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1. Background
Many studies have been conducted about the detection 
of cancer driver genes (CDGs) (1-3). The majority 
of the proposed methods have been designed based 
on the notion that CDGs are genes that experience 
more general gene expression changes also known 
as mutation. Of course, not all mutations in the 
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cancer genome are related to cancer. Hence, most 
computational methods try to distinguish between 
cancer-causing mutations and non-cancer-causing 
ones. Most existing methods rely on transcriptomic 
or genomic data to identify CDGs. In DawnRank (4) 
driver genes detected using mutational data and gene 
interaction network. ActiveDriver method (3) used of 
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post-translational and mutated data. In e-Driver method 
(5) and (6) detected driver genes with mutation rate of a 
protein. In OncodriveFM (7) and OncodriveCLUST (8) 
proteins functional impact has been examined. In some 
methods like Dendrix (9), Memos (10), MSEA (11), 
CoMDP (12) and DriverNet (13) applied of mutation 
profiles and pathways. iMaxDriver (14) used influence 
maximization to identify cancer driver gene. 
Nevertheless, there are still some limitations and 
deficiencies in the proposed methods. These methods 
have a high false-positive rate and a low rate of 
precision and F-measure in their results (For example, 
0.013 to 0.103 in breast cancer). Another point is that 
these methods are mostly reliant on mutation data which 
are noisy and may not always be available. Another 
limitation of previous methods is the low number of 
detected drivers and high false positive values in the 
results. For example, the iPac computational method for 
breast cancer identified 4821 genes as drivers, of which 
250 genes were actually cancer drivers. The number 
of diagnostic drivers for each method is shown in the 
results section. Given these limitations, we present 
a simple and computationally lightweight method to 
identify the CDGs in the network by applying the power 
of interaction; Without the need for mutation data or 
time-consuming calculations, this method performs 
better than all of existing methods (15).
In this research, we employed the concept of influence 
and spread in the network based on Google’s webpage 
influence algorithm to identify CDGs in TRNs1 
relating to breast, colorectal and lung cancers. We 
demonstrated that this method can improve accuracy of 
CDGs identification compared by all of computational 
methods and even the recently proposed one that is 
based on influence maximization.  

2. Objectives
In this study, we proposed a network-based algorithm 
for cancer driver gene detection using transcription 
regulatory network. To achieve this purpose, the web 
page ranking algorithm has been modified to be used in 
weighted transcription regulatory networks.

3. Materials and Methods

3.1. PageRank and Transcriptional Regulatory Network
Social networks connect many people within a short 

amount of time and have created a revolution in how 
people communicate. Information is expanded across 
social networks, ideas and knowledge are shared 
through social networks and people can influence others 
by interacting on social networks. Therefore, many 
problems are studied by analyzing social networks 
such as social influence and diffusion models. Based 
on influence and diffusion models, we can evaluate the 
influence or reputation of a person on social networks 
which is important for the identification of influential 
spreaders (16, 17,18). A user’s influence and reputation 
are different. Google’s PageRank (19) algorithm is one 
of the algorithms that calculates the importance and 
influence of a web page. This algorithm assign a weight 
as PageRank score to any entity based on the mutual 
relations between the entities. These ranking scores 
are applied to the web graph using a mathematical 
algorithm. An external link to a page is considered as a 
numerical number for increasing its rank. A page that is 
linked to by many pages with high PageRank receives a 
high rank itself. Therefore, in the PageRank algorithm, 
the page that has the most number of incoming links 
from other pages will have the highest rank and 
importance.
For example, consider a small set containing the four 
pages of A, B, C and D as shown in Figure 1. 

