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Abstract

Spatially explicit simulations of gene flow within complex landscapes could help fore-
cast the responses of populations to global and anthropological changes. Simulating
how past climate change shaped intraspecific genetic variation can provide a vali-
dation of models in anticipation of their use to predict future changes. We review
simulation models that provide inferences on population genetic structure. Existing
simulation models generally integrate complex demographic and genetic processes
but are less focused on the landscape dynamics. In contrast to previous approaches
integrating detailed demographic and genetic processes and only secondarily land-
scape dynamics, we present a model based on parsimonious biological mechanisms
combining habitat suitability and cellular processes, applicable to complex land-
scapes. The simulation model takes as input (a) the species dispersal capacities as
the main biological parameter, (b) the species habitat suitability, and (c) the land-
scape structure, modulating dispersal. Our model emphasizes the role of landscape
features and their temporal dynamics in generating genetic differentiation among
populations within species. We illustrate our model on caribou/reindeer populations
sampled across the entire species distribution range in the Northern Hemisphere.
We show that simulations over the past 21 kyr predict a population genetic structure
that matches empirical data. This approach looking at the impact of historical land-
scape dynamics on intraspecific structure can be used to forecast population struc-
ture under climate change scenarios and evaluate how species range shifts might

induce erosion of genetic variation within species.
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YANNIC T AL.

1 | UNDERSTANDING THE ORIGIN
OF SPATIAL GENETIC DIVERSITY AND
STRUCTURE

Global climate change is expected to pressure species to shift spe-
cies ranges at an unprecedented rate potentially causing signifi-
cant biodiversity decline (Johnson et al., 2017; Pacifici et al., 2015;
Parmesan & Yohe, 2003; Pecl et al., 2017; Pefuelas et al., 2013;
Ripple et al., 2015; Thomas et al., 2004; Urban, 2015). Because of
limited dispersal, species might be unable to track their suitable
habitat and get extinct (Arevall, Early, Estrada, Wennergren, &
Eklof, 2018). Anticipating the impacts of climate change is central
to guide species conservation and management strategies as well
as the design of protected areas (Dawson, Jackson, House, Prentice,
& Mace, 2011; Jones, Watson, Possingham, & Klein, 2016; Keppel
et al., 2012). Climate change is expected to erode not only species
diversity within assemblages, but also intraspecific genetic variation
(Scheffers et al., 2016), which is crucial for maintaining the ability
of species to cope with new environmental conditions (Bijlsma &
Loeschcke, 2012; Des Roches et al., 2018; Hoffmann & Sgro, 2011;
Hughes, Inouye, Johnson, Underwood, & Vellend, 2008; Razgour
et al., 2019; Thuiller et al., 2011). Understanding how historical pro-
cesses impacted intraspecific genetic structure and diversity can
help anticipate ongoing and future global changes (Alsos et al., 2012;
Davis & Shaw, 2001; Haywood et al., 2019; Yannic, Pellissier, Ortego,
etal., 2014).

The climates of the glacial cycles of the Pleistocene, in particular
the cold period of the last glacial maximum (LGM, 21 kyr BP; Clark
et al., 2009), reshaped the distribution of ecosystems (Williams, &
Jackson, 2007), species ranges (Hampe & Jump, 2011; Hewitt, 1999),
and intraspecific genetic structure (Yannic, Pellissier, Ortego, et al.,
2014). Climate dynamics and its control over the distribution of the
continental ice sheet caused dramatic species range expansions
and contractions in the Northern Hemisphere (Alsos et al., 2012).
Species dispersal is a central determinants of range shifts, but also
has consequences on the genetic structure within a species range
(Davis & Shaw, 2001; Szlcs et al., 2017). In particular, repeated
isolation of populations during successive glacial cycles has gener-
ated complex genetic differentiation within species (Hewitt, 2004;
Hofreiter & Stewart, 2009; Lister, 2004). Moreover, genetic drift
during population range shift and range contraction can erode the
genetic diversity of populations, as theoretically predicted (Arenas,
Ray, Currat, & Excoffier, 2011; Garnier & Lewis, 2016; Mclnerny,
Turner, Wong, Travis, & Benton, 2009), empirically shown (Alsos
et al., 2007) or forecasted under climate change (e.g., Collevatti,
Nabout, & Diniz-Filho, 2011). The current genetic structure of spe-
cies is thus expected to be intimately related to the historical spatial
and temporal variation in their distribution ranges, which in turn has
shaped the pattern and frequency of population genetic exchanges
or the degree of genetic differentiation (Espindola et al., 2012;
Pellissier et al., 2016).

