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ABSTRACT  

PURPOSE: Patients with severe Coronavirus disease 19 (COVID-19) typically require supplemental oxygen as an 

essential treatment. We developed a machine learning algorithm, based on a deep Reinforcement Learning (RL), for 

continuous management of oxygen flow rate for critical ill patients under intensive care, which can identify the optimal 

personalized oxygen flow rate with strong potentials to reduce mortality rate relative to the current clinical practice. 

 

METHODS: We modeled the oxygen flow trajectory of COVID-19 patients and their health outcomes as a Markov 

decision process. Based on individual patient characteristics and health status, a reinforcement learning based oxygen 

control policy is learned and real-time recommends the oxygen flow rate to reduce the mortality rate. We assessed the 

performance of proposed methods through cross validation by using a retrospective cohort of 1,372 critically ill 

patients with COVID-19 from New York University Langone Health ambulatory care with electronic health records 

from April 2020 to January 2021.  

 

RESULTS: The mean mortality rate under the RL algorithm is lower than standard of care by 2.57% (95% CI: 2.08- 

3.06) reduction (P<0.001) from 7.94% under the standard of care to 5.37 % under our algorithm and the averaged 

recommended oxygen flow rate is 1.28 L/min (95% CI: 1.14-1.42) lower than the rate actually delivered to patients. 

Thus, the RL algorithm could potentially lead to better intensive care treatment that can reduce mortality rate, while 

saving the oxygen scarce resources. It can reduce the oxygen shortage issue and improve public health during the 

COVID-19 pandemic. 

 

CONCLUSION: A personalized reinforcement learning oxygen flow control algorithm for COVID-19 patients under 

intensive care showed substantial reduction in 7-day mortality rate as compared to standard of care. In the overall 

cross validation cohort independent of the training data, mortality was lowest in patients for whom intensivists’ actual 

flow rate matched the RL decisions. 

 

Keywords: COVID-19, intensive care, reinforcement learning, respiratory failure, oxygen flow rate control 
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Introduction 

Over the course of the past year, the rapid global spread of severe acute respiratory syndrome coronavirus-2 (SARS-

CoV-2), has motivated multidisciplinary investigation efforts to identify effective medical management against 

coronavirus disease 2019 (COVID-19). Respiratory distress, including mild or moderate respiratory distress, acute 

respiratory distress syndrome (ARDS) and hypoxia, is a common complication of COVID-19 patients and the therapy 

of COVID-19 is guided by the knowledge and experience of moderate-to-severe ARDS treatment [1]. Oxygen therapy 

is recommended as the first-line therapy of COVID-19-induced respiratory and hypoxia by the Centers for Disease 

Control and Prevention (CDC) and the World Health Organization (WHO). Oxygen therapy consists of different kinds 

of supplemental oxygen therapies including nasal cannula, simple mask, venturi mask, non-rebreather masks and high 

flow oxygen systems. The key factor in different supplemental oxygen methods is the setting of different levels of 

oxygen flow rates [2]. Thus, the selection of appropriate oxygen flow rate is a crucial decision in COVID-19 treatment. 

To improve the treatment efficiency, the administration of oxygen therapy should be determined by the severity of 

COVID-19-induced respiratory failure, incorporating the uncertainties in measurements of patient health status and 

prediction of individual’s outcomes to the oxygen decisions. It certainly requires a comprehensive investigation of the 

optimal and personalized oxygen flow rate. Our research aims to explore the effective oxygen therapy for COVID-19 

patients based on the continuous respiratory support and vital signs monitoring. 

 

Remarkable advances in oxygen therapy have been made in a short period in the treatment of COVID-19 pneumonia 

[3, 4]. However, respiratory failure still remains the leading cause of death (69.5%) for SARS-CoV-2 [5]. Thus, we 

provide an artificial intelligence (AI) oxygen flow control algorithm, based on deep reinforcement learning (RL), 

which is able to suggest personalized optimal oxygen flow rate for COVID-19 patients based on the knowledge of 

patient health status estimated from patients’ electronic health records (EHRs). Reinforcement learning has been 

successfully applied in the past to different healthcare problems such as multimorbidity management [6], HIV therapy 

[7], cancer treatment [8], and anemia treatment in hemodialysis patients [9]. For critical care, given the large amount 

and granular nature of electronic recorded data, RL is well suited for providing sequential optimal treatment 

recommendation and improving outcomes for new ICU patients [10]. Recent studies include treatment strategies for 

sepsis in intensive care [11] and personalized regime of sedation dosage and ventilator support for patients in Intensive 

Care Units (ICUs) [12].  
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Focusing on RL based oxygen flow rate control (RL-oxygen), we studied its impact on mortality in COVID-19 patients 

with respiratory failure. The evolution of patients' ICU histories, including treatment, vitals and health outcomes, was 

modeled using a Markov decision process (MDP) [11, 13]. At each decision epoch, based on the state (observed 

patient characteristics, including age, sex, race, smoking status, BMI and comorbidity diagnoses, 36 daily observed 

lab test values and 6 unique vitals), RL selected an oxygen flow rate (ranged from 0 to 60 L/min), and obtained a 

reward defined based on patient's 7-day survival. Then, following the oxygen flow rate suggested by RL policy, an 

estimated mortality rate was predicted to compare with the mortality rate in actual practice.  

