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Estimation of individuals’ cognitive, behavioral and demographic (CBD) variables based
on MRI has attracted much research interest in the past decade, and effective
machine learning techniques are of great importance for these estimations. Partial
least squares regression (PLSR) is an attractive machine learning technique that can
accommodate both single- and multi-label learning in a simple framework, while its
potential for MRI-based estimations of CBD variables remains to be explored. In this
study, we systemically investigated the performance of PLSR in MRI-based estimations
of individuals’ CBD variables, especially its performance in simultaneous estimation of
multiple CBD variables (multi-label learning). We performed the study on the dataset
included in the HCP S1200 release. Resting state functional connections (RSFCs) were
used as features, and a total of 10 CBD variables (e.g., age, gender, grip strength, and
picture vocabulary) were estimated. The results showed that PLSR performed well in
both single- and multi-label learning. In fact, the present estimations were better than
those reported in literatures, as indicated by stronger correlations between the estimated
and actual CBD variables, as well as high gender classification accuracy (97.8% in
this study). Moreover, the RSFCs that contributed to the estimations exhibited strong
correlations with the CBD variable estimated, that is, PLSR algorithm automatically
selected the RSFCs closely related to one CBD variable to establish predictive models
for the variable. Besides, the estimation accuracies based on RSFCs among 100, 200,
and 300 regions of interest (ROIs) were higher than those based on RSFCs among 15,
25, and 50 ROIs; the estimation accuracies based on RSFCs evaluated using partial
correlation were higher than those based on RSFCs evaluated using full correlation. In
addition to the aforementioned virtues, PLSR is efficient in model training and testing,
and it is simple and easy to use. Therefore, PLSR can be a favorable choice for future
MRI-based estimations of CBD variables.

Keywords: machine learning, multi-label learning, regression, classification, resting state fMRI, resting state
functional connection, Human Connectome Project, partial correlation

Abbreviations: CBD, cognitive, behavioral and demographic; CSCC, composite score of crystallized cognition; CSFC,
composite score of fluid cognition; CSOC, composite score of overall cognition; E-Net, elastic net; ICA, independent
component analysis; PLSR, partial least squares regression; RMSE, root mean square error; ROI, regions of interest; RSFCs,
resting state functional connections; RVR, relevance vector regression; SVR, support vector regression.
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INTRODUCTION

Individual differences in brain structure and function exist even
among persons with no diagnosable neurological or psychiatric
diseases. Numerous studies have been performed to relate these
differences to variability in CBD variables (for reviews, see Kanai
and Rees, 2011; Parasuraman and Jiang, 2012). Besides these
studies on the neural basis of individual differences in CBD
variables using statistical techniques, there is a surge of interest
in estimating individuals’ CBD variables using machine learning
techniques based on MRI-derived brain structural and functional
measures (for reviews, see Arbabshirani et al., 2017; Rathore
et al., 2017). These studies have taken an important step toward
individualized estimations of CBD variables.

In the studies on individualized estimations of CBD variables,
machine learning techniques play critical roles. A variety
of machine learning techniques have been used to establish
estimation models. The most frequently used techniques are
support vector machine (SVR) (Feis et al., 2013; Ullman et al.,
2014), elastic net (E-Net) (Tian et al., 2016; Cui and Gong,
2018), relevance vector regression (RVR) (Stonnington et al.,
2010; Franke et al., 2012; Gong et al., 2014) and linear regression
(Finn et al., 2015; Rosenberg et al., 2016). Each of these techniques
is specialized for single-label learning; that is, the models built
based on these techniques estimate one variable at a time. The
extensive use of these techniques in MRI-based estimations
benefit from three of their advantages: (1) being simple and
easy to use; (2) offering high estimation accuracies; and (3)
enabling later inferences of the biological significance underlying
the estimations.

Besides the aforementioned single-label learning techniques,
multi-label learning techniques have attracted widespread
attention in the region of machine learning in recent years.
For MRI-based estimations, multi-label learning enables
simultaneously estimation of multiple CBD variables and thus
can provide richer information as compared to single-label
learning. For instance, for the case of the diagnosis of Alzheimer’s
disease (AD), multi-label learning enables simultaneous
estimation of categorical variable (with value of either ‘AD’ or
healthy control) and numerical variables such as Mini Mental
State Examination (MMSE) and Alzheimer’s Disease Assessment
Scale-Cognitive Subscale (ADAS-Cog) (Zhang et al., 2012), while
single-label learning can only estimate one variable at a time.
Moreover, multi-label learning is expected to obtain equally
high, or even higher, estimation accuracies by utilizing the
correlation information among different labels (for a review, see
Zhang and Zhou, 2014). To date, there have been several studies
on MRI-based estimations of CBD variables using multi-label
learning techniques (Zhang et al., 2012; Wan et al., 2014; Yu
et al., 2016; Adeli et al., 2019). However, the complexity of
the multi-label learning frameworks in these studies hampers
their widely use in the region, even though relatively high
estimation accuracies can be obtained. Moreover, complicated
learning frameworks make it difficult to infer the biological
significance underlying the estimations. In fact, effective, simple
and convenient multi-label learning techniques for MRI-based
estimations of CBD variables are lacking.