Landscape genetics as a discipline integrates spatially ex-

plicit data to investigate the influence of landscape heterogeneity
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on contemporary gene flow (Balkenhol, Cushman, Storfer, &
Waits, 2016). Landscape features and habitat characteristics can
have a profound impact on genetic structure of populations, by ei-
ther restricting or enhancing individual movements and populations
connectivity (Taylor, Fahrig, Henein, & Merriam, 1993; Taylor, Fahrig,
& With, 2006). A central tenet of landscape genetics is to identify
patterns of suitable habitats or sets of features that promote or hin-
der connectivity among patches and shape the genetic structure
of species (Zeller, McGarigal, & Whiteley, 2012). Landscape resis-
tance to gene flow is parameterized using different approaches: (a)
expert opinions (Murray et al., 2009), (b) optimization and parame-
terization methods (e.g., Peterman, 2018; Spear, Balkenhol, Fortin,
McRae, & Scribner, 2010), or (c) occurrence, presence-data, or sat-
ellite-collar relocations coupled with species distribution modeling
(Shafer et al., 2012; Yannic, Pellissier, Le Corre, et al., 2014; Zeller
et al,, 2018). The advantage of data-based inferences in relation
to environmental variables is that it allows constructing more ob-
jective models of habitat use and can identify corridors based on
true locations or species’ preferred habitat (Fattebert, Robinson,
Balme, Slotow, & Hunter, 2015; Panzacchi et al., 2016). Landscape
feature shown to impact connectivity and genetic distinctiveness
today could have had a similar effect in the past. Hence, the study
of intraspecific genetic structure requires the identification of his-
torical landscape elements that shaped gene flow through the anal-
ysis of paleo-environmental maps coupled with species ecological
information.

The climate distribution within landscapes was largely dynamic
over the past millennia (Batchelor et al., 2019). Originally, the dis-
tributions of paleoclimate were reconstructed using indicators such
as pollens, environmental DNA (eDNA), oxygen isotopes, or other
features (Koch, 1998; Lyman, 2017; Parducci et al., 2017; Willerslev
et al., 2007, 2014). The position of moraines was, for example, used
for reconstructing the extent of glaciated area in the past millen-
nia and its effect on landscape connectivity (Nesje, Bakke, Dahl,
Lie, & Matthews, 2008). Fossilized indicators and eDNA from lake
sediments were used for reconstructing past vegetation patterns
and informed on species range segregation (Alsos et al., 2016).
Vegetation reconstruction using fossil records showed that the tree
line largely shifted during glacial periods (Binney et al., 2017; Payette
& Lavoie, 1994), possibly shaping connectivity for other organisms.
The development and refinement of global climate models (GCMs)
provide another source for the reconstruction of past landscape
dynamics (Haywood et al., 2019). The downscaling of GCMs from
coarse to fine resolution can generate the changes in abiotic condi-
tions that constrain the distribution of organisms over time (Latombe
et al., 2018). Combining different sources for reconstructing past
species range dynamics can help understand how past dynamics
shaped present intraspecific genetic structure of species (Fordham
et al., 2016; Fordham, Brook, Moritz, & Nogués-Bravo, 2014; Gavin
etal., 2014).

Beyond current landscape configuration, the genetic structure of
populations is the result of an intermingling of past climatic effects,

geography, and anthropogenic pressures on species (e.g., Lorenzen
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(Continued)

TABLE 1

Ref.

Description

Level

Simulators

Program

Haller and Messer (2019)

Simulation framework that combines a powerful, fast engine for forward population genetic

Population

Forward

SLiM

simulations with the capability of modeling a wide variety of complex evolutionary scenarios.

Supports models that occupy continuous spatial landscapes, including built-in support for spatial maps
that describe environmental characteristics. Possible to model the explicit movement of individuals

over a continuous landscape, life cycles with overlapping generations, individual variation in

reproduction, density-dependent population regulation, individual variation in dispersal or migration,

local extinction and recolonization, mating between subpopulations, age structure, fitness-based

survival and hard selection, emergent sex ratios, and more.

Neuenschwander, Michaud, and

Individual-based, genetically explicit stochastic simulation program. Developed to investigate

Individual

Forward and

quantiNemo

Goudet (2018)

the effects of selection, mutation, recombination, and drift on quantitative traits in structured

populations connected via migration in a heterogeneous landscape

backward

Galpern, Peres-Neto, Polfus, and

Method and software for identifying spatial neighborhoods in genetic distance data. Use a multivariate
technique developed for spatial ecological analyses. Using simulated genetic data, allow recover

patterns reflecting the landscape features that influenced gene flow.

Population

Sideway

MEMGENE

Manseau (2014)
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et al., 2011). Disentangling effects of different drivers on the cur-
rent genetic structure of populations is however challenging and re-
quires the use of integrative modeling tools (Epperson et al., 2010;
Landguth, Cushman, & Balkenhol, 2015). We present an overview
of the simulation approaches that were used to explore the determi-
nants of extant genetic diversity and structure. We further illustrate
a new modeling approach, conceptually simpler, which provides an
expectation of intraspecific genetic structure as a result of the dy-

namic landscape suitability and connectivity for species.

2 | INTEGRATING SIMULATIONS AND
MODELING IN A GLOBAL LANDSCAPE
GENETIC APPROACH

Genetic data, increasingly available (e.g., Lorenzen et al., 2011), can
be used to infer past demographic history of species (a) directly, using
genetic models, in the light of geographic information data, or (b) in-
directly, using process-based spatial simulation models (e.g., Campos
et al., 2010; Drummond, Rambaut, Shapiro, & Pybus, 2005; Shapiro
et al., 2004). Moreover, advanced analyses from genomic data can
support the quantification of past demographic events such as esti-
mations of past population sizes or the occurrence of demographic
bottlenecks (Hansen et al., 2018; Nadachowska-Brzyska, Li, Smeds,
Zhang, & Ellegren, 2015; Pilot et al., 2014; Stoffel et al., 2018).
Through the comparison of spatially structured populations, genetic
analyses can inform about ancestral population connectivity (e.g.,
temporal changes in the level of isolation-by-distance among ancient
DNA samples; Lorenzen et al., 2011) and demographic history such
as genetic bottlenecks driven by population disconnection (Broquet
etal., 2010).