 

Methods 

Study Design and Participants  

Our research team used a retrospective cohort of the New York University Langone Health (NYULH) EHR data on 

COVID-19 patients to derive and validate the RL algorithm. Eligible patients have had positive COVID-19 PCR test 

and had oxygen therapy in hospital between March 1st 2020 to January 19th 2021. We excluded COVID-19 patients 

aged below 50 and not been hospitalized as these lacked consistent documentation of vital signs, treatment and 

laboratory tests. This study was approved by the NYULH IRB and the data were de-identified to ensure anonymity.  

 

For each patient, we had access to demographic data, including age, sex, race, ethnicity and smoking status, ICU admit 

and discharge information, in hospital living status, comorbidities, treatment and laboratory test data. The 

comorbidities, including hyperlipidemia, coronary artery disease, heart failure, hypertension, diabetes, asthma or 

chronic obstructive pulmonary, dementia and stroke, are defined based on International Classification of Diseases 

(ICD)-10 diagnosis codes. To reduce the feature dimensionality, we selected 36 laboratory tests based on two criteria: 

(1) less than 28% missing values and (2) COVID-19 related. In specific, we explore the associations between 

laboratory tests and COVID-19 based on existing literature and clinical findings. For example, recent study has shown 

that a reduced estimated glomerular filtration rate (eGFR), low platelet count, low serum calcium level, increased 

white blood cell count, Neutrophil-to-lymphocyte ratio (NLR), and red blood cell distribution width-coefficient of 

variation (RDW-CV) are related to high risk of severity and mortality in patients with COVID-19 [14-18]. 

Additionally, some research suggests well-controlled blood glucose is associated with the lower mortality in COVID-

19 patients with Type-2 diabetes [19] and continuous renal potassium level has correlation of hypokalemia, which is 
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common among patients with COVID-19 [20]. Arterial blood gas analysis, including pH, Oxyhemoglobin saturation 

(𝑆𝑎𝑂2), oxygen saturation (𝑆𝑝𝑂2), partial pressure of oxygen (𝑃𝑎𝑂2) and bicarbonate (𝐻𝐶𝑂3), is commonly used 

biomarkers measuring the severity of ARDS [21, 22].  

 

In this study, we employed leave-one-hospital-out validation to evaluate the model performance. The whole dataset 

was divided into 4 batches by the hospital and then we take one batch as validation set and the rest as training set in 

each simulation.  

RL algorithm Overview 

We model patient health trajectory and the clinical decisions during a course of intensive care over a period of ICU 

stay by a Markov decision process (MDP) with state, action and reward. The state of a patient includes the observed 

patient demographics, vital signs and laboratory test at each time. The action refers to oxygen flow rate. As a 

consequence of a sequence of actions, the patient receives a reward if he/she survives in the next 7 days, otherwise a 

penalty to death will be given. The cumulative return is defined as the discounted sum of all rewards of each patient 

received during the ICU stay.  RL is designed to maximize the cumulative return by making optimal actions at each 

time through an off-policy algorithm, named Deep Deterministic Policy Gradient (DDPG) [23]. Briefly speaking, 

DDPG learns a scoring rule which evaluates the recommended oxygen flow rate given a patient’s health state and then 

uses such a rule to improve the decision making by optimizing the score. The intrinsic design of RL provides a 

powerful tool to handle sparse and time-delayed reward signals, which makes them well-suited to overcome the 

heterogeneity of patient responses to actions and the delayed indications of the efficacy of treatments [11].  

 

The details of state, action and reward are listed as following: 

● State: observed patient’s characteristics at each time with information, including demographics, COVID-19 

lab tests and vital signs. 

● Action: oxygen flow rate ranged from 0 L/min to 60 L/min. 

● Reward: the reward of an action is measured by its associated ultimate health outcome given the patient 

health state. Similar to [11], we used in-hospital mortality as the system-defined penalty and reward. When 

a patient survived, a positive reward was released at the end of the patient’s trajectory (i.e., a `reward’ of 

+15); a negative reward (i.e., a `penalty’ of -15) was issued if the patient died. We find such a reward can 
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propagate the final health outcome backward to each decision over the period so that RL can predict long-

term effect and dynamically guide the optimal oxygen flow treatment. 

● Discount factor:  determines how much the RL agents balance rewards in the distant future relative to those 

in the immediate future. It can take values between 0 and 1 [13]. After considering the ICU stay tends to be 

short and also conducting side experiments, we chose a value of 0.99, which means that we put nearly as 

much importance on late deaths as opposed to early deaths for each recommended oxygen flow rate. 

 

Model Evaluation  

We evaluated the RL-recommended oxygen therapy by comparing its effect with the observed one on the cohort from 

each validation hospital. At each decision time, the RL algorithm recommends an oxygen flow rate for the patient. If 

the absolute difference of recommended and the observed oxygen flow rate is less than 10 L/min, we say that RL is 

“consistent” with the critical care physicians.  