Partial least squares regression (PLSR) is a machine learning
technique that can solve both single- and multi-label learning
problems. Partial least squares models relationships between
sets of observed variables with “latent variables” (Wold, 1982).
By virtue of its computational efficiency (projecting 1000s of
features into a very low-dimensional subspace), as well as its
ability of achieving dimensionality reduction and model learning
simultaneously, PLSR can be a valuable choice for prediction
purpose. In fact, PLSR has been reported to perform well in
such areas as computer vision (Guo and Mu, 2011), food science
(Cozzolino et al., 2005), remote sensing (Hansen and Schjoerring,
2003), and geoinformation (Cho et al., 2007). Especially, it
was reported to perform well in simultaneously estimating
individuals’ age and classifying their gender and ethnicity based
on face images (Guo and Mu, 2011, 2013). In the neuroimaging
region, Krishnan et al. (2011) foresaw the potential of PLSR in
MRI-based estimations and described its main computational
steps with a small artificial example. Afterward, PLSR has been
used to estimate individuals’ full scale IQ (Yang et al., 2013),
motor skill acquisition (Wu et al., 2014), episodic memory
performance (Meskaldji et al., 2016), long-term-memory scores
(Meskaldji et al., 2016), clinical depression scores (Yoshida
et al., 2017), attentional abilities (Yoo et al., 2018), gender
(Zhang et al., 2018), and future processing speed (Kuceyeski
et al., 2018) based on MRI data. To note, a single variable was
estimated in most of these studies. That is, the potential of
PLSR for MRI-based estimations of CBD variables remains to be
explored, especially its potential for simultaneous estimations of
individuals’ multiple CBD variables.

In addition to machine learning techniques, appropriate brain
structural and functional measures (features) are also important
for MRI-based estimations. RSFCs have been one of the most
commonly used features in MRI-based estimations of CBD
variables (for a review, see Rathore et al., 2017). RSFCs measure
the synchrony of resting state fMRI signals between brain regions
and have been suggested to reflect the intrinsic architecture of the
human brain (Biswal et al., 1995; Fox and Raichle, 2007). With
the widespread availability of resting-state fMRI datasets of large
sample sizes, RSFC has become one of the few most frequently
used features for MRI-based estimations. To date, RSFCs have
been reported to be effective for estimating a variety of CBD
variables, such as sustained attention (Rosenberg et al., 2016; Yoo
et al., 2018), intelligence quotient (Finn et al., 2015), creativity
(Beaty et al., 2018), visual/verbal memory (Siegel et al., 2016), and
temperament traits (Jiang et al., 2018), as well as age (Dosenbach
et al., 2010) and gender (Feis et al., 2013; Zhang et al., 2018). These
studies demonstrated the effectiveness of RSFCs for estimations
of CBD variables.

In this study, we systemically investigated the performance
of PLSR in MRI-based estimations of individuals’ CBD
variables (sometimes referred to as “labels” below), especially its
performance in multi-label learning. We performed the study
on the large sample resting state fMRI data from the HCP
S1200 release. The RSFCs among the ROIs defined by ICA were
used as features, and four sets of estimations were performed
to make a full understanding of the performance of PLSR in
MRI-based estimations. The first set was performed to test the
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performance of PLSR on MRI-based multi-label learning. Here,
we systemically analyzed the influences of ROI definition, RSFC
evaluation strategies and the number of latent variables upon
the estimations. In the second set, we simultaneously estimated
another group of labels that have been estimated in other studies
(Cui and Gong, 20181), to provide an intuitive idea about
the relative effectiveness of PLSR in MRI-based estimations.
The third set was to test whether PLSR can accommodate
more variables, by entering all CBD variables included in the
aforementioned two groups into a single estimation model.
The fourth set tested the performance of PLSR on single-
label learning.

MATERIALS AND METHODS

Dataset
The publicly available dataset HCP S1200 release2 was used in
this study. For the current study, HCP data have two major
advantages. First, the high quality of HCP data guarantees the
reliability of RSFCs and CBD variables (Feinberg et al., 2010;
Moeller et al., 2010; Setsompop et al., 2012; Xu et al., 2012),
which are the basis for later PLSR model training. Second, the
sample size of HCP S1200 is large enough to avoid any possible
overfitting (Cui and Gong, 2018), which is often the case in
estimations of CBD variables based on small sample MRI data.

The HCP S1200 release includes high quality multi-modal
neuroimaging, behavioral and genotype data of nearly 1,100
healthy young adults (Van Essen et al., 2013; Glasser et al.,
2016). Resting state fMRI data and several CBD variables were
analyzed in this study. The following is a detailed description of
the data we used.

Four resting state fMRI runs were acquired over 2 days for
each subject. Each run lasted 15 min, with an isometric spatial
resolution of 2 mm and a temporal resolution of 0.7 s. Details
about data acquisition could be found in Smith et al. (2013).
Based on rigorous quality control, the resting state fMRI data of
1,003 subjects were made available.

A total of 10 CBD variables were used in this study, and
details about the variables can be found in Table 1. We used
age, education, composite scores of fluid cognition (CSFC),
crystallized cognition (CSCC), and overall cognition (CSOC) as
the main estimation variables, and this group of variables will
sometimes be referred to as “main labels” below. We chose to
estimate age and intelligence for the consideration that they
play important roles in human life. In fact, a number of studies
have been performed on the estimations of age and intelligence
based on MRI (Dosenbach et al., 2010; Finn et al., 2015). Age
and education level were measured in years, and CSFC, CSCC,
and CSOC were obtained based on the NIH Cognition Battery
Toolbox. As age was also included as a label here, non-age-
adjusted CSFC, CSCC, and CSOC (raw scores) were used in
this study. The CSFC was designed to measure individuals’

1https://db.humanconnectome.org/megatrawl/3T_HCP820_MSMAll_d200_ts2/
megatrawl_1/
2https://db.humanconnectome.org/

abilities to adapt to novel situations in everyday life, such as
solving problems, thinking and acting quickly, and encoding
new episodic memories. The CSCC was designed to measure the
accumulated store of verbal knowledge and skills in individuals.
The CSOC is derived from the CSFC and CSCC, and measures
the overall intelligence level of an individual (see Akshoomoff
et al., 2013 for more details about the three variables). Within the
1,003 subjects whose fMRI data were available, 13 subjects with
missing labels were excluded. Thus, 990 subjects were included in
the main analyses of this study, and their HCP IDs are provided
in Supplementary Table S1.