A variety of spatial data can be used to investigate the origin of
intraspecific genetic structure of species, which include contempo-
rary landscape descriptors (Sork et al., 2013; Storfer et al., 2007) and
historical species distribution reconstruction (Nogués-Bravo, 2009).
Various landscape habitat characteristics are expected to influence
the connectivity for populations and determine their genetic struc-
ture (Balkenhol et al., 2016). Methods to measure connectivity using
cost-weighted distance allowed refined quantification of landscape
barriers to gene flow (Balkenhol et al., 2016). Another complemen-
tary spatial information is provided by species distribution models
(SDMs), which by estimating species habitat suitability, can help un-
derstand the historical dynamics that shaped intraspecific genetic
structure of populations (Carnaval, Hickerson, Haddad, Rodrigues,
& Moritz, 2009; Lorenzen et al., 2011; Razgour et al., 2013; Yannic,
Pellissier, Ortego, et al., 2014). Hindcasted SDMs were used to iden-
tify the geographic position of refugia (but see Davis, McGuire, &
Orcutt, 2014), and assess visually if they match a similar structure
found in the geographic distribution of genetic clusters (e.g., Waltari
et al., 2007). The availability of more temporal steps for climate re-
constructions between the LGM and the present allowed tracking
climatic suitability area over time (Hijmans, Cameron, Parra, Jones, &

Jarvis, 2005; Karger et al., 2017) and combined with simple dispersal
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models (Engler & Guisan, 2009), following the geographic range
dynamics of isolated populations (Espindola et al., 2012; Nobis &
Normand, 2014). For example, Yannic, Pellissier, Ortego, et al. (2014)
found two main refugia for the caribou/reindeer Rangifer tarandus,
which explain current structure, whose dynamic until the present
matches the current genetic structure of the species. Habitat suit-
ability values can be used in more complex process-based model to
simulate intraspecific genetic structure in forward-going simulations
(Hoban, Bertorelle, & Gaggiotti, 2012).

The adoption of spatial models including genetic mechanisms can
inform the process that shapes current intraspecific genetic diversity
and structure (Landguth et al., 2015). Generally, the best available con-
firmation of the understanding of the causes of a phenomenon is the
ability to build a model from the expected underlying mechanisms and
reproduce realistic emergent patterns (Leprieur et al., 2016). Process-
based models place causal hypotheses on a leading role, as an a priori
abstraction of the inner workings of the system that is used to build the
model (Grimm et al., 2005). More specifically, process-based models in
landscape genetics are primarily built to evaluate analytical issues, for
example, the effects of spatial and temporal scale in landscape genetics
(Jaquiéry, Broquet, Hirzel, Yearsley, & Perrin, 2011), or to investigate
theoretical questions, for example, quantifying the lag time between
the emergence of a barrier to movement and its effects on spatial ge-
netic data (Landguth et al., 2010). The expectation of those models can
be then compared to empirical data qualitatively and quantitatively
(Jeltsch et al., 2013; Landguth et al., 2015). Based on a limited number
of principles and in combination with the reconstructed dynamics of
landscape suitability for species, process-based models are able to pro-
duce expectations related to intraspecific genetic diversity and struc-
ture that matches empirical data (Landguth et al., 2015). A variety of
spatial process-based models of species genetics have been developed
and include a variety of processes (Table 1; Box 2), such as genetic drift
(CDPop; Landguth & Cushman, 2010), geographic isolation (IBDSim;
Leblois, Estoup, & Streiff, 2006), selection, and adaptation (Nemo;
Guillaume & Rougemont, 2006). The importance of simulation studies
for this specific research has been emphasized in a number of recent
articles (e.g., Balkenhol, Waits, & Dezzani, 2009; Epperson et al., 2010).

We present a parsimonious model allowing inference on population

genetic structure given the suitability of species occupancy of the

FIGURE B1 Word cloud of Louis
Bernatchez’ s research interests © Louis
Bernatche (http://www2.bio.ulaval.ca/
louisbernatchez/presentation.htm)
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landscape, the species dispersal capacity, and the landscape struc-
ture shaping connectivity among cells (Figure 1, Box 2). In contrast
to previous approaches focused on the demographic processes
that are shaping the genetic diversity within populations (or genetic
alpha diversity), this modeling approach focuses on how landscape
dynamics generate differentiation between populations (or genetic
beta diversity) over time. We adopt a parsimony principle, where
the model is conceptually simple as the genetic processes are not
modeled explicitly. The model can integrate the effect of various
landscape features on population connectivity and work at high
spatial resolution. The model includes a limited number of param-
eters, where dispersal is central to generate simulated population
isolation. Dispersal determines populations spatial clustering in
interaction with the landscape features via the computation of
connectivity matrices (Balkenhol et al., 2016). The computation

of the connectivity matrix is as important as the suitability matrix
itself to determine species dynamics and the connectivity of popu-
lations. Features of the environment can be included to determine
whether they act as barriers or as corridors for species dispersal,
and rely on the computation of matrices as classically performed in
landscape ecology (Balkenhol et al., 2016; Sork et al., 2013; Storfer
et al., 2007). Our framework is presented on Figure 1. We illustrate
our approach using a previously published dataset on the case
study of reindeer/caribou across North America and Eurasia (Yannic
et al., 2018; Yannic, Pellissier, Ortego, et al., 2014).