 

When RL is discrepant with the oxygen flow rate used by physicians, the efficacy of the RL-recommended oxygen 

therapy is not directly observed. The problem then becomes how to assess the health outcomes in the future after 

taking RL recommendation. For this reason, we predicted the outcome of the RL-recommended treatment using Cox 

proportional hazards model, a regression model commonly used for investigating the association between the survival 

probability of patients during a time period and predictor variables of interest in medical observational studies [24, 

25]. In short, a patient was labeled as “alive” if he/she survived after a treatment within seven days, otherwise, labeled 

as “deceased”. Then we fitted a Cox survival model with demographics, vital signs and lab tests as predictors and 

evaluated the effect of decision using the leave-one-hospital-out validation. 

 

To assess the performance of the survival models, we compared predicted and observed outcomes (7-day living status) 

using 4 metrics: similarity, accuracy, Chi-squared test, and concordance index. Overall, the cosine similarity between 

predicted and actual survival is greater than 99.9% and concordance indices are 0.83. Both metrics indicate that the 

predictive model can effectively estimate unobserved health outcomes. Moreover, the paired Chi-squared test (p-value 

< 0.0001) shows no significant difference between true and predicted survival. 
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Results 

Overall, 1,362 patients in NYULH EHR samples had a PCR-based COVID-19 diagnosis between March 2020 to 

January 2021. The demographic and clinic characteristics summary of the analysis cohort is shown in Table 1. Overall, 

patients’ mean age is 69.7 and the cohort is comprised of 483 females (35.2%). On average, COVID-19 patients 

showed BMI of 28.61 kg/m2, pO2 (partial pressure of oxygen) of 104.8 mmHg, SaO2 (Oxygen saturation in arterial 

blood) of 94.1% and SBP of 123.4 mmHg. Hypertension, hyperlipidemia, diabetes and coronary artery disease are top 

4 common comorbidities for COVID-19 patients aged above 50, diagnosed in 85.2%, 71.8%, 51.4% and 41.2% 

patients respectively. The median hospital stay duration was 2.9 days since COVID-19 diagnosis (interquartile range 

[IQR] 0.52–12.2 days). We trained the RL algorithms using patients from each 3 hospitals, and then assessed their 

performance using the remaining hospital encounters. 

  

The performance of the RL-oxygen is summarized in Table 2. Overall, the RL-oxygen algorithm shows superior 

performance to the clinical practice of oxygen therapy for COVID-19 patients. The overall 7-day estimated mortality 

under Physician prescribed oxygen was 7.94% (95% CI: 7.41-8.47), while overall estimated mortality under RL-

oxygen was 5.37% (95% CI: 4.94-5.80), showing a 2.57% (95% CI: 2.08- 3.06) reduction (P<0.001). In addition, 

Table 2 depicts the characteristics of oxygen flow rate following the recommendations from both RL-oxygen and 

physicians. On average, the overall oxygen flow rate was 1.28 L/min (95% CI: 1.14-1.42) lower than the rate actually 

delivered to patients. 

 

The efficacy of the RL prescriptive algorithms was consistently observed across age, gender, BMI, and comorbidity 

subgroups (Table 2). Demographically speaking, COVID-19 patients of age older than 75 observed higher efficacies 

from RL-oxygen recommended oxygen therapy than physician’s recommendations as compared to the observed 

efficacies in patients of age 75 and younger. For example, 7-day estimated mortality rate under RL-oxygen for patients 

of age older than 80 was 5.87% (95% CI: 4.67-7.07) lower than under physician’s therapy. In contrast, the 7-day 

estimated mortality rate under RL-oxygen was 0.55% (95% CI: 0.39-0.71) lower than that under physicians’ therapy 

for patients aged between 50 and 65. Table 2 also shows that the RL-oxygen tends to be more effective for patients 

with comorbidities. Especially for COVID-19 patients with Asthma or chronic obstructive pulmonary, Dementia and 

Stroke, RL-oxygen reduced the 7-day mortality by 5.69%, 5.11% and 3.8% respectively on average. 
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We further studied 7-days mortality when the actually administered oxygen flow rates differed from the oxygen flow 

rate suggested by the RL-oxygen in Fig. 1. It shows how the observed mortality changes with the flow rate difference 

between RL-oxygen and physicians. This phenomenon suggests that increasing differences between the RL-oxygen 

and the observed delivering oxygen was associated with increasing observed mortality rates in a rate-dependent 

fashion. When the difference is minimum, we obtain the lowest 7-day mortality rates of 1.7%. Another observation 

from Fig. 1(A) is that the mortality rate increases when the RL-oxygen flow rate is lower or higher than the one from 

physicians. It suggests that both the oxygen deficit (lower oxygen flow rate than RL-oxygen recommendation) and 

the oxygen excess are sup-optimal for patients’ outcomes. We observed a trend that RL-oxygen was in general lower 

than what prescribed by the physicians and might result in better outcomes under lower flow rate. It suggests that 

oxygen flow rates prescribed by doctors tend to be excessively high for some patients.  