To further provide an intuitive idea about the relative
effectiveness of PLSR in MRI-based estimations, another group
of CBD variables were used in this study, which will sometimes
be referred to as “Supplementary labels” below. This group of
variables includes gender, grip strength, reading recognition,
picture vocabulary and VSPLOT, and raw scores (rather than age-
adjusted scores) of these variables were used in this study. Cui
and Gong (2018) previously estimated the latter four variables
using six single-label learning methods, and we estimated
these four variables here to provide an intuitive idea about
the performance of PLSR. Gender was also included for the
consideration that the estimation of individuals’ gender is a
typical classification problem. That is, it is convenient to test
whether PLSR can solve classification and regression problems
simultaneously by including gender as an additional variable.
Four subjects with missing labels were further excluded in this
analysis, and data of 986 subjects were analyzed. The HCP IDs
of the four subjects further excluded here are also provided in
Supplementary Table S1.

fMRI Data Pre-processing and RSFC
Analyses
Resting state functional connections provided on the HCP
website2 were directly used as features in the current study, and
no standardization or scaling was performed on the RSFCs before
entering them into the PLSR-based estimation models. Before
RSFC calculation, the resting state fMRI data of each subject
underwent spatial and temporal pre-processing. The MRI data
pre-processing pipelines of HCP were primarily built using tools
from FSL (Jenkinson et al., 2012) and FreeSurfer (Fischl, 2012;
Glasser et al., 2013).

Spatial pre-processing was designed to remove spatial
artifacts from the data without removing other potentially
useful information (Glasser et al., 2013). The spatial pre-
processing steps include spatial distortion correction, head
motion correction, B0 distortion correction, spatial registration
to the T1w structural images and finally to the standard MNI
template, resampling to 2 mm, global intensity normalization,
and masking out non-brain voxels. More details about spatial
pre-processing could be found in Glasser et al. (2013).

Temporal pre-processing was designed to eliminate artifacts
and noise, while preserving neuro-biologically relevant
fluctuations as much as possible (Smith et al., 2013). The
temporal pre-processing steps include slow drift removal by
weak high-pass temporal filtering, identification of artifactual
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TABLE 1 | Cognitive, behavioral and demographic variable information.

Label Range Description

(Mean ± std)

Age 22–37 Age of the participant in years

(28.721 ± 3.702)

Education 11–17 Years of education completed:

(14.956 ± 1.773) 11- = 11; 12; 13; 14; 15; 16; 17 + = 17

Cognition score of 86.680–145.170 Measures individuals’ abilities of adapting to novel situations in everyday life;

fluid composite (115.616 ± 11.500) Evaluated using the NIH Cognition Battery Toolbox.

Cognition score of 90.950–153.950 Measures accumulated store of verbal knowledge and skills in individuals.

crystallized composite (118.053 ± 9.866) Evaluated using the NIH Cognition Battery Toolbox.

Cognition score of 88.950–153.360 Measures the overall intelligence level of an individual.

total composite (122.552 ± 14.454) Evaluated using the NIH Cognition Battery Toolbox.

Gender∗ F(0): 523/M(1): 463 Gender of the participant

Reading recognition∗ 84.200–150.710 Measures the reading decoding skill.

(117.190 ± 10.594) Evaluated using Oral Reading Recognition Test included in the NIH Cognition Battery Toolbox.

Picture vocabulary∗ 90.690–148.544 Measures the general vocabulary knowledge.

(116.998 ± 9.449) Estimated using Picture Vocabulary Test included in the NIH Cognition Battery Toolbox.

VSPLOT∗ 1–26 Measures the abilities of spatial orientation.

(15.015 ± 4.405) Estimated using Variable Short Penn Line Orientation Test included in the NIH Cognition Battery Toolbox.

Gripstrength∗ 55.290–154.010 Measures the relative force the participant was able to generate using his/her dominant hand.

(116.782 ± 11.288) Estimated using Grip Strength Dynamometry Test included in the NIH Cognition Battery Toolbox.

∗The range and the mean (std) of the label were based on 986 subjects.

components using FSL FIX, removal of artifacts and head
motion based on linear regression. More details about temporal
pre-processing could be found in Smith et al. (2013).

Regions of interest time-series were then extracted from
the pre-processed resting state fMRI images based on ICA.
Specifically, Group-ICA was first applied to the pre-processed
resting state fMRI images at six dimensionalities (d = 15,
25, 50, 100, 200, 300). The time-series corresponding to the
components for each subject were then estimated by multiple
spatial regression of his/her pre-processed resting state fMRI
image against the group-ICA spatial maps. The “components”
will be referred to as “ROIs” for consistency with tradition.
According to Smith et al. (2013), ICA-based ROI definition
may provide “a more ‘accurate’ reflection of the connectivity
structures in the data,” may guarantee later network modeling
“not to be rank deficient,” and may “identify remaining artifactual
process in the data.” Later RSFC analyses were based on the
time-series obtained above, which will be referred to as ROI
time-series below.

The HCP website provided 12 variations of RSFCs, each of
which was evaluated using one of six ROI definitions (15, 25, 50,
100, 200, and 300 ROIs) and one of two connectivity definitions
(full correlation and partial correlation). Unlike full correlation,
which is sensitive to both direct and indirect connections, partial
correlation can theoretically provide a better approximation to
direct connections (Marrelec et al., 2006; Smith et al., 2013). The
partial-correlation-based RSFCs were evaluated using FSLNets3,
with method set to ridge regression, and rho set to 0.014.

3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
4https://db.humanconnectome.org/megatrawl/HCP820_MegaTrawl_April2016.
pdf

Empirically, we performed the study based mainly on RSFCs
among 200 ROIs evaluated using partial correlation, and the
influences of ROI definitions and RSFC evaluation strategies were
also analyzed (see section “Estimations Based on PLSR”).