3 | METHODS

3.1 | Geneticdata
We used a set of 1,297 caribou and reindeer genotyped at 16 nu-

2018; Yannic, Pellissier,

2014). Samples were obtained from 57 locations

clear microsatellite markers (Yannic et al.,
Ortego, et al,,
located across the entire Holarctic native species’ range, includ-
ing Alaska, Canada, Greenland, Svalbard, Norway, Finland, and the
Russian Federation (Figure 2). Samples were collected over a dec-
ade (2000-2010). We tried to cover as much as possible the known
circumpolar distribution of the species, although some areas are

not evenly represented (e.g., few populations from Russia versus
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1 | Box Scientific curiosity and expertise know
no boundaries

This word cloud was picked up on the web page of Louis
Bernatchez (Figure Box 1). This figure illustrated the main
research topics of Louis’ laboratory, that is, fish and genes. It
would however be restrictive to resume the Louis’ research ac-
tivities to the population genetics and genomics of fishes, and
more generally, of freshwater and marine organisms, as high-
lighted by some seminal papers not directly related to fishes,
for example, on MHC in nonmodel vertebrates (Bernatchez &
Landry, 2003) or on the definition of conservation units (Fraser
& Bernatchez, 2001). Louis also regularly hosts in his labora-
tory some outliers. | was one of them, working mainly on ques-
tions related to mammal and bird population genetics (e.g., in
collaboration with Louis on black bear Ursus americanus (Roy,
Yannic, Coté, & Bernatchez, 2012) or caribou (Yannic, Pellissier,
Ortego, et al., 2014; Yannic et al. 2016)). My few years as a post-
docin Louis' laboratory in early 2010 gave me a glimpse into the
world of “omics,” and since marked my progressive shift from
population genetics to population genomics. All along these
years, | was really impressed by the stimulating and friendly
atmosphere within the Louis Bernatchez’ laboratory, the easi-
ness of people to share experience, codes, laboratory tips, and
to work collaboratively. In the same vein, stimulated by Louis,
people were always aware of the most recent scientific litera-
ture, sharing papers and ideas. During my time in Quebec City,
| also remember (“Je me souviens”) the use of the cutting-edge
molecular biology technologies and methods to answer theo-
retical questions in evolutionary biology, but which often have
strong implications for applied science. One of the strengths
of Louis’ work is to build bridges between a high-level aca-
demic research and conservation and management programs.

Scientific curiosity and expertise know no boundaries.

numerous herds from Canada; Figure 2). In these previous works,
using multivariate and Bayesian analysis, we identified that the ge-
netic structure of Rangifer was split into two main phylogeographic
clusters at the uppermost hierarchical level (Yannic et al., 2018;
Yannic, Pellissier, Ortego, et al., 2014). Using climatic niche mod-
eling, we further identified refugia occupied by the two lineages
at the LGM (i.e., 21 kyr BP), as defined by discontinuous suitability
for the species, that is, suitable areas located south and northwest
of the Laurentide Ice Sheet in North America (see panel “21 ka” in
Figure 2; Yannic, Pellissier, Ortego, et al., 2014). We finally used a
dispersal model (Engler & Guisan, 2009) to track the species range
shift overtime (between 21 kyr BP to present) from these distinct
refugia that lead to the current observed genetic structure of

Rangifer populations.
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2 | Box A geographic model of genetic beta
diversity

Process-based models of intraspecific genetic diversity and
structure represent a simplification of the reality, and their
development is generally done along three main lines of ab-
straction: (a) the nature of the modeled agent (e.g., individuals
or populations), (b) the detail of the mechanisms (e.g., drift,
selection), and (c) the characterization of the landscape dy-
namic. A first line of abstraction is the characterization of
the agent, which might depend on the mechanisms and the
type of emergent pattern (e.g., population genetic diversity,
Fs) that the model should explore. The definition of the
agent, over which mechanisms are acting and whose inter-
actions with the landscape generate emergent genetic pat-
terns is crucial. Depending on the research questions, the
agent can be (a) genes (e.g., Guillaume & Rougemont, 2006),
(b) individuals (e.g., Melian, Seehausen, Eguiluz, Fortuna, &
Deiner, 2015), or (c) populations (e.g., Rangel et al., 2018). A
second line of abstraction is the implementation of processes
acting on agents, ranging from genetic drift (e.g., CDPop), mu-
tation (e.g., EcoGenetics), recombination (e.g., quantiNemo),
or hybridization (e.g., PhyloGeoSim, Splatche; see Table 1 for
details on simulation models). A third line of abstraction is the
numerical simplification of the landscape over which agents
and mechanisms play out. The landscape can be modeled
with more or less complexity, for instance how different fea-
tures (e.g., water, forested areas) influence the permeability
to the dispersal of a species or using the outputs of SDMs.
Simulation studies require simplifying assumptions tai-
lored to the specific research question, and those should
correspond to the foreseen comparison to empirical data
(Landguth et al., 2015). In order to study the variety of em-
pirical patterns, relying on a unique general modeling ap-
proach is unrealistic and a diversity of more specific model
implementations should be preferred (Landguth et al., 2015).
Specific models could be implemented in agreement with the
research question and the property of interest (Landguth
et al., 2015). A model generally represents a simplification of
the complexity of natural processes and can be developed
to specifically investigate one or a limited number of specific
properties of a system (e.g., neutral genetic diversity rather
than genetic structure, Grimm et al., 2005). The implementa-
tion of a model depends on very specific assumptions that are
made when translating biological processes into a computer
algorithm (Grimm & Railsback, 2012). The complexity of the
models largely depends on data availability (e.g., species dis-
persal capacity, population demographic parameters). Hence,
even when investigating a specific empirical property, it is
recommended to rely on models developed independently.
As aresult, understanding the spatial variability in population