 

Last, we observed that the RL-oxygen and physicians recommended consistent flow rates in the majority of times; see 

Fig. 1B. The overall distribution of oxygen flow rates recommended by RL-oxygen and physicians are presented in 

Fig. 2. It depicts how many measurement times each oxygen flow rate was recommended by RL-oxygen and 

physicians. In twenty-nine percent of the time, the patients actually received an oxygen flow close to the suggested 

rate within 5 L/min while forty-four percent of the time, the difference between the administered and suggested oxygen 

flow rates are within 10L/min. Since the high‐flow nasal oxygen (HFNO) therapy often increases flow rate in 

increments of 10 L/min up to 60 L/min [26], it suggests that RL-oxygen is consistent with physicians about 40-50% 

of the time.  

 

Discussion 

We used a RL approach to learn an optimal policy to continuously control the oxygen device for critically ill patients 

with COVID-19 who require the oxygen therapy. As most people who become seriously unwell with COVID-19 have 

an acute respiratory illness [27, 28], our algorithm has strong potential to improve individual health outcomes and 

reduce COVID-19 mortality rate caused by respiratory failure. We designed the reward as the ultimate health outcome 

which is used to assess the performance of oxygen flow decisions along the treatment trajectory. As such, the 
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reinforcement learning approach took uncertain outcomes and long-term treatment effects into consideration and made 

it smarter in understanding the long impact of an early decision on the final outcomes. 

 

Our analysis suggests the current practice remains some potential to be improved as actual oxygen flow rate 

administered by intensivists showed more than fifty percent discrepancy with RL-oxygen recommendations. 

Importantly, we observe that RL-oxygen tends to prescribe lower oxygen flow rate than physician’s prescribed rates, 

but leads to better outcomes. This finding is especially important in the context of the ongoing and persistent medical 

oxygen shortages in some developing regions. As COVID-19 patient-care protocols have evolved, medical-grade 

oxygen is still considered essential to treatments for critically ill patients. In regions such as Africa, the Middle East, 

and Asia, the surge in demand for medical oxygen to treat COVID-19 exacerbates preexisting gaps in medical-oxygen 

supplies, leading to substantial supply shortages.  

 

Our analysis also identified some clinical patterns that RL-oxygen particularly works well.  For example, patients with 

high risk (i.e., of age older than 75) observed higher efficacies than patients aged between 50 and 75 by using relatively 

lower averaged oxygen flow rate than actually administered. RL-oxygen also recommends a higher averaged oxygen 

flow rate may improve the health outcomes for patients aged from 50 to 65.  

 

Although our evaluation methodology controls for several confounding factors and shows high validation accuracy, 

sample scarcity and large proportion of missing value may increase estimation uncertainty and affect the treatment 

recommendations. A larger training data is necessary to cover more of the state space and improve the policy 

optimization. Moreover, the COVID-19 cohort from NYULH may not be representative of the U.S. COVID-19 

population or the oxygen clinical practices in other countries. To ultimately validate the efficacy of the RL algorithms, 

randomized clinical trials with patients randomly assigned to RL and clinician mechanism would be needed.   

 

Conclusion 

Through analyzing the EHR data from multiple ambulatory care centers, we demonstrated the feasibility of using 

reinforcement learning based oxygen therapy to improve the intensive care for COVID-19 patients. The RL-oxygen 

showed medium concordance (44%) with the current practice of critical care physicians. For all COVID-19 patients 
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requiring oxygen therapy, RL recommendations significantly reduce mortality rate compared to the current practice. 

The algorithm has potential to be integrated into the clinical decision support system and assist physicians to provide 

the timely personalized recommendations of oxygen flow rate for COVID-19 patients in ICU.  
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Table 1 Demographics and clinical characteristics of NYULH-EHR patients with COVID-19. 

Demographics and clinic characteristics 
Number of Patients 

(N=1,372) 

Age (years, Mean (SD)) 69.72 (10.75) 

Male (N (%)) 64.49 (0.47) 

Race (N(%))   

African American 180 (13.12) 

Native American 5 (0.36) 

Asian 120 (8.75) 

Caucasian (White) 730 (53.21) 

Multiple Races 19 (1.39) 

Other Races 266 (19.39) 

Race Unknown or Patient Refused 53 (3.86) 

Smoking ((N%)) 1,043 (6.88) 

    Never 735 (53.57) 

    Former 443 (32.29) 

    Current 55 (4.01) 

    Not asked 139 (10.13) 

Body Mass Index (kg/m2, Mean (SD) 28.61 (6.74) 

Hyperlipidemia (N(%)) 978 (71.75) 

Coronary artery disease (N(%)) 562 (41.23) 

Heart failure (N(%)) 406 (29.79) 

Hypertension (N(%)) 1161 (85.18) 

Diabetes (N(%)) 701 (51.43) 

Asthma or chronic obstructive pulmonary (N(%)) 217 (15.92) 

Dementia (N(%)) 133 (9.76) 

Stroke (N(%)) 195 (14.31) 

Categorical variables are summarized with frequencies (percentages) unless otherwise indicated. Continuous 

variables are summarized as the mean (standard deviation) of biomarkers. 
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Table 2 Subgroup comparison of 7-day estimated mortality obtained using RL-oxygen algorithm and 

critical care physician decision guidance. 