Estimations Based on PLSR
Partial least squares model the relationships between two sets of
variables by projecting them into a low-dimensional subspace
of latent variables (Wold, 1982; Guo and Mu, 2011; Krishnan
et al., 2011). Let Xn×N denote the feature matrix, where n is the
number of samples, and N is the number of features, and let Yn×M
denote the label matrix, where M is the number of labels; then PLS
decomposes X and Y into the following form:

Xn×N = Tn×d(PN×d)
T
+ En×N

Yn×M = Un×d(QM×d)
T
+ Fn×M (1)

where T and U are matrices of the d extracted score vectors (latent
variables), P and Q represent matrices of loadings, and E and F
are the residual errors. Partial least squares decompose X and Y
to obtain the maximized covariance between T and U. Based on
X, Y, U, T, an explicit N ×M matrix B that satisfies the following
linear relationship can be obtained:

Yn×M = Xn×NBN×M + F∗n×M (2)

This linear relationship enables us to estimate the labels (here, the
CBD variables) of unseen subjects based on their features (here,
the RSFCs). PLSR was performed in this study using the plsregress
function in MATLAB R2017b. There is only one hyper-parameter
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for PLSR algorithm, and it is the number of latent variables (d-
value in Eq. 1). In this study, d-value was empirically set to 50,
and its influences on PLSR-based estimations were also analyzed.

A schematic overview of our estimation framework is shown
in Figure 1. Four sets of estimations were performed to make
a full understanding of the performance of PLSR in MRI-based
estimations. The four sets were different only in the labels that
were entered into the estimation model. Specifically, in the first
set of estimations, all five main labels were entered into the
model to evaluate the performance of PLSR on MRI-based multi-
label learning; in the second set, we simultaneously estimated
the five Supplementary labels. This set is expected to provide an
intuitive idea about the relative effectiveness of PLSR in MRI-
based estimations, as these labels have formerly been estimated
using other machine learning techniques (e.g., SVR, elastic net)
based on HCP resting state fMRI data (Cui and Gong, 20181). In
the third set, all 10 CBD variables were estimated simultaneously

to test whether PLSR can accommodate more variables. In the
fourth set, each of the five main labels was estimated separately,
to evaluate the performance of PLSR on MRI-based single-label
learning. For gender classification in the second and third sets, we
set the label for male/female as 1/0, and the estimated gender was
thresholded at 0.5 to make the final decision (≥0.5 was classified
as male, and < 0.5 was classified as female).

In this study, three factors may influence the estimations based
on PLSR, and these are the number of latent variables (d-value
in Eq. 1), the ROI definition (15, 25, 50, 100, 200, and 300
ROIs) and RSFC evaluation strategies (full correlation and partial
correlation). To test the influence of each of the three factors,
further analyses were performed for the first set of estimations
by fixing the other two factors to change the remaining one.
First, the five main labels were simultaneously estimated with
the number of latent variables (d-value) changed from 10 to 150
in steps of 10, based on partial correlation among 200 ROIs, to

FIGURE 1 | The working flowchart of the proposed estimation framework. The resting state fMRI data of HCP 1200S release were analyzed in this study, and
RSFCs provided on the HCP website (https://db.humanconnectome.org/) were directly used to establish the estimation models. Each of the four label sets in the
upper right box corresponds to one set of estimations.
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test the influence of the number of latent variables. Second, the
five main labels were simultaneously estimated based on partial
correlation among each of the other five sets of ROIs (15, 25, 50,
100, and 300 ROIs), with d = 50 for PLSR, to test the influence of
ROI definition. Finally, the five main labels were simultaneously
estimated based on full correlation among 200 ROIs, with d = 50
for PLSR, to test the influence of RSFC evaluation strategies.

A 10-fold cross-validation strategy was implemented to
evaluate the performance of the PLSR. Specifically, all subjects
were randomly divided into 10 subsets. In each loop of the 10-
fold cross validation, one subset (99 subjects) was used as the
testing set, and the other 9 subsets (891 subjects) were used as the
training set. The estimation model was constructed (obtaining
matrix B in Eq. 2) based on all training samples and then used
to estimate the CBD variables of all testing samples. The training
and testing procedures were repeated 10 times so that each of the
10 subsets was used as the testing set once.

The estimation performance was calculated with the
Pearson correlation coefficient (R-value) between the actual
and the estimated CBD variable and the RMSE between them.
Permutation analysis was performed to test the significance of
the R-values by randomly shuffling the CBD variables 5,000
times and repeating the estimation process. As the permutation
analyses were time consuming, we performed permutation
analyses only on the first and fourth sets of estimations. The
P-values of the empirical correlation values, based on their
corresponding null distributions, were computed as follows:

P =
1 + NStrongerCorrelations

1 + N
(3)

where N is the number of permutations (here, N = 5, 000) and
NStrongerCorrelations is the number of stronger correlations between
the estimated and permuted CBD variable (as compared to that
based on the non-permuted CBD variable).

Evaluating the Contribution of RSFCs
Based on Eq. 2, a linear relationship between the RSFCs and
CBD variables can be established. This linear relationship may
facilitate our evaluation of the contribution of the RSFCs to the
estimations. In this study, as cross-validation was used to evaluate
the performance of PLSR, slightly different linear models (as
indicated by matrix B in Eq. 2) were built for each of the 10
loops. We averaged the 10 B matrices to obtain an average weight
matrix (B̄), and the contribution of the ith RSFC to the estimation
of the j th CBD variable was evaluated as B̄ij. The significance
of B̄ij was again computed based on the aforementioned 5,000
permutations as follows:

P =
1 + NL arg erAbsoluteB̄ij

1 + N
(4)

where NL arg erAbsoluteB̄ij is the number of larger absolute B̄ij in
the 5000 permutations, as compared to that based on the
non-permuted CBD variable. RSFCs whose weights satisfy
P < 0.05 were regarded as making significant contributions to
the estimation of a CBD variable.

We checked to what extent the RSFCs made significant
contributions in multi-label learning overlapped those with
significant weights for single-label learning (according to the
P-values based on 5,000 permutations). Through this analysis, we
meant to investigate whether the RSFCs would change if a few
more CBD variables were entered into the PLSR model.