1Transcriptional regulatory network

Figure 1. Calculating the rank of each page based on 
the incoming links to the page from other pages and their 
PageRank values. At the first stage of the algorithm, page B 
will give half of its PageRank value namely 0.125 to page A 
and will give the other 0.125 to page C. Page C will transfer 
all of its PageRank value that is 0.25 to page A. Also, page 
D that links to the other three pages will give one third of its 
PageRank that is almost 0.083 to the other three pages. At 
the end of this stage, page A will have a PageRank value of 
almost 0.458.
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In the original version of PageRank, the total PageRank 
of all pages equals the total number of pages on the web 
at a particular time, therefore, the initial value of these 
four pages is equal to 1.In this example, the initial value 
of PageRank for each page will be 0.25. The calculation 
of the page rank value of each page is shown in Figure 1.
In other words, through outgoing links the PageRank 
value is given to pages containing the document 
targeted by the links and its value is equally divided 
among the outgoing links of the page. 
In general, the PageRank value for each page u can be 
stated as follows:

                                                                                   (2)

The PageRank value for each page A depends on the 
PageRank of each page V located in the  set L(PA) (a set 
containing all pages linked to page u) and is divided by 
the L(v) number that is the number of outgoing links 
on page V. 
PageRank assumes a person randomly clicks on clinks 
and these clicks will eventually stop. In every stage, the 
probability of the person continuing to click is equal to 
the value of the damping factor d. Based on past studies 
(20), the best value for the damping factor is 0.85. The 
value of the damping factor is subtracted from 1 (and in 
some variations of the algorithm, the result is divided 
by the number of documents (N) in the collection) and 
then this value is added to the product of the damping 
factor and the sum of the incoming PageRank scores. 
The overall equation is as follows:

                                                                                      (3)

                                            Page i at time 0.
                                            Page i at time 0.
                                  : The desired under consideration
d: the damping factor between 0 and 1, usually 0.85. 
L(Pj) = the number of outbound links on Pj
N: the number of webpages
M (pi): the set of pages that link to pi
A: the adjacency matrix

(1)

In other words:

Where:

 

A: adjacency matrix
K: the diagonal matrix with the outdegrees in the diagonal

Therefore, the page with the highest number of incoming 
links from other pages will have a higher importance 
level as well as a higher PageRank score. But, in a TRN 
the opposite happens. Based on the theory of spread 
and influence in social networks, we assume that the 
gene with the greatest influence on other genes is most 
probably the cause of the creation and development of 
abnormality in other genes and leads to cancer. Therefore, 
we can identify driver genes by extending and using a 
weighted PageRank algorithm for the human TRN. The 
concept of the use of the PageRank algorithm in gene 
networks was also employed in the past. This concept 
was used for evaluating experimental microarray 
results with the use of a network constructed using gene 
ontologies and expression profile correlations (20). In 
addition, a modified version of the PageRank algorithm 
was employed to assign a weight to genes in a gene 
interaction network to identify the subtypes of a cancer 
where the median absolute deviation (MAD) and gene 
expression data in the algorithm were employed to 
assign weight to the genes (21). Also, the concept of 
webpage ranking was utilized to rank genes in type 2 
diabetes and mutation data was used for weighting (22). 
Although this concept has been used for ranking in other 
gene networks, in the majority of cases, weight and 
interaction power were not considered and only nodes 
were weighted and or the weight of edges was applied 
to the rank of the target genes. In this research, we will 
employ the algorithm with the concept of spread in 
human TRNs to identify CDGs and given the type and 
nature of a network and whether the interaction power 
of edges in the gene regulatory network is not equal 
in every case, we will consider the respective weight 

(4)
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of each edge in weighting each gene in the network 
and also we will employ the difference in the value of 
gene expression in healthy and cancer tissues instead of 
the constant value in the original PageRank algorithm. 
The results show that the edge weight as utilized in 
this research, has significantly affected the results. It 
outperformed 6 out of the 17 methods benchmarked 
to identify the number of CDGs and also offers higher 
accuracy.  
In Figure 2, you can see an illustration of a TRN in 
humans. As you can observe, in contrast to webpages, 
in this network, the gene with the highest number of 
outgoing links to other genes will have a higher influence 
score. In this example, it is clear that the AATF gene 
has a higher rank compared to the BAX gene. 