Subgroups 
Estimated Mortality (%) Average Oxygen (L/min) 

RL-oxygen Physician RL-oxygen Physician 

Overall 5.37 (0.22) 7.94 (0.27) 19.24 (0.07)* 20.52 (0.07) 

Male 6.13(0.12)* 8.53(0.14) 21.20(0.09)* 22.66(0.09) 

Female 2.18(0.11)* 2.99(0.12) 6.33(0.07) 6.41(0.07) 

Age     

    50 to 65 1.19(0.08)* 1.74(0.09) 25.54(0.12)* 22.27(0.12) 

    65 to 75 4.13(0.14)* 5.43(0.16) 19.63(0.12)* 22.73(0.12) 

    75 to 80 14.76(0.3)* 20.39(0.34) 19.79(0.14)* 21.45(0.16) 

    ≥80 15.86(0.57)* 21.73(0.65) 14.28(0.18)* 18.96(0.26) 

Body Mass Index (kg/m2)     

    <25 7.74(0.18)* 11.10(0.21) 19.27(0.11)* 20.58(0.12) 

    25 to 30 7.38(0.19)* 9.21(0.21) 23.39(0.13)* 24.5(0.14) 

    30-35 2.72(0.15)* 5.30(0.21) 22.91(0.16)* 21.42(0.17) 

    ≥35 5.35(0.28)* 5.44(0.28) 19.53(0.18)* 22.78(0.21) 

Hyperlipidemia 7.43(0.13)* 9.47(0.14) 20.11(0.09)* 20.94(0.09) 

Coronary artery disease 8.55(0.18)* 11.39(0.21) 18.13(0.12)* 20.04(0.11) 

Heart failure 11.25(0.23)* 12.59(0.25) 18.35(0.11) 18.22(0.13) 

Hypertension 6.96(0.11)* 8.79(0.13) 21.2(0.08) 21.25(0.08) 

Diabetes 7.73(0.15)* 8.25(0.15) 25.22(0.11)* 20.31(0.1) 

Asthma or chronic 

obstructive pulmonary  
11.98(0.32)* 17.67(0.38) 15.57(0.15)* 19.68(0.18) 

Dementia 10.71(0.46)* 15.82(0.56) 15.57(0.23)* 14.19(0.23) 

Stroke 9.15(0.31)* 12.95(0.37) 21.78(0.15)* 15.94(0.19) 

Categorical variables are summarized with frequencies (percentages) unless otherwise indicated. Continuous 

variables are summarized as the mean (standard error) of biomarkers. 

*Variables indicate RL-oxygen is significantly different from physicians (p-value<0.001). 
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Fig 1. 

 
(A) Comparison of the estimated 7-days mortality rates (y-axis) varying with the difference between the oxygen 

flow rate recommended by the RL optimal policy and that administered by doctors (x-axis) averaged over all 

time points per patient. The shaded area represents the 95% confidence interval. The smallest oxygen 

difference is mainly associated with the lowest 7-days mortality rates. The further away the dose received was 

from the suggested oxygen flow rate, the worse the outcome. (B) The histogram of oxygen flow rate difference 

between RL-oxygen and physicians (labels on vertical axis). 
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Fig 2. 

 
Oxygen delivery by RL versus critical care physicians. Histogram of oxygen flow rate delivered to COVID-19 

patients; blue bar indicates physician and orange bar indicates RL-oxygen. 
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Title: Reinforcement Learning Assisted Oxygen Therapy for COVID-19 Patients Under 
Intensive Care  

 
 

Supplemental Material 

 

Cox Proportional Hazards Model 

Cox proportional hazards model [1] is a regression model commonly applied for investigating the association between 

the risk factors and survival time of patients. Its primary output is the mortality rate of patients. In this study, 

researchers used multivariable Cox PH model to predict the mortality rate. The input variables in the Cox PH model 

include: (1) decision, i.e., the oxygen flow rate of the oxygen therapy; and (2) the risk factors associated to COVID-

19, such as age, hypertension and diabetes. Besides, we set up a 7-day time window to estimate the mortality rate and 

evaluate the efficiency of a given oxygen therapy. Specifically, we formalize the variables in Cox PH model as follows. 

● 𝑡: denotes the duration since the patient admission time; 

● 𝑆(𝑡): denotes the survival rate of patients at time 𝑡; 

● 𝑥: denotes the predictor variables related to the survival rate; 

● 𝛽: denotes the coefficient of the corresponding variables. 