genetic data can be tackled from different modeling angles.
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FIGURE 1 Workflow delineating the main steps used in our integrative approach harnessing current and past species distribution
modeling, landscape genetics simulation, empirical genetic, and fossil data in order to identify the drivers that shape the current intraspecific

genetic diversity
3.2 | Paleoclimate

We created a centennial time series for the times from 21'000
BP to 1990 using a variant of the CHELSA V1.2 algorithm (Karger
et al.,, 2017) on the TraCE-21ka data (Liu et al., 2009) (hereafter:
CHELSA-TraCE). The TraCE-21ka dataset contains monthly atmos-
pheric output from transient simulations of a fully coupled, nonac-
celerated atmosphere-ocean-sea ice-land surface simulation using
CCSM3 and starting at the LGM to present. The simulation starts
at 22,000 years before present (22 kyr BP) and finishes in 1990 CE.
TraCE-21ka runs at a T31 grid resolution with 96 by 48 horizontal
grid cells (approximately 3.75°) resolution, which is too coarse for
ecological inference. We downscaled the TraCE-21ka data to 30-
arc second resolutions by complementing the CHELSA V1.2 algo-
rithm with a temperature coupled ice sheet interpolation using ICE
6G (Peltier, Argus, & Drummond, 2015) to estimate the potential
orography at 100-year time steps. Based on this orography, we cal-
culated mean monthly precipitation rates, mean monthly daily maxi-

mum, and mean monthly daily minimum temperatures, bioclimatic

variables, and snow cover using the methods described in Karger
et al. (2017) and Karger et al. (2019).

3.3 | Species distribution model

Species distribution models were calibrated using ensembles of four
statistical techniques: generalized linear models (GLM), generalized
additive models (GAM) with the gam R package (Hastie, 2019), gra-
dient boosting machine (GBM) with the gbm R package (Greenwell,
Boehmke, Cunningham, & Developers, 2019), and RandomForest
(RF) with the randomForest R package (Liaw & Wiener, 2002).
We randomly sampled 3,000 pseudo-absences on the Northern
Hemisphere from 20 to 84 degrees north at 1° resolution (Barbet-
Massin, Jiguet, Albert, & Thuiller, 2012). We rasterized the IUCN
range map for the caribou (Gunn, 2016) at 1° and randomly sampled
1’500 presences. We weighed the presences to provide an equal
weight to pseudo-absences. Four climatic variables from CHELSA-

TraCE (Karger et al., 2017) were used: (a) minimum temperature of
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FIGURE 2 Distribution of caribou and reindeer Rangifer
tarandus sampled herds across the Holarctic distribution of the
species. Sampling locations are colored according to population
membership of each herd to the North American clade, considering
two genetic clusters (from blue for North American clade to red

for Euro-Beringian clade) as inferred in Yannic, Pellissier, Ortego,

et al. (2014). For more details on sampling locations, see Yannic,
Pellissier, Ortego, et al. (2014); Yannic et al., 2018)

the coldest month, precipitation of the (b) coldest and (c) warmest
quarter, and (d) the snow cover days (average number of days per
year where a cell is covered with snow). We evaluated the model
performance using the area under the ROC plot curve (AUC),
Kappa, and true skill statistics (TSS). We used a split sample ap-
proach (70% calibration data and 30% evaluation data) with 20
repetitions. Models are considered to have a reliable performance
with AUC scores > 0.7 and TSS values > 0.4 (Allouche, Tsoar, &
Kadmon, 2006; Guisan, Thuiller, & Zimmermann, 2017). We ap-
plied a binary classification of the suitability from each model out-
put using the maximum TSS approach to define the threshold with
the presenceAbsence R package. Areas covered by glaciers (Clark
et al., 2009; Clark, 2012) were classified as nonsuitable habitat. To
apply binary classification to the ensembles, we classified cells with
predictions of at least two models as suitable climate. We used the
threshold maximizing the TSS value to convert occurrence prob-
abilities in presences/absences from the PresenceAbsence R pack-
age (Freeman & Moisen, 2008). The distribution was predicted with
100-year time steps till the LGM, 20,000 years BP. We validated
the projection to the past with dated fossil records from Matthew
T. Boulanger (Pers. Comm.), Lorenzen et al. (2011), Sommer, Kalbe,