     

Figure 2.The structure of the human transcriptional regulatory 
network with the concept of influence to rank genes

According to the Figure 2, by reversing the formulas 
associated with the PageRank algorithm for influence, 
the formulas will be as follows:

  

                                , gene i at time 0.

First, to measure the influence of the expression values 
and biological properties on the algorithm, the first 

(5)

numerical term is replaced with the absolute value 
of the gene expression value in the health and cancer 
tissues of 3 patients. T(genei) is a set of genes whose 
expression value is influenced by gene i, in other words, 
it represents genes with incoming links from genei. 
Also, Degreein (genej) is the degree of input of the genes 
that are members of the T(genei) set. In other words, 
it represents the number of incoming links. To include 
the power of each connection in the TRN, since the 
influencing power of each gene on another gene may 
differ, we have multiplied the incoming edge weight 
to the gene in the T(genei) set by the denominator to 
apply the existing edge weight to the calculation of the 
gene rank in the respective outgoing link and not to the 
calculation of the rank of the target gene in the previous 
stage. With this definition, the equations in the TRN for 
the ranking of genes will be as follows:

   

A: adjacency matrix 
K: the diagonal matrix with the indegrees in the diagonal
W:the weighted matrix  

3.2. Network Construction
To construct transcriptional regulatory networks (TRN) 
in order to apply the ranking algorithm, RegNetwork 
(23) database have been used. It is one of the databases 
used to construct gene regulatory networks (14, 24) .In 
RegNetwork, gene regulatory interactions have been 
collected from multiple databases with the use of several 
methods. These interactions include human and mouse 
GRNs. We recovered the information related to the 
human TRN. Of course, in this network, there was some 
other information about interactions in the regulatory 
network including the regulatory network of miRNA on 
that were removed from the final network being studied. 
The final information included 150202 interactions 
related to TF-TF and TF-mRNA. In this network, for 
each interaction, a confidence level has reported. We 
used it to assign a weight to each interaction. These 
confidence levels included “low”, “high” and medium. 
Assigned edge weights According to previous research 
(0.2, 0.5 and 0.8 for low, medium and high confidence). 

(6)
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In some study like (25) an optimization function is 
proposed to weighting the interactions.

3.3. Gene Expression Dataset
To apply biological data to the algorithm we required 
gene expression dataset. Since the study is performed 
on the breast, colorectal and lung cancers, the gene 
expression data of these three cancer types were 
downloaded from the GEO database (GSE3268, 
GSE32323 and GSE15852). The data is available in 
files with the CLE format. 
In each of the selected GEO datasets, gene expression 
values are reported for both the tumor tissue and its 
adjacent normal tissue. The expression values extracted 
using RMA method implemented in Affy package in 
R (26). The output files needed to be processed. At 
first we removed rows with missing gene ID and then 
combined gene expression values which their gene ID 
was synonym by averaging gene expression value of 
respective columns, afterwards we normalized the gene 
expression value such that by dividing each value by 
maximum the value of gene expression in the relevant 
tissue type (tumor or normal). 
Based on the extracted gene expression data of the three 
cancer types being studied and also the gene regulatory 
interactions extracted from the RegNetwork database, 
we created three networks to apply the ranking algorithm. 
So we compared each database’s regulatory interactions 
list with genes possessing expression in each cancer 
type. The edges whose origin and destination were not 
both in the respective cancer’s gene expression list were 
removed from the network being studied. Therefore, we 
constructed three regulatory networks related to breast, 
colorectal and lung cancers. In each of the constructed 
networks, the interactions were weighted as described 
in Section 3.2. The algorithm was applied to each of the 
three networks, and the genes were ranked. 

