing the
modest FAAH inhibitory potencies of the profen
class (ibuprofen [154], flurbiprofen) of non-steroi-
dal anti-inflammatory drugs (NSAIDs) whilst
retaining their COX inhibitory potency (Fig. 4). In
experimental animals, two of the compounds (Ibu-
AM5 and ARN2508) are biologically active in vivo,
but do not cause gastric ulcers when given acutely,
in contrast to the NSAIDs ibuprofen and ketorolac
[152,155]. This may be due to their FAAH-in-
hibitory properties, since FAAH inhibitors (or
genetic deletion of FAAH) protect against NSAID-
induced acute gastric ulcers in experimental ani-
mals [131,156]. Ibu-AM5 and (R)-Flu-AM1 also
show an interesting property first described for (R)-
profens [157], namely that they inhibit COX-2-
catalysed cyclooxygenation of eCBs more potently
than the corresponding cyclooxygenation of arachi-
donic acid [151,158]. Most recently, ATB-352, a
hydrogen sulphide-releasing analogue of ketopro-
fen that does not cause gastrointestinal ulceration
[159] has been shown potently to inhibit FAAH and
to reduce mechanical allodynia in a model of
postoperative pain in a CB1-receptor mediated
manner [160]. Compounds inhibiting FAAH and
the PGF2a-EA receptor have also been described
[161] (q.v. the pro-algesic effects of PGF2a-EA
[124]).

Another potential explanation for the poor outcomes
in the clinical trials with FAAH is that potentiation of
2-AG rather than AEA may be more important in
some pain syndromes. Like FAAH inhibitors, selec-
tive MAGL inhibitors have been shown to produce
potentially beneficial effects in models of visceral,
inflammatory and neuropathic pain (see Tables 1-5
of [132]), but to my knowledge clinical data for
MAGL inhibitors is not yet available with respect to
pain. Additionally, compounds inhibiting both
MAGL and FAAH could be considered, although it
is hard to see the advantage of such compounds vs.
THC, given that they produce similar behavioural
effects at least in animal models [109,110].

An alternative possibility is that in humans, the
pain regulatory response is a combination of effects
produced by both AEA and PEA, since these are
both produced at the same time (see above), and
since PEA has anti-inflammatory and analgesic
properties (see [86]). In this case, the argument
would be that FAAH inhibition increases NAE
levels, but that the increase in PEA levels is
insufficient to mitigate the pain. Selective NAAA
inhibitors have been described and have been
shown to produce beneficial effects in animal
models of inflammatory pain (for an example, see
[162]) and so it would clearly be of interest to
investigate whether the combination of an FAAH
and an NAAA inhibitor is beneficial in human pain.

The final suggestion listed in Table 5 can be linked
to an observation using cultured rat primary
sensory neurons that in inflammatory conditions,
the efficacy of AEA for TRPV1 is increased [163].
This raises the possibility that in the clinical trials,
the beneficial effects produced by increasing AEA
concentrations secondary to FAAH inhibitor are
negated by TRPV1 effects mediated by this eCB or
other NAEs such as OEA [149]. This would moti-
vate clinical studies of FAAH inhibitors together
with TRPV1 antagonists or alternatively dual-ac-
tion compounds with FAAH inhibitory and TRPV1-
antagonistic actions. Such molecules have been
designed [164,165] and shown to be active in
animal pain models [166,167]. Inhibition of FAAH
and soluble epoxide hydrolase may also be a useful
combination [168] and molecules inhibiting both
enzymes have been described [169].

Other potential indications for FAAH inhibitors

The observations that the adverse effects profile of
the CB1 receptor inverse agonist rimonabant had
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an unacceptable incidence of anxiety and depres-
sion [73] raises the possibility that FAAH inhibi-
tors, by raising endogenous AEA-mediated tonus,
could have useful anti-anxiety and antidepressive
properties. Indeed, potentially useful effects of
FAAH inhibitors in a number of different animal
models of anxiety, depression and compulsive
behaviour have been reported (review see [170]).

With respect to treatment of major depressive
disorder, two studies have been registered at Clin-
icalTrials.gov, one with SSR411298 (Sanofi, Clini-
calTrials.gov NCT00822744, double blind, placebo-
controlled, 8-week treatment in elderly patients with
escitalopram as comparison), and one with JNJ-
42165279 (Janssen Research & Development, LLC,
ClinicalTrials.gov NCT02498392, double-blind pla-
cebo-controlled study in patients with major
depressive disorder with anxious stress). To my
knowledge, results of these studies have not yet
been published in peer-reviewed journals, although
Mandrioli and Mercolini [171] reported that
SSR411298 was not more effective than placebo in
the NCT00822744 trial and that its development for
this indication has been discontinued3.