The objective of Cox PH model used to predict the survival rate is given by  

𝑆(𝑡 | 𝑥) = exp (− ∫ 𝜆(𝑧|𝑥)𝑑𝑧
𝑡

0

) , (1) 

where the hazard at time 𝑡 for an individual with covariates 𝑥 (not including a constant) is assumed to be 

𝜆(𝑡 | 𝑥)  = λ0(𝑡) exp(𝑥⊤𝛽). 
In this model，λ0(𝑡) is a baseline hazard function that describes the risk for individuals with 𝑥 = 0, and exp (𝑥⊤𝛽) 

is the relative risk, a proportionate increase or reduce in risk, associated with the set of characteristics 𝑥 . Note that the 

increase or reduce in risk is the same at all duration t. Given health state 𝑥 of a patient, we predict the 7-day mortality 

rate by using 1 − 𝑆(7 | 𝑥).  

 

Feature Selection 

Feature selection is significant for establishment of Cox PH model since unrelated risk factors and the high 

multilinearity between predictor variables will cause low concordance and impact on the prediction. In addition to the 

selected 36 laboratory tests (see Study Design and Participants), we also included 25 additional demographic 



 19 

predictor variables, 2 vital signs (temperature and systolic blood pressure) and oxygen flow rate. Since there were 

high correlations between the selected features, we conduct feature selection based on Pearson correlation to preclude 

multilinear features. Basically, we found the high linear correlation (>0.7) existing in each group of features, including: 

(1) red blood cell distribution width-coefficient of variation (RDW-CV) and red cell volume distribution width-

standard deviation (RDW-SD); (2) eGFR and creatinine; (3) red blood cell count, hemoglobin and hematocrit; (4) 

neutrophils and lymphocytes; and (5) SpO2, oxyhemoglobin and methemoglobin. We selected the first predictor in 

each group and removed the rest: RDW-CV, eGFR, red blood cell count, neutrophils and SpO2.  

 

For the rest feature selection, we used the elastic net regularization [2] with grid search [3] to select the features. The 

procedure is shown as follows. 

1. We create a grid of possible values for regularizers in cross-product of L1 and L2 penalty values ranging in 

[0.01, 0.02, 0.04, 0.06, 0.08]. It results in 25 different combinations in total, i.e., 

(0.01,0.01), (0.01,0.02) … , (0.08,0.06), (0.08,0.08). 

2. For each combination of L1 and L2 penalty values, we fitted a Cox model with elastic net regularization and 

recorded the performance measured by the concordance score.  

3. Finally, we chose the best L1 and L2 regularizers with the best performance.  

In the study, the selected coefficients of L1 and L2 regularizers are 0.04 and 0.02 respectively. 

 

Training Process 

We apply leave-one-hospital-out cross validation to evaluate the models and  predict the 7-day survival probability to 

assess the performance of RL-oxygen models. To train the general model (including data from different hospitals), 

we randomly select 80% of the cohort as training set and the rest 20% as test set. The coefficient of predictor variables 

of general Cox PH model shows in table S.1.   
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Table S.1 Selected features for Cox proportional-hazards model.  

Feature name  Coefficient  SE 95% CI p-value  

Age, years  0.02  0.00 0.02 <0.001 

Anion gap, mEq/L  0.03 0.02 [ 0.02, 0.03] <0.001 

Blood urea nitrogen, mg/dL  0.00 0.00 0.00 <0.001 

Serum calcium, mg/dL   -0.19 0.01 [-0.22, -0.16] <0.001 

PaCO2, mm Hg  -0.01 0.00 [-0.02, -0.01] <0.001 

Eosinophils, cells/µL  -0.04 0.01 [-0.05, -0.02] <0.001 

HCO3, mEq/L -0.01 0.00 [-0.02, -0.01] <0.001 

Mean platelet volume, fL 0.05 0.01 [0.03, 0.07] <0.001 

Nucleated red blood count, /100 WBC 0.08 0.02 [0.04,0.12] <0.001 

PH  -1.86 0.11 [-2.08, -1.64] <0.001 

Inorganic phosphorus, mg/dL 0.03 0.01 [0.02, 0.05] <0.001 

PaO2, mmHg  0.00 0.00 0.00 <0.001 

Potassium, mEq/L  0.15 0.02 [0.11, 0.18] <0.001 

RDW-CV, % 0.06 0.00 [0.05, 0.06] <0.001 

White blood cell count  0.01 0.00 0.01 <0.001 

Oxygen flow rate, L/min 0.01 0.00 0.01 <0.001 

The confidence interval is replaced by the coefficient estimates if  the SE is smaller than 0.01  

 

Reinforcement Learning Algorithms 

A Markov decision process (MDP) was used to model the decision-making process and approximate individual patient 

health trajectories. We formalize the MDP by the tuple (𝑆, 𝐴, 𝑃, 𝑟, 𝛾), where  

● 𝑆: denotes a finite set of states, typically including patients’ demographic information, ICU admit and 

discharge information, comorbidities, treatment, laboratory tests and living status; 

 

● 𝐴: denotes action space, i.e., oxygen flow rate; 

● 𝑃(𝑠′|𝑎, 𝑠): represents the state transition probability model that taking action 𝑎 in state 𝑠 at time 𝑡 will lead 

to state 𝑠′ at time 𝑡 +  1 (i.e., the patient’s health state changes to 𝑠′ at 𝑡 +  1 after taking oxygen therapy 

with flow rate 𝑎 at time 𝑡), which describes the dynamics of the treatment process; 

● 𝑟: represents the immediate reward received for transitioning to state 𝑠′ . Transitions to desirable states yield 

a positive reward, and reaching undesirable states generates a penalty. 