Ekstrém, Benecke, and Liljegren (2014), and all references therein.
3.4 | Computation of landscape connectivity
through time

We precomputed matrices of connectivity between all the cells that

are suitable for the species for all 100-year time steps from the LGM
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to the present. Cost distance and electric circuit are common tool in
landscape genetics to investigate the connectivity among populations
(McRae, Dickson, Keitt, & Shah, 2008) and can be directly compared to
genetic distance metrics such as F¢, chord distance, or distance-based
principal components analysis (see Shirk, Landguth, & Cushman, 2017
for an overview). We computed connectivity matrices based on cost
functions but generalized the computation to multiple time steps from
the LGM to the present. The connectivity matrix computation is based
on the gdistance R package (van Etten, 2018) and can accommodate
various dispersal costs of the different features of the landscape.
Nonsuitable habitat increases the cost of crossing the particular cell(s)
according to their classification (e.g., glacier or sea) and thus decreases
the possible geographic distance over which a population can disperse.
A population can disperse to another cell as long as the least cost path
between them is cheaper than the dispersal distance of that popula-
tion. We prepared matrices with different costs: Crossing unsuitable
habitat and glaciers had a cost factor of 1.1 to 1.25, and crossing the
(frozen) sea had a cost factor of 1.1 to 3.

3.5 | Simulating differentiation among populations
through time

The model components are defined as the following steps. Step 1:
Habitat suitability change: The new binary classification of the SDMs
discriminating suitable habitat from nonsuitable habitat is loaded. Step
2: A “genetic” divergence matrix between each population in each cell
records the accumulation of differentiations (D) among occupied cells
over time. Two populations are connected if the species dispersal capa-
bility (d) is higher than the least cost path between them. Disconnected
populations accumulate differentiation by drift, while connected one
loss genetic differentiation over time by gene flow. After preliminary
analyses (data not shown), we found that during the colonization
process, genetic differentiation by drift occurred faster than genetic
homogenization by gene flow. Therefore, we set the accumulation
of divergence to occur three times as fast as the reduction. Step 3:
Dispersal allows gene flow among connected cells at a distance d as
presented above, but further allows the colonization of uncolonized
cells. Species can disperse to all connected cells, which have a least
cost path less than the dispersal distance d. The cells occupied by the
species will change over time together with the genetic distance matrix
quantifying pairwise differentiation between all the occupied cells.

As a burn-in at the start of the simulation, we replicated the oldest
time step (20,000 years BP) for 50 time steps to accumulate genetic
differentiations between the isolated populations before the dynamic
simulation starts. As parameters in the illustration simulations, we
randomly draw dispersal distances for each cell from a Weibull dis-
tribution with shapes of 1 and 2.5 with median dispersal ranges from
2.1 km to 26 km per year (95% quantile ranging from 4.7 to 89 km/
year). Values were selected according to the reported changes in calf
ground location which reach a maximum speed of 15 km/year (Taillon,
Festa-Bianchet, & Coté, 2012) to 25 km/year (Couturier, Jean, Otto, &
Rivard, 2004) over nearly 20 years. Together with the sets of distance
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matrices, we run in total 70 simulations exploring different dispersal
and landscape connectivity parameters combinations.

3.6 | Comparison between model and genetic data

We applied a principal coordinate analysis (PCoA) on the pairwise
distance matrices obtained from our model as well as the Cavalli-
Sforza chord distance Dc (Cavalli-Sforza & Edwards, 1967) and Fer
value from 1,297 caribou individuals sampled from 57 locations
around their circumpolar distribution (Yannic et al., 2018; Yannic,
Pellissier, Ortego, et al., 2014). The PCoA was computed with
the vegan R package (Oksanen et al., 2019) and the phylogenetic
trees with the ape R package (Paradis, Claude, & Strimmer, 2004;
Paradis & Schliep, 2018). We mapped the resulting ordinated
values and compared simulated ordination and empirical data.
We also compared simulated and empirical pairwise genetic dis-
tance matrices using Spearman's correlation, and significance was
tested with Mantel tests implemented in the vegan R package.
Because not all currently viable populations have been predicted

low

(a) (b)

low

Cost s to cross sea

high
PCoA Dim2

PCoA Dim1

with the model (and vice versa), we removed all populations which
are not included in both the model and the genetic dataset for the
comparison (see Results). We applied a buffer of 200 km around
the genetic sampling location to assign the location to the simula-
tion cluster.