More information is available concerning the
potential of FAAH inhibitors for treatment of
social anxiety and post-traumatic stress disorder.
With respect to the former, a double-blind
placebo-controlled study of JNJ-42165279 in
social anxiety disorder has just been published
[172]. In this study JNJ-42165279 or placebo
was given for 12 weeks, and the primary outcome
measure was change from baseline in the Liebow-
itz Social Anxiety scale. No significant difference
was seen in the primary outcome measure,
although a secondary outcome, the percentage
of patients with a ≥ 30 improvement in baseline,
was significantly higher than placebo (44% vs
24%, P = 0.04). On the basis of measurement of
trough plasma concentrations of the drug and
plasma AEA concentrations (which were highly
correlated), the authors argued that the dose
used (25 mg once daily) might have not been

sufficient and they intend to investigate a differ-
ent dose regime (25 mg b.i.d.) [172].

With respect to post-traumatic stress disorder
(PTSD), no ongoing trials are listed on ClinicalTri-
als.gov (search word ‘FAAH’) as of November 2020,
but an interesting double-blind, placebo-con-
trolled study on the effects of PF-04457845
(4 mg day�1 for 10 days) on fear extinction and
stress responses in healthy individuals has been
published [173]. On days 9 and 10 after the start
of treatment, which for PF-04457845 was suffi-
cient to increase plasma AEA levels by an order of
magnitude, the patients undertook a series of
behavioural tests including eyeblink responses to
a 50 ms burst of white noise and an aversive
sound of nails across a chalkboard as uncondi-
tioned stimulus, and mental arithmetic tests with
‘negative socioevaluative feedback’. An affective
image task was undertaken before and after the
stress tests and the control tasks [173]. PF-
04457845 did not affect acquisition of conditioned
fear but promoted recall of fear extinction memory
when tested on the second day. The negative affect
understandably produced by the stress paradigm
was also attenuated for the negative images in the
image bank used. These data raise the possibility
that FAAH inhibition may be a potentially useful
treatment for at least some of the symptoms of
PTSD. The authors of [172] also reported that they
are ‘initiating trials in PTSD with increased doses’
of JNJ-42165279.

FAAH inhibitors may also be useful for cannabis
use disorder. Thus, PF-04457845 (4 mg day�1)
was found to reduce cannabis withdrawal symp-
toms and subsequent cannabis use (as assessed
by self-reported cannabis use and measurement
of the urinary levels of the THC metabolite THC-
COOH) in men with cannabis use disorder,
leading to the authors to conclude that PF-
04457845 ‘might represent an effective and safe
approach for the treatment of cannabis use
disorder’ [174].

An MAGL inhibitor, LuAG06466 is early on in its
clinical development, also with PTSD and other
neurological/psychiatric disorders as potential
indications [175] (for a review on the potential of
agents affecting the eCB system as treatments for
neurological disorders, see [10]). I presume
LuAG06466 is the same compound as ABX-1431
[176] which had undergone some initial trials in
patients with Tourette Syndrome or Chronic Motor

3The link to a press release by Sanofi given in this paper is
no longer active, but the press release stating that “Two
projects in Phase II were discontinued. Data . . . on
SSR411298 in major depressive disorders, did not sup-
port progression to Phase III trials” can be found at
http://www.news.sanofi.us/press-releases?item=
118522 (URL checked 12 November 2020).
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Tic Disorder [177], and a study to determine
whether the compound produces tolerance in
patients with neuropathic pain [178].4 The latter
is an important consideration given that the first
selective MAGL inhibitor, JZL184, produced beha-
vioural tolerance and down regulation of CB1

receptors in mice upon repeated administration
[179].

Conclusions

The present article has aimed to present the
current state of the art of drug development in
the eCB field. Despite the setbacks in the clinical
trials for pain with CB2 receptors and FAAH
inhibitors, the area remains active, and of neces-
sity, I have not taken up potential indications in
areas such as migraine, Parkinson’s disease,
multiple sclerosis, inflammatory bowel disease
and cancer (reviews, see [10,31,180–182]) or with
respect to the treatment of cannabis use disorder
or cannabis-induced hyperemesis syndrome
[183,184]. Similarly, the increasing use of mark-
ers of the eCB system in PET studies [139,185] is
a fascinating area of research whereby CB1

receptor, FAAH and MAGL ligands have been
adopted to probe the eCB system in the human
brain. It is to be hoped that the rate of discoveries
made in the quarter of a century or so since the
identification of the eCBs AEA and 2-AG will
continue over the next twenty-five years and, not
least, result in the clinical use of novel drugs
modulating the eCB system.
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