● 𝛾: denotes the discount factor, which makes immediate rewards more valuable than long-term rewards and 

determines the temporal impact of the current action. The greater 𝛾 indicates longer impact of current therapy 

action. 

 

The process is observed at discrete time steps. In each time 𝑡, the agent observes the current state 𝑠𝑡 ∈ 𝑆.  Then, we 

choose an action 𝑎𝑡 ∈ 𝐴 (i.e., oxygen flow rate), the patient health conditions moves to a new state 𝑠𝑡+1, and we get a 
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reward signal 𝑟𝑡+1 associated with the one-step transition (𝑠𝑡 , 𝑎𝑡, 𝑠𝑡+1). The oxygen flow rate decision making strategy 

is called the policy, denoted by a mapping 𝜋 from state space 𝑆 to action space 𝐴，i.e., 𝑎𝑡 =  𝜋(𝑠𝑡). The performance 

of a policy is measured using the value function 

𝑉𝜋(𝑠)  =  E[∑ 𝛾𝑡

∞

𝑡=1

𝑟𝑡|𝑠0, 𝜋] (2) 

which is defined as the expected cumulative discounted reward starting with state 𝑠0, given that policy 𝜋 is used to 

make decisions. Then, the goal of a reinforcement learning agent is to learn the optimal policy 𝜋∗ which maximizes 

the expected cumulative discounted reward, that is,  𝑉𝜋(𝑠). 

 

The reward 𝑟1(𝑠𝑡 , 𝑠𝑡+1) at each time 𝑡 for each disease is defined as follows, 

● If patient stay alive, 𝑟𝑡 = 0; 

● If patient discharged, 𝑟𝑡 = 15; 

● If patient died, 𝑟𝑡 = −15; 

 

Learning the Optimal Policy 

We utilize the Deep Deterministic Policy Gradient (DDPG) to concurrently learn the Q-function and optimal policy. 

In each iteration, we use off-policy data and the Bellman equation to learn the Q-function, and then learn the optimal 

policy.  

 

This approach is closely connected to Q-learning. In reinforcement learning, many algorithms focus on estimating the 

so-called “Q-function” 𝑄𝜋(𝑠, 𝑎) of a policy 𝜋. The Q-function represents the expected value of state-action pairs, and 

it can be connected to the value function through the equation  

𝑉𝜋(𝑠) = max
𝑎

𝑄𝜋(𝑠, 𝑎) . (3) 

DDPG interleaves learning an approximator to 𝑄𝜋∗
(𝑠, 𝑎) with learning an approximator to the optimal policy 𝜋⋆(𝑠). 

For continuous action space, the function 𝑄𝜋(𝑠, 𝑎) is presumed to be differentiable with respect to the action argument. 

The Q-function measures the expected return or discounted sum of rewards obtained by following the policy 𝜋 and 

taking action 𝑎 = 𝜋(𝑠). The optimal Q-function is then defined as the maximum return that can be obtained starting 

from state 𝑠, taking action 𝑎, and following the optimal policy 𝜋∗ thereafter. The optimal Q-function is known to obey 

the following Bellman optimality equation: 

𝑄𝜋∗
(𝑠, 𝑎) = E𝑠′[𝑟(s, 𝑎) + 𝛾 max

𝑎′
𝑄𝜋∗

(𝑠′, 𝑎′)] (4) 

where the next state 𝑠′ is sampled from the state transition distribution, denoted by 𝑃(⋅ |𝑠, 𝑎). 

 

We use a nonlinear function, such as a neural network with parameters 𝜃, to approximate the state-action value 

function, i.e., 𝑄𝜋(𝑠, 𝑎) ≈ 𝑄𝜋(𝑠, 𝑎; 𝜃). Such a neural network is called a Q-network [29]. Let 𝑎(𝑠) = 𝜋𝜙(𝑠) denote the 

deterministic policy function parameterized by 𝜙 . The Q-function is trained by minimizing the approximation 

difference (loss function) between the left- and right-hand side in Eq. (4), i.e., 
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𝐿(𝑠, 𝑎) =
1

2
E𝑠′~𝑝(∙|𝑠, 𝑎) [(𝑄𝜋(𝑠, 𝑎; 𝜃) − 𝑟(s, 𝑎) − 𝛾 max

𝜋
𝑄𝜋(𝑠′, 𝜋�̃�(𝑠′); �̃�))

2

]， (5) 

or equivalently, 

𝐿(𝑠, 𝑎) = E𝑠′~𝑝(∙|𝑠, 𝑎)[ℓ𝜃(𝑠, 𝑎, 𝜋�̃�(𝑠′))]， (6) 
and 

ℓ𝜃(𝑠, 𝑎, 𝑠′) =
1

2
(𝑄𝜋(𝑠, 𝑎; 𝜃) − 𝑟(s, 𝑎) − 𝛾 max

𝜋
𝑄𝜋(𝑠′, 𝜋�̃�(𝑠′); �̃�))