To investigate whether the RSFCs that made significant
contributions to the estimation of a CBD variable were of
biological significance, we directly correlated each RSFC with the
CBD variable. Furthermore, we evaluated the contribution of the
RSFCs from a network perspective. Specifically, we first clustered
the ROIs into 10 functional networks based on their RSFCs using
affinity propagation algorithm. The contribution of each network
was then evaluated by summing up the contribution of all ROIs
within it, and the contribution of each ROI was evaluated by
the number of RSFCs (made significant contribution) associated
with the ROI. We also evaluated the contribution of inter-
network connections by the number of RSFCs (made significant
contribution) between each pair of network.

RESULTS

Performances of PLSR in Multi- and
Single-Label Learning
Partial least squares regression performed well in MRI-based
estimations for both single- and multi-label learning purpose
(Figures 2, 3 and Tables 2, 3). For simultaneous estimation of the
main labels (the first set of estimations), R-values of 0.627, 0.395,
0.369, 0.585, and 0.536 were obtained for age, education, CSFC,
CSCC, and CSOC, respectively (Figures 2A–E). For each of the
five variables, no stronger correlation was observed in the 5,000
permutations. That is, each of the five R-values corresponded
to a P-value of 0.0002. In fact, the largest R-values in the 5,000
permutations were by far smaller than those based on actual CBD
variables, which were 0.157, 0.146, 0.161, 0.142, and 0.161 for age,
education, CSFC, CSCC, and CSOC, respectively.

The results regarding the simultaneous estimation of the five
Supplementary CBD variables (the second set of estimations)
are listed in Table 2. A gender classification accuracy of 97.6%,
together with R-values of 0.701, 0.522, 0.555, and 0.376 for
the estimations of grip strength, reading recognition, picture
vocabulary and VSPLOT were obtained.

Table 2 also provided the results regarding the simultaneous
estimations of 10 CBD variables (the third set of estimations). It
can be seen that including five additional CBD variables into the
model did not influence the estimations of the main labels. For
instance, the R-value for age estimation changed from 0.627 to
0.625 here, and the gender classification accuracy changed from
97.6 to 97.8% here.

The current estimation accuracies of grip strength, reading
recognition, picture vocabulary, and VSPLOT (R = 0.704, 0.519,
0.546, 0.382, respectively) were higher than those reported in
Cui and Gong (2018) (not more than 0.55, 0.35, 0.35, 0.25,
respectively), in which six commonly used machine learning
algorithms were utilized. The estimation accuracies in this study
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FIGURE 2 | Scatter plots of estimated vs. actual labels. (A–E) were based on the first set of estimations (multi-label learning), and (F–J) were based on the fourth set
of estimations (single label learning). (A,F) Age; (B,G) Education; (C,H) CSFC; (D,I) CSCC; (E,J) CSOC.
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FIGURE 3 | Comparison of the performances of PLSR for single- and
multi-label learning. The reported values were (A) Pearson correlation
coefficient and (B) RMSE. The performances of the single-label PLSR were
comparable to those of the multi-label PLSR, and adding additional five labels
into the model had limited effect upon the estimation accuracies.

were also higher than those listed on the HCP website5, which
were based on the same RSFCs as were used in this study but
obtained using elastic net, and Table 3 is a direct comparison of
our results and those listed on the HCP website. In fact, when
we estimated the five main labels using three widely used single-
label learning techniques, namely, SVR, E-Net and RVR, based on
RSFCs among 200 ROIs evaluated using partial correlation, the
estimation accuracies were much lower than those based on based
on PLSR. For instance, the correlation between the estimated and
actual ages were R = 0.413, 0.392, 0.405 for SVR, E-Net, and RVR,

5https://db.humanconnectome.org/megatrawl/

respectively, as compared to R = 0.627 for PLSR (for more details,
please see Supplementary Table S4).

The performance of PLSR in MRI-based single-label learning
(of the five main labels, the fourth set of estimations) can be found
in Figures 2F–J, 3 and Table 2. There were only subtle differences
between the accuracies of single- and multi-label learning. For
instance, the estimation of age was slightly better based on single-
label learning (R = 0.635, compared to R = 0.627 for multi-label
learning), while the estimation of the CSOC was slightly better
based on multi-label learning (R = 0.536, compared to R = 0.525
for single-label learning).

The number of latent variables (d-value) is an important factor
for PLSR. On analyzing its influence, it was found that d-value
had a limited effect on the estimations (Figure 4). Specifically,
only subtle changes of the R-value and RMSE were observed, with
d-values ranging from 10 to 150. This result indicated that PLSR
was relatively robust to d-value selection.

Influences of ROI Definition and RSFC
Evaluation Strategies
For the first set of estimations (multi-label learning of the
five main labels), we further evaluated the influences of ROI
definition and RSFC evaluation strategies. Figure 5 illustrates
the influence of ROI definition strategy on the estimations. The
estimation accuracies based on 100, 200, and 300 ROIs were
relatively higher than those based on 15, 25, and 50 ROIs.
A comparison of the estimations based on RSFCs evaluated
using full correlation and partial correlation can be found in
Figure 6. Obviously, partial-correlation-based RSFCs generally
outperformed full-correlation-based RSFCs.

RSFCs Made Significant Contributions to
Estimations
Figure 7 demonstrates the extent to which the RSFCs with
significant weights in the multi-label learning overlapped those
with significant weights for the single-label learning. A large
percentage of the RSFCs contributed to multi- and single-
label estimations were common. For instance, among the 437
RSFCs with significant weights in the multi-label estimation
of age, 396 RSFCs had significant weights in the single-label
estimation (Figure 7A).

Figure 8 shows the percentage of RSFCs that made significant
contributions to the estimations among the RSFCs that strongly
correlated with the variable. It can be seen that quite a few RSFCs
that made significant contributions to the estimation of a CBD
variable had a strong correlation with that variable. For instance,
among the 10 RSFCs that showed the strongest correlation with
age, seven were observed to make a significant contribution to the
estimation of age (Figure 8F). These strong correlations indicate
that the RSFCs made significant contributions to estimations
were of biological significance.