4 | RESULTS
4.1 | Species distribution models

The AUC value for the averaged model ensemble was 0.81 (GLM: 0.82,
GAM: 0.83, GBM: 0.83, RF: 0.78), the Kappa value 0.49 (GLM: 0.48,
GAM: 0.49, GBM: 0.5, RF: 0.47), and the TSS 0.58 (GLM: 0.56, GAM:
0.57, GBM: 0.59, RF: 0.58). We observed a large congruence between
the projections of the four different SDMs. On average, 71% of cells,
which were classified as suitable habitat, were predicted by all models,
87% by at least three and 95% by at least two models. The congruence
between the models generally decreased over time. The average con-
gruence between all four models between the present and 5’000 years

Dispersal

medium high

FIGURE 3 Simulated present genetic distinctiveness for five different simulation parameter settings of dispersal and landscape costs.
Upper row (a)-(c): costs for crossing water equal costs for crossing glaciers. They are increased by a factor of 5/4 compared to suitable
habitat. Lower row (d)-(e): costs for crossing water are increased by a factor of 10/3 compared to suitable habitat and costs for glaciers by
5/4. The dispersal distances are increasing from left to right; 1st column (a): median dispersal distance (mdd): 2.5km/year (95% quantile:
4.7km/year); 2nd column (b)-(d): mdd: 4.3km/year (95%: 7.8km/year); 3rd column (c)-(e): mdd 17km/year (95%: 31km/year). (b) Exhibits

the output matching mostly to the observed genetic structure. Increasing the dispersal distance leads to only two genetic clusters, while
increasing clearly the costs for crossing water results in two distinct populations on the side of the Bering Strait. The difference between (c)
and (e) both with a high dispersal rate, but with a lower cost to cross the sea for (c) in comparison with (e), results in lower genetic difference
between the Eurasia-Beringia population and the one from northeastern America
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BP was 76%, while it decreased to 64% between 15,000 years BP to
20,000 years BP. All SDMs showed two distinct refugia in northern
America during the LGM. The northeastern refugia located in Alaska
close to the Bering Strait and the southern one from the plains in the
Midwest toward the Atlantic (see also Figure 3). Fifty out of 57 (88%)
sampling locations were predicted as suitable habitat by the models
(incl. 200-km buffer; 45/57, 79%, with a 100km buffer).

4.2 | Genetic simulation results

4.2.1 | Formation of the clusters. Effect of the
cost distance

The cost distance for different habitat types strongly influenced
the formation of population clusters (Figure 3). Simulations with
lower costs for nonsuitable habitat showed more limited popula-
tion structure in Northern America when the dispersal capacity was
high or disconnected populations between Russia and Eastern North
America in case of very low dispersal capacities. Exponential disper-

sal (Weibull shape of 1) resulted in events of long-distance dispersal,

(a) 20k years BP

(d) 5k years BP (e) present

(b) 15k years BP
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which largely reduced the genetic structure among populations. The
landscape and the dispersal parameters modulate the simulation
outputs, which generate alternative expectations for the present ge-

netic structure among populations that can be compared to the data.

4.2.2 | Comparison of the simulations with the data

Simulation outputs can be displayed in the form of genetic dendro-
grams and the corresponding distribution maps of the genetic clus-
ters through time (Figures 4 and 5). The correlation between the
pairwise genetic distances predicted by the best simulated model
and the empirical genetic distances estimated with Chord distance
is highly significant (Spearman's correlation = 0.65; Mantel's test p-
value <.001: R% 0.34, p-value < .001) as well as with Fer (Spearman's
correlation = 0.59; Mantel's test p-value < .001; R% 0.40, p-
value < .001; Figure 6). According to the SDMs and the simulations,
the isolation during the glaciation formed two distinct clusters south
of the North American ice sheet and in Beringia-Siberia. Therefrom,
the southern population started to expand its range northwards
about 16,000 years ago, while the Beringian population dispersed

(c) 10k years BP

PCoA Dim2

PCoA Dim1

FIGURE 4 Simulated genetic distinctiveness among populations of caribou (Rangifer tarandus) from (a) 20,000 years BP, (b) 15,000 years
BP, (c) 10,000 years BP, (d) 5,000 years BP, and (e) to the present. The parameters used in this simulation correspond to the one of

Figure 3b): Median dispersal distance per year is 4.3 km, costs for crossing water equal cost for crossing unsuitable habitat. They are
increased by a factor of 5/4 compared to suitable habitat. Black crosses represent fossil records in the interval [-1,000, +1,000] years

around the time step, except for the present time step where the interval corresponds to [-1,000, 0] years. The habitable cells are defined
as suitable from at least two out of four SDMs. The colors indicate the genetic distinctiveness of the populations/clusters according to their
position on the first two axes of the PCoA (f) based on our model to simulate genetic distances. PCoA dimension one explains > 90% of the
variance in all the examples shown. PCoA, principal coordinate analysis; SDM, species distribution models
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(a) Simulated genetic data

(b) Empirical genetic data
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southeastwards. The two populations became connected around
11,000 years BP. This formed a contact zone between the two ge-
netically differentiated groups.

5 | DISCUSSION

We provide a parsimonious method to simulate intraspecific genetic
structure over a temporally dynamic landscape, which can be com-
pared to empirical data. As a proof of concept, our illustrative ap-
plication show the formation of two genetic clusters in the reindeer/
caribou associated with two main different refugia during the LGM
20 kyr BP, that is, in Eurasia and central North America south of the
ice sheet (see also Yannic, Pellissier, Ortego, et al., 2014). The simula-

tion reproduces their dynamics from the LGM to the present shaping

the extant genetic differentiation among populations (Figure 4). The
simulation resulted in an intraspecific structure with two main clus-
ters, each divided into subclusters, which corresponds to the ob-
served genetic differentiation observed in the sampled populations
(Figure 5). The SDMs provide the main constraints on the climatic
suitability for a species from the LGM to the present, but the con-
nectivity among suitable habitat patches further shapes the genetic
structure within species. A broad parameter exploration allows eval-
uating the influence of landscape features and dispersal on the re-
sulting genetic structure, where the comparison to the data informs
on the biology of the species.