2

 

where �̃� is the target Q-function parameters and �̃� is the target policy function parameters. Both parameter values �̃� 

and  �̃� are obtained from the last iteration. We call 

𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎, 𝑠′) = 𝑟(s, 𝑎) + 𝛾𝑄𝜋(𝑠′, 𝜋�̃�(𝑠′); �̃�) 

as the target value and 𝑄𝜋(𝑠, 𝑎; 𝜃) −  𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎, 𝑠′) as TD error. Ideally, we want the error to decrease, meaning 

that our current policy’s outputs are becoming more similar to the true Q values. Then, by differentiating the loss 

function with respect to the parameters 𝜃, we have the gradient, 

∇𝜃ℓ𝜃(𝑠, 𝑎, 𝑠′) = (𝑄𝜋(𝑠, 𝑎; 𝜃) − target(𝑠, 𝑎, 𝑠′))∇𝜃𝑄𝜋(𝑠, 𝑎; 𝜃). (7) 

 

The policy learning step in DDPG will obtain a deterministic policy 𝜋𝜙(𝑠)  which gives the action 

maximizes 𝑄(𝑠, 𝑎; 𝜃). Because the action space is continuous, we assume the Q-function is differentiable with respect 

to action parameters. We can perform the gradient ascent with respect to policy parameters, 

max
𝜙

E𝑠∼𝒟[𝑄(𝑠, 𝜋𝜙(𝑠); 𝜃)] (8) 

where the expectation is estimated by using the training set, denoted by 𝐷, of tuple (𝑠, 𝑎, 𝑠′, 𝑟) from the EHR data. 

Then, we update the parameters of the Q-function and the policy function by using the gradient estimates in Eq. (7) 

and (8) and obtain new parameters 𝜃 and 𝜙. At the end of each iteration, we update the target network, i.e., Q function 

𝑄𝜋(𝑠′, 𝜋�̃�(𝑠′); �̃�) in 𝑡𝑎𝑟𝑔𝑒𝑡(𝑠, 𝑎, 𝑠′) and target policy by 

�̃� ← 𝜌�̃� + (1 − 𝜌)𝜃 

�̃� ← 𝜌�̃� + (1 − 𝜌)𝜙 

where 𝜌  is a hyperparameter between 0 and 1. 

 

The Q-network model, a.k.a. critic network in our paper uses a multi-layer feed-forward architecture which evaluates 

each state-action pair (𝑠, 𝑎). Specifically, the model architecture contains a state input layer followed by a dense layer 

with 32 neurons and an action input layer; they are concatenated and then followed by a 16-dimensional dense layer; 

the output layer is 1 dimensional with a linear activation function. The policy model, a.k.a. actor network uses a two-

later neural network with the state input followed by 32-dimensional intermediate layer and 1-dimensional action 

output layer. We also use batch normalization [30] after each dense layer to standardize the unit of low dimensional 

features. It is particularly useful in healthcare data as most biomarkers and vital signs have different physical unit and 

characteristics by nature and even statistics of the same type may vary a lot across multiple patients. Batch 

normalization can fix this issue by normalizing every dimension across samples in one minibatch. 
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We used the early stopping [31, 32] to prevent overfitting. There are two metrics used as early stopping criteria: mean 

squared TD error and consistency of recommendations between physician and RL. First, since the objective of DDPG 

is to minimize the mean squared TD error (7), it is natural to use (7) as a metric. Second, as we did not want RL-

oxygen to be too much different from the standard of care, we used the consistency of recommendations as another 

metric, which is defined by the mean square deviations between RL’s and physicians’ recommended oxygen flow 

rates. In the study, we noticed that this second metric tends to converge later than the TD error. Thus, during training, 

we monitored both metrics and set the early stopping criterion to be that “mean squared deviation is not improved in 

last 500 iterations”. 

 

Our training scheme is as follows: 

1. Split the dataset into 4 groups (one hospital per fold) 

2. For each unique group: 

1) Take the group as a hold out or test data set; 

2) Take the remaining groups as a training data set; 

3) Fit a model on the training set and evaluate it on the test set; 

4) Retain the evaluation score; 

5) Repeat this process until every group serves as the test set.  

3. Then take the average of the recorded scores as the performance metric for the model. 

 

In reinforcement learning, learning an optimal policy from observational data is referred as to offline RL [13]. This 

approach uses a set of one-step transition tuples: 𝐷 = {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖
′): 𝑖 = 1, … , |𝐷|}  to estimate the Q-function 

𝑄𝜋(𝑠, 𝑎′; 𝜃) and the oxygen flow policy 𝜋(𝑠). The learning algorithm follows [23] with 64 batch size and 0.002 

learning rates for both critic and actor network. 

 

Missing Data Imputation 

Our dataset contains a set of historically observed health states, but not every possible health state, and the time series 

data such as lab tests, vital signs, and oxygen flow rate are sampled unevenly. In order to learn an optimal policy, RL 

requires a way to estimate values in any state, including those not in the original data. As such, we imputed data for 

such states based on the information from nearby measurements using a linear interpolation method. 
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