Figure 9 illustrates the contribution of the RSFCs from the
perspective of functional networks. According to Figure 9, the
network contribution was slightly different when estimating
different variables. For instance, the medial visual network
contributed relatively less in the estimation of age (Figure 9A),
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TABLE 2 | Performances of PLSR in the four sets of estimations.

The first set: multi-label learning, five main labels

Age Education CSFC CSCC CSOC

R 0.627 0.395 0.369 0.585 0.536

RMSE 2.908 1.636 10.727 8.021 12.184

The second set: multi-label learning, five Supplementary labels

Grip strength Reading recognition Picture vocabulary VSPLOT Gender∗

R 0.701 0.522 0.555 0.376 97.6%(ACC)

RMSE 8.066 9.038 7.871 4.109 0.996(AUC)

The third set: multi-label learning, ten labels

Age Education CSFC CSCC CSOC

R 0.625 0.400 0.367 0.573 0.528

RMSE 2.914 1.629 10.738 8.101 12.278

Grip strength Reading recognition Picture vocabulary VSPLOT Gender∗

R 0.704 0.519 0.546 0.382 97.8%(ACC)

RMSE 8.033 9.059 7.920 4.093 0.996(AUC)

The fourth set: single-label learning, five main labels

Age Education CSFC CSCC CSOC

R 0.635 0.402 0.380 0.584 0.525

RMSE 2.886 1.628 10.667 8.033 12.281

∗For gender classification, the classification accuracy (ACC) and the area under curve (AUC) were provided.

TABLE 3 | Comparison of the estimations based on PLSR in this study to those based on elastic net listed on the HCP website∗.

Education Grip strength Reading recognition Picture vocabulary VSPLOT

PLSR R 0.400 0.704 0.519 0.546 0.382

CoD 0.156 0.494 0.269 0.297 0.136

Elastic net R 0.28 0.65 0.16 0.27 0.25

CoD −0.05 0.34 −0.19 −0.18 −0.01

∗https://db.humanconnectome.org/megatrawl/3T_HCP820_MSMAll_d200_ts2/megatrawl_1/. The estimation accuracies of the other five CBD variables (age, gender,
CSFC, CSCC, and CSOC) were not available on the HCP website. Our results were based on the third set of estimations. The estimations based on PLSR in this study
were better than those based on elastic net as listed on the HCP website. CoD stands for “coefficient of determination,” which has been used to evaluate the performance
of the predictive models together with the R-value on the HCP website. CoD is evaluated as follows: CoD = 1 – Variance of Estimation Error/Variance of the Variable, and
higher CoD values indicate better estimations.

as compared to the estimation of other variables (Figures 9B–E).
The inter-network connections that contributed to the
estimations of the five main labels were also slightly different.
For instance, the RSFCs between the medial and lateral visual
networks contributed relatively less to the estimation of
education, as compared to the estimation of CSOC.

DISCUSSION

It is valuable to estimate individuals’ CBD variables based
on neuroimaging data, as these estimations may eventually
lead to a better understanding of the neural basis that gives
rise to individual differences in these variables, and may
potentially assist in the clinical diagnosis of neuropsychiatric
diseases. Machine learning techniques play critical roles in

these estimations. Krishnan et al. (2011) foresaw the potential
of PLSR in MRI-based estimations. Afterward, quite a few
studies have been performed on MRI-based estimations using
PLSR, but a majority of these studies estimated one CBD
variable at a time. That is, the potential of PLSR for MRI-
based estimations of CBD variables remains to be explored,
especially its potential for multi-label learning. In this study,
we systemically investigated the performance of PLSR in MRI-
based estimations of individuals’ CBD variables. The following is
a detailed discussion of the results.

PLSR Performed Well in MRI-Based
Estimations
In the current study, PLSR was observed to perform well in
simultaneous estimations of individuals’ multiple CBD variables
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FIGURE 4 | The influence of the number of latent variables on the estimations.
The reported values were (A) Pearson correlation coefficient and (B) RMSE.
The number of latent variables ranged from 10 to 150. The results indicated
that multi-label PLSR was relatively stable when the number of latent variables
varied over a wide range (here, 10 ∼ 150).

based on resting state fMRI (Figures 2, 3 and Tables 2, 3).
According to the Pearson correlations between the estimated
and actual CBD variables (R-values, each corresponding to a
P = 0.0002 in this study), the present estimations were better than
those in two other studies based on the HCP resting state fMRI
data but using single-label learning techniques (Cui and Gong,
2018) (see footnote 5). Specifically, the R-values for grip strength,
reading recognition, picture vocabulary and VSPLOT obtained
in this study (0.704, 0.519, 0.546, 0.382) was uniformly higher
than those reported by Cui and Gong (2018) (not more than
0.55, 0.35, 0.35, 0.25), in which the four variables were estimated
with six commonly used machine learning regression algorithms.
The relatively higher estimation accuracy in the current study
support the effectiveness of PLSR in MRI-based estimations,
though better ROI definition and RSFC evaluation strategies (as
will be discussed below) may also contribute to better estimations
in this study. In fact, based on the same RSFC set (among
200 ROIs, and estimated using partial correlation), the current

FIGURE 5 | Estimations based on different ROI definition strategies. The
reported values were (A) Pearson correlation coefficient and (B) RMSE. The
results indicated that estimations based on 100, 200, and 300 ROIs were
better than those based on 15, 25, and 50 ROIs.

estimations were better than those listed on the HCP website,
which was based on elastic net (Table 3). Moreover, when we
estimated the five main labels using three widely used machine
learning techniques, namely, SVR, E-Net and RVR, based on
RSFCs among 200 ROIs evaluated using partial correlation, the
estimation accuracies based on PLSR were uniformly higher than
those based on the three techniques.