3.4. Evaluation Methods
We evaluated this method by comparing its results with 
seventeen popular computational and network-based 
CDG prediction methods that were used by (14). The 
list of the genes identified as driver genes by the 15 
computational methods mentioned earlier was obtained 
for evaluation with similar inputs for all the methods 
with the use of  DriverDB v2 (27). In DriverDB v2 
there are various lists different cancer datasets, we used 
breast invasive carcinoma (BRCA), lung squamous 

cell carcinoma (LUSC) and colon adenocarcinoma 
(COAD). Moreover, the results were compared with 
the results obtained using the latest influence-based 
method for the identification of CDGs introduced in 
(22). Also, the accuracy of the predicted CDGs was 
evaluated by comparing each list with the Cancer Gene 
Census (CGC) (28) gene list as the gold standard .The 
modified ranking algorithm has been applied to each of 
the 6 cancer networks being studied and the genes were 
arranged in descending order. Next, by interpreting the 
results based on the threshold value, the genes were 
divided into the two categories of driver and non-
driver. To set the accurate value of the threshold used 
for categorization, the pROC package (29) was utilized 
in R. Next, the three criteria of Recall, Precision and 
F-measure have been employed to evaluate recall and 
precision. The “recall” criterion represents the ratio of 
“the number of correctly packaged data” in a certain 
class to the data that must be classified in that same 
class. A higher “recall” value indicates that there are 
very few data that are not correctly classified. It is 
not right to use only this criterion to evaluate system 
performance and it should be employed in combination 
with the “precision” criterion. 

The “precision” criterion evaluates the “ratio of 
correctly performed predictions” for the samples of a 
certain class to the total “number of predictions” for the 
samples of the same class (this number includes all the 
correct and incorrect predictions). 

The F-measure criterion combines the parameters 
of “precision” and “recall” to find out how good the 
performance of a packaging model is. This criterion is 
also known as the Harmonic Mean of the two criteria 
of precision and recall. This criterion illustrates a more 
accurate image of the packaging model’s performance 
on all the classes in the data. 

4. Results
In this section, the results of the proposed method on 
different cancer networks are presented.

(7)

(8)

(9)
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4.1 Compare of F-measure and number of detected 
drivers
The results showed, in the breast cancer network, 
DGRanker performed better than the other methods. 
Figures 3 to 5 show the results obtained from the 
algorithm on the network by considering the power 
of each incoming edges. The assignment of weight as 
presented in this study led to a significant improvement 
in the results. In the network associated with breast 
cancer, DGRanker has performed better at identifying the 
number of driver genes than all the methods except iPac. 
It should be mentioned that DGRanker had the highest 
F-Measure value among all the methods. In addition, 

DGRanker with recall = 0.311 had the highest value 
among all methods (after iPac). The same results have 
been obtained in the COAD network. DGRanker with 
F-measure= 0.224 and the number of detected drivers 
had the highest value among all methods. In addition, 
it has the highest value among all computational and 
network-based methods with recall = 0.337 after iPac. 
In the lung cancer transcription regulation network, the 
proposed method with Recall = 0.332 and detection of 
182 drivers, has the first rank among all computational 
and network-based methods. In addition, DGRanker 
with f-measure = 0.225 after iMaxDriver-W has the 
highest value among all methods.

Figure 3. The F-measure of DGRanker and other seventeen computational methods proposed 
for CDG prediction in breast cancer network

Figure 4. The F-measure of DGRanker and other seventeen computational methods proposed 
for CDG prediction in colon adenocarcinoma cancer network
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Figure 5. The F-measure of DGRanker and other seventeen computational methods proposed for CDG 
prediction in lung squamous cell carcinoma cancer network

4.2. Compare the overlap of detected CDGs
We compared the overlap of driver genes identified by 
our proposed method and other methods. As shown in 
Figure 6, DGRanker identified 33, 29, and 29 unique 
genes in three cancers of the breast invasive carcinoma, 
colon adenocarcinoma, and lung squamous cell 
carcinoma, respectively, that have not been identified 
by any of the other methods. In addition, the proposed 
method detects many genes identified by other 
methods. This shows that DGRanker can be used as a 
complementary tool to computational approaches.