The approach developed here combining SDMs, paleo-recon-
structions, and simulations of genetic differentiation can be used
to investigate the role of landscape features and dispersal ability

on present intraspecific genetic structure of species. Intraspecific
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FIGURE 6 Violin plots depicting the correlation between pairwise empirical (F¢; and Chord distance) and simulated genetic distances.
According to simulations, all populations that belong to the same cluster have a genetic distance equal to zero. Red dots correspond to mean

values and error bars to standard deviation

genetic structure largely depends on the level of gene flow among
populations, which is shaped by species and landscape factors
(Balkenhol et al., 2016). First, species display variation in their dis-
persal kernel defined as a probability density function describing the
spread of individuals (Rogers et al., 2019), which can be explored
using the dispersal kernel parameters. Caribou exhibit the longest
terrestrial migrations on the planet, with multiple populations mi-
grating over >1,200 km straight-line, round-trip distance and indi-
viduals moving as much as >4,800 km/year (Joly et al., 2019). This
species is generally not dispersal limited except with long water
barriers (Jenkins et al., 2016; Leblond, St-Laurent, & Coté, 2016).
In simulations, the largest dispersal distance explored best cor-
responded to the empirical data and agrees with measures of calf
ground displacement, that is, 15-25 km/year (Couturier et al., 2004;
Taillon et al., 2012). Second, properties of the landscape facilitate
or hinder the movement of species and can further influence the
gene flow among populations. Reconstructing vegetation types in
the past might have provided more structure for the formation of
genetic differentiation within each of the genetic clusters.

The levels of details in the simulations outputs depend on the
complexity of the landscape features that are accounted for in the
computation as well as the resolution of the SDMs. In our illustra-
tion, the simulated genetic structure showed more limited complex-
ity that in empirical data (Figure 5). For instance, the lineage that
had a refugia South of the North American ice sheet contained only
three subgroups, which is lower than ~20 distinct lineages found in
the empirical data. The main probable explanation for the discrep-
ancy between simulations and observation is the simplified distance
computation considered and the coarse resolution of the SDMs at
1° resolution used in our illustration. Genetic differentiation among
populations might happen as a result of small scale landscape fea-
tures that were not included in our reconstructed maps and distance

matrices, such as small mountain ranges, rivers, forested areas, or

other landscape features, which are influencing caribou popula-
tion connectivity (Apps & McLellan, 2006; Avgar, Mosser, Brown,
& Fryxell, 2013). More complex distance matrices should likely lead
to increased lineage differentiation within each of the main genetic
clusters. Furthermore, we used an illustration at coarse resolution
for large spatial extent to run fast illustrative simulations of the
method. Another limitation resulted from the accuracy of SDMs. A
few specific isolated locations are either not suitable or not colo-
nized in the simulations, which explain the lower complexity of simu-
lated compared to observed genetic structure, as for instance in the
case of Svalbard where a highly isolated population occurs (Yannic
et al., 2018; Yannic, Pellissier, Ortego, et al., 2014). As a result, some
lineages with significant differentiation are not reproduced in the
simulations. To calibrate the SDMs, we used the IUCN range map
rather than accurate locations of species observation. As such, the
calibrated climatic niche of the species is not accurate and only cap-
tures the most obvious dimensions of the species ecological pref-
erences. More accurate high resolution, but also computationally
demanding simulations could generate more structured outputs
with better agreement with the data. In the future, higher landscape
complexity can be included in order to investigate whether with
increased landscape features more complex genetic structure can
emerge in the simulations, beyond the two main groups associated
with the distinct refugees (Yannic, Pellissier, Ortego, et al., 2014).

5.1 | Management implications and
future directions

We provide a parsimonious simulation model that generates expecta-
tions on intraspecific genetic differentiation as a result of landscape
dynamics illustrated with the case of the caribou/reindeer. We pro-

pose to simulate how the interactions between, (a) dispersal ability, (b)
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habitat suitability from SDMs, and (c) landscape connectivity shape
the gene flow between populations and the generation of intraspe-
cific structure over time. Our approach remains simple in nature and
further properties can be considered. In particular, our approach
simulates beta diversity, but not alpha diversity: considering continu-
ous suitability as a proxy of carrying capacity within cells can provide
the means to integrate all diversity facets within the same frame-
work. In a future development, the strength of our framework could
be reinforced by the use of ancient DNA that could, when available,
simultaneously validate past distribution modeling as well as genetic
lineage occurrences. Furthermore, the simulation model provides ex-
pectation for neutral genetic markers and it remains to be seen how
processes can be integrated in a simplified form to study adaptive loci
(e.g., Rebaudo, et al., 2013). The simulation model further allows fore-
casting species range shifts and genetic beta diversity under climate
change scenarios and evaluates how species range shifts will induce
genetic diversity erosion of species. Garcia-Diaz et al. (2019) show that
quantitative models have already served an important role in generat-
ing effective conservation, policy, and management actions. We ex-
pect that a better understanding of the genetic changes as a result of
past climate changes will help predict the future shifts of intraspecific

genetic variation under ongoing climate changes.
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