In addition to its relatively high estimation accuracy, PLSR
exhibited four advantages in MRI-based estimations in this
study. First, PLSR can solve both single- and multi-label learning
problems. PLSR has been reported to perform well in estimating
a variety of CBD variables (Yang et al., 2013; Wu et al., 2014;
Meskaldji et al., 2016; Yoshida et al., 2017; Kuceyeski et al., 2018;
Yoo et al., 2018; Zhang et al., 2018) based on MRI data. To note, a
single variable was estimated in most of the studies. The current
results indicate that, in addition to single label learning, PLSR
can perform comparably well when multiple CBD variables were
simultaneously estimated (Figures 2, 3 and Table 2).
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FIGURE 6 | Estimations based on different RSFC evaluation strategies. The
reported values were (A) Pearson correlation coefficient and (B) RMSE. The
results indicated that estimations based on RSFCs evaluated using partial
correlation were better than those based on RSFCs evaluated using full
correlation.

Second, PLSR can solve regression and classification problems
simultaneously. In this study, an accuracy of 97.8% was
obtained for gender classification, with the other nine CBD
variables estimated simultaneously (Table 2). The present
accuracy was slightly higher than that reported by Feis et al.
(2013), and much higher than that reported by Zhang et al.
(2018). Specifically, Zhang et al. (2018) reported a gender
classification accuracy of 87% based on the resting state fMRI
data of the HCP dataset. In the study by Feis et al. (2013),
an accuracy of 96% was obtained based on MR images
(T1-, T2-, and diffusion-weighted) using a linear support
vector machine. The relatively higher gender classification
accuracy in our study indicates that including the other nine

CBD variables into the model may be helpful for gender
classification in this study. In many cases, both continuous
(e.g., MMSE score) and discrete (e.g., whether or not a subject
had psychiatric disease) CBD variables are available (Zhang
et al., 2012; Yoshida et al., 2017). The ability of solving
classification and regression problems simultaneously enables
PLSR to provide richer information and higher estimation
accuracy in those cases.

Third, the estimations were relatively stable when the number
of latent variables (d-value) changed over a wide range (Figure 4).
This indicates that PLSR is not sensitive to the choice of d-value. It
should be noted that the selection of d-values is not unlimited. In
fact, when the d-value was set to larger than 200, the estimations
deteriorate dramatically (Supplementary Figure S1). The reason
for this deterioration is not known, and further studies are
expected to address the issue.

Finally, PLSR is efficient in model training and testing,
and it is simple and easy to use. PLSR is very fast in
learning, and even faster in testing, capable of quickly reducing
the original high-dimensional data into low dimensions. In
this study, it took only 1.3729 s to reduce the original
19,900-dimensional RSFCs (based on 200 ROIs) into 50-
dimensional latent variables on a PC with a 3.00 GHz Intel(R)
Core(TM) i5-8500 CPU processor. Once the partial least squares
decomposition is completed, the subsequent testing process
involves only the linear product of matrices, which is even
faster. A fast testing process is beneficial for practical applications
of PLSR.

ROI Definition and RSFC Evaluation
Strategies Had Obvious Influences Upon
the Estimations
As has been mentioned, in addition to the advantages of PLSR,
the relatively high estimation accuracies in this study may
be partly due to better ROI definition and RSFC evaluation
strategies. Proper ROI definition is critical for later RSFC
evaluation, as a hidden hypothesis in the current study is that
the ROIs for all subjects are same. This requirement of “same”
ROI definition necessitates high-quality spatial normalization if a
template were used. ICA itself can figure out subject specific ROIs
that are more functionally “same” (Smith et al., 2013). The ICA-
based ROI definition may be one reason for better estimations
in this study, as compared to those in the study by Cui and
Gong (2018), in which ROIs were defined based on the human
brainnetome atlas.

Compared to estimations based on 15, 25 and 50 ROIs,
the estimations based on 100, 200, and 300 ROIs were much
better (Figure 5). This finding is consistent with that reported
by Finn et al. (2015), in which the accuracy of individual
identification based on 68 ROIs was much lower as compared
to that based on 268 ROIs. Finn et al. (2015) suggest that “a
relatively high-resolution parcelation contributes to the detection
of individual variability and boosts identification rate.” According
to Yoshida et al. (2017), estimations of clinical scores deteriorate
dramatically when the standard AAL template was further
subdivided into 600 ROIs. It is still unknown whether more ROIs
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FIGURE 7 | Resting state functional connections made significant contributions shared across the PLSR models established in the first and fourth set of estimations.
For each model, RSFCs made significant contributions are marked with yellow, RSFCs made non-significant contributions are marked with blue, and common
features between the two models are vertically aligned. Respectively, among the 437, 653, 741, 473, and 536 RSFCs that made significant contributions to the
simultaneous estimations of (A) age, (B) education, (C) CSFC, (D) CSCC, and (E) CSOC, 396, 608, 714, 429, and 481 were in common between the multi- and
single-label learning.

(e.g., 600 or 1000) would impair the estimations based on PLSR.
Further studies are needed to address this issue.

Estimations of all five CBD variables based on RSFCs
evaluated using partial correlation were better than those based
on RSFCs evaluated using full correlation (Figure 6). Partial
correlation has been suggested to be a better approximation

to direct connections in theory, while full correlation is more
sensitive to both direct and indirect connections (Marrelec et al.,
2006; Smith et al., 2013). If this were the case, the current results
indicate that, by excluding the effects of indirect connections, the
RSFCs evaluated based on partial correlation include less noise,
and this is favorable for CBD variable estimations.
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FIGURE 8 | Percentage of RSFCs that made significant contributions to the estimations of a CBD variable among the RSFCs that strongly correlated with that
variable. In the first five subplots (A–E), the X coordinate indicates the sequence number of the correlation (absolute value, sorted in descending order) between the
RSFCs and the CBD variable [(A) for Age, (B) for Education, (C) for CSFC, (D) for CSCC, and (E) for CSOC]; the Y coordinate indicates the percentage of RSFCs
that made significant contributions to that variable (among all RSFCs that made significant contributions to that variable). (F) Represents the percentage of RSFCs
that made significant contributions to the estimations among the top 10, 50, 100, and 500 RSFCs that were most correlated with the CBD variable. The results were
obtained based on the first set of estimations. A large percentage of the RSFCs that contributed to the estimation of a CBD variable were observed to have strong
correlation with that variable.
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FIGURE 9 | The contribution of the RSFCs to the estimation of age (A),
education (B), CSFC (C), CSCC (D), and CSOC (E). The circular diagram
indicates the relative contribution of the functional networks, with each
functional network indicated by one color. The networks are the medial visual
network (A: MedVis), the right fronto-parietal network (B: R. FP), the lateral
visual network (C: LatVis), the left fronto-parietal network (D: L. FP), the
auditory motor network (E: Aud-Mot), the executive control network (F: ECN),
the default mode network (G: DMN), the thalamus cerebellum network (H:
Tha-Cereb), the basal ganglia cerebellum network (I: BG-Cereb) and the
cerebellum (J: Cereb). Two typical spatial maps of each network can be found
in subfigure (F). Each ribbon links two functional networks, and the ribbon size
scales with the contribution of the RSFCs between the networks it linked.