5. Discussion 
Most CDG identification methods mentioned in 
introduction employ computational methods and the 
concept of mutation, genomic data analysis, and pathway 

Figure 6. The overlap of driver genes identified by DGRanker and other computational and network-based methods.

data analysis to identify CDGs. These methods have a 
high computational data size and do not have a good 
precision level in identifying cancer genes. For this 
reason, to eliminate these two problems, we employed 
a network-based method with lighter computations 
to identify CDGs that uses the concept of spread 
in social networks and the webpage influence 
ranking algorithm concept. Given the mechanism 
for the development of abnormalities in the cell, we 
hypothesized that genes that had higher Influence 
were likely to be drivers. To calculate the Influence 
of each gene, we enriched the PageRank algorithm 
with biological concepts and modified it based on 
the concept of Influence. In addition, we entered 
the weight of regulatory interactions based on the 
changes made in the algorithm. 
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The results showed that the use of interaction weights 
significantly improves the results. As the results show, 
the proposed method in breast cancer has identified 
178 drivers, which is the first among all methods after 
the iPac method. Although some of these methods, 
like iPac predict many CDGs in their output, they are 
not an acceptable precision. For example, in breast 
cancer network iPac has a precision=0.052. While in 
DGRanker precision and recall are 0.117 and 0.311, 
respectively. Also, compared to previous network-based 
methods, the DGRanker has improved the number of 
predicted drivers and F-measure by 72.82 and 7.14%, 
respectively. In colorectal cancer, the DGRanker was 
able to predict 193 drivers, which is the first among all 
methods (after the iPac). In this network, the amount 
of precision for the proposed method was 0.166, while 
in the iPac method it was 0.048. In addition, compared 
to previous network-based methods (iMaxDriver 
methods), the DGRanker has improved the number of 
predicted drivers and F-measure by 70.79 and 3.73%, 
respectively. In lung cancer, the proposed method was 
able to predict 182 drivers, which was the highest value 
among all previous computational and network-based 
methods. After the proposed method, the iMaxDriver-W 
and the iPAC computational method have the best 
performance. In this network, the DGRanker had 
precision=0.173 and recall=0.332(the highest value 
among all methods). However, in terms of harmonic 
means, the iMaxDriver-W and the proposed method 
have the best performance, respectively. The results for 
other methods are shown in Figures 3 to 5.
Although the precision and recall values have improved 
in the proposed method, these two criteria alone cannot 
show the system performance as well. For this reason, 
the harmonic mean of these two criteria, F-measure, 
was used. The F-measure of the proposed method had 
the highest value in breast (f-measure= 0.222) and 
colon (F-measure=0.222) cancers and the highest value 
in lung cancer after the iMaxDriver-W network-based 
method. The F-measure for other methods are shown in 
Figures 3 to 5. In terms of driver overlap, the proposed 
method in breast, colon and lung cancers identified 143, 
161 and 153 drivers, respectively, identified by other 
methods. In addition, DGRanker reported 33, 29 and 
29 new driver genes in breast, colon and lung cancer, 
respectively, that have not been reported as drivers 
by any of the other computational and network-based 
methods. The results show that using the concept of 

influence in the transcriptional regulatory network and 
also applying the weight of interactions in calculating 
influence scores improves the performance of driver 
gene detection methods.

6. Conclusion
Identification of cancer driver genes is very important 
in prevention and treatment. Various methods have 
been proposed for this purpose, most of which are 
computational and use mutation data. Using the 
structure of transcriptional regulator networks and 
influence-based approaches can improve the efficiency 
of existing methods. In this study, we proposed a 
network-based approach, called DGRanker, for CDGs 
discover in transcriptional regulatory networks. We 
used the modified PageRank algorithm to calculate the 
influence scores. The weight of regulatory interactions 
is also added in this algorithm. Finally, the genes with 
the highest scores are categorized as drivers. The 
results show that using the structure of transcriptional 
regulation networks improve the prediction results 
and can be used more in the future. As DGRanker 
improved the results of previous computational and 
network-based methods. In addition, the results show 
that DGRanker can find complementary drivers for the 
most state-of-the-art CDG prediction methods.
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