RSFCs Made Significant Contributions to
the Estimations Were of Biological
Significance
Though all RSFCs were utilized to obtain the latent variables and
finally to establish the linear relationship as given in Eq. 2, only
a few RSFCs were observed to make significant contributions
(Figure 7). Moreover, in the current study, the RSFCs that

made significant contributions to multi-label estimations largely
overlapped with those in single-label estimations (Figure 7).
For instance, 396 of the 437 RSFCs that made significant
contributions to age estimation based on the multi-label learning
model were also found to make significant contributions based on
a single-label learning model (Figure 7A). This result indicated
that the RSFC sets utilized by PLSR were quite similar for single-
and multi-label learning. We suggest that PLSR can automatically
find out the RSFCs of biological significance for one CBD variable
(e.g., age), irrespective of the influences of other CBD variables
that were simultaneously estimated (e.g., education).

To investigate whether the RSFCs made significant
contributions to the estimation of a CBD variable were of
biological significance, we compared these RSFCs to those
exhibited significant correlations with the variable. It was found
that a majority of the RSFCs that made significant contributions
to the estimation of a CBD variable also had strong correlation
with the variable (Figure 8). For instance, nearly 90% of the
RSFCs that made significant contributions to the estimation of
age were among 4,000 (among 19,900) RSFCs that showed the
strongest correlation with age (Figure 8A). This indicated that
the estimations based on PLSR were largely dependent upon
RSFCs of biological significance.

When the ROIs were clustered into 10 functional networks,
each network contributed differently to the estimation of the five
main labels (Figure 9). As has been mentioned, the medial visual
network made relatively less contribution to the estimation of age
(Figure 9A), as compared to the estimation of other variables
(Figures 9B–E). The medial visual network is thought to be
important for preliminary visual information processing. The
present finding is consistent with the suggestion by Dosenbach
et al. (2010), which indicates that the networks responsible
for preliminary sensory functions mature early and aging late.
That is, medial visual network may be relatively stable during
early adulthood, so it contribute less to age estimation in this
study (as subjects included in this study aged 22∼37 years).
Inter-network connections were also observed to make slightly
different contribution to the estimation of the five main labels
(Figure 9). One example is that the connection between the
medial and lateral visual networks contributed relatively less to
the estimation of education (as compared to CSOC). The medial
visual network plays an important role in preliminary visual
information processing, and lateral visual network is critical for
high-order visual information processing. the current finding
may be consistent with the common sense that individuals’
ability of visual information processing is less dependent on
education, but the speed and quality of visual information
processing (supported by the medial and lateral visual networks)
may exert some influence upon individuals’ cognitive abilities (as
evaluated by CSOC).

Other Methodological Issues
Two methodological issues should be addressed. First, family
structure was not considered in this study. Most subjects in this
study had at least one blood relative, and many of them were
twins (Van Essen et al., 2013). The homogeneity of the sample
may make the estimation accuracies too optimistic, as many
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families will be split across training and testing sets. To avoid
over-optimistic estimation accuracies, we further performed 10-
fold cross validation with family structure taken into account,
by ensuring that no family was split across training and testing
sets. The results indicated that whether or not considering
family structure has limited influence on the final accuracies
(Supplementary Table S2).

Another methodological issue is that the kernel trick was
not considered in this study. The kernel trick has been widely
used in the area of machine learning to capture the non-
linear relationships between features and labels. According to
Guo and Mu (2011), kernel PLSR resulted in a smaller error
compared to linear PLSR. When we simultaneously estimated
the five main labels using kernel PLSR, with the RBF function
used as kernel and σ empirically set to 150, the estimation
accuracies increased slightly (Supplementary Table S3). This
result indicated that kernel PLSR can be a favorable choice for
future MRI-based estimations.

CONCLUSION

In summary, we systemically investigated the performance of
PLSR in MRI-based estimations of individuals’ CBD variables.
We found that PLSR performed well in both simultaneous
estimation of multiple CBD variables and estimation of a
single CBD variable. Furthermore, our study demonstrated
five advantages of PLSR in MRI-based estimations, which are
attractive to researchers in the field. First, PLSR can solve
both single- and multi-label learning problems. Second, PLSR
can solve regression and classification problems simultaneously.
Third, the PLSR algorithm is relatively robust to the number
of latent variables. Then, PLSR enables later inferences of the
biological significance underlying the estimations. Finally, PLSR
is efficient in model training and testing, and it is simple
and easy to use. Besides, the choice of ROI definition and
RSFC evaluation strategies are also critical for the estimations.
Specifically, our results indicated that RSFCs evaluated using
partial correlation had obvious advantages over those evaluated
using full correlation, and the estimations based on RSFCs among
100, 200, and 300 ROIs were much better than those based on
RSFCs among 15, 25, and 50 ROIs. This study used RSFCs as a
test case, and it is obvious that PLSR can be easily extended to
estimations based on other features (e.g., VBM evaluated based
on MRI). Furthermore, PLSR is simple in principle and easy to

use, so it can be widely used in future MRI-based estimations
of CBD variables.
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