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Abstract
Spatially explicit simulations of gene flow within complex landscapes could help fore-
cast the responses of populations to global and anthropological changes. Simulating 
how past climate change shaped intraspecific genetic variation can provide a vali-
dation of models in anticipation of their use to predict future changes. We review 
simulation models that provide inferences on population genetic structure. Existing 
simulation models generally integrate complex demographic and genetic processes 
but are less focused on the landscape dynamics. In contrast to previous approaches 
integrating detailed demographic and genetic processes and only secondarily land-
scape dynamics, we present a model based on parsimonious biological mechanisms 
combining habitat suitability and cellular processes, applicable to complex land-
scapes. The simulation model takes as input (a) the species dispersal capacities as 
the main biological parameter, (b) the species habitat suitability, and (c) the land-
scape structure, modulating dispersal. Our model emphasizes the role of landscape 
features and their temporal dynamics in generating genetic differentiation among 
populations within species. We illustrate our model on caribou/reindeer populations 
sampled across the entire species distribution range in the Northern Hemisphere. 
We show that simulations over the past 21 kyr predict a population genetic structure 
that matches empirical data. This approach looking at the impact of historical land-
scape dynamics on intraspecific structure can be used to forecast population struc-
ture under climate change scenarios and evaluate how species range shifts might 
induce erosion of genetic variation within species.
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1  | UNDERSTANDING THE ORIGIN 
OF SPATIAL GENETIC DIVERSIT Y AND 
STRUC TURE

Global climate change is expected to pressure species to shift spe-
cies ranges at an unprecedented rate potentially causing signifi-
cant biodiversity decline (Johnson et al., 2017; Pacifici et al., 2015; 
Parmesan & Yohe, 2003; Pecl et al., 2017; Peñuelas et al., 2013; 
Ripple et al., 2015; Thomas et al., 2004; Urban, 2015). Because of 
limited dispersal, species might be unable to track their suitable 
habitat and get extinct (Årevall, Early, Estrada, Wennergren, & 
Eklöf, 2018). Anticipating the impacts of climate change is central 
to guide species conservation and management strategies as well 
as the design of protected areas (Dawson, Jackson, House, Prentice, 
& Mace, 2011; Jones, Watson, Possingham, & Klein, 2016; Keppel 
et al., 2012). Climate change is expected to erode not only species 
diversity within assemblages, but also intraspecific genetic variation 
(Scheffers et al., 2016), which is crucial for maintaining the ability 
of species to cope with new environmental conditions (Bijlsma & 
Loeschcke, 2012; Des Roches et al., 2018; Hoffmann & Sgrò, 2011; 
Hughes, Inouye, Johnson, Underwood, & Vellend, 2008; Razgour 
et al., 2019; Thuiller et al., 2011). Understanding how historical pro-
cesses impacted intraspecific genetic structure and diversity can 
help anticipate ongoing and future global changes (Alsos et al., 2012; 
Davis & Shaw, 2001; Haywood et al., 2019; Yannic, Pellissier, Ortego, 
et al., 2014).

The climates of the glacial cycles of the Pleistocene, in particular 
the cold period of the last glacial maximum (LGM, 21 kyr BP; Clark 
et al., 2009), reshaped the distribution of ecosystems (Williams, & 
Jackson, 2007), species ranges (Hampe & Jump, 2011; Hewitt, 1999), 
and intraspecific genetic structure (Yannic, Pellissier, Ortego, et al., 
2014). Climate dynamics and its control over the distribution of the 
continental ice sheet caused dramatic species range expansions 
and contractions in the Northern Hemisphere (Alsos et al., 2012). 
Species dispersal is a central determinants of range shifts, but also 
has consequences on the genetic structure within a species range 
(Davis & Shaw, 2001; Szűcs et al., 2017). In particular, repeated 
isolation of populations during successive glacial cycles has gener-
ated complex genetic differentiation within species (Hewitt, 2004; 
Hofreiter & Stewart, 2009; Lister, 2004). Moreover, genetic drift 
during population range shift and range contraction can erode the 
genetic diversity of populations, as theoretically predicted (Arenas, 
Ray, Currat, & Excoffier, 2011; Garnier & Lewis, 2016; McInerny, 
Turner, Wong, Travis, & Benton, 2009), empirically shown (Alsos 
et al., 2007) or forecasted under climate change (e.g., Collevatti, 
Nabout, & Diniz-Filho, 2011). The current genetic structure of spe-
cies is thus expected to be intimately related to the historical spatial 
and temporal variation in their distribution ranges, which in turn has 
shaped the pattern and frequency of population genetic exchanges 
or the degree of genetic differentiation (Espíndola et al., 2012; 
Pellissier et al., 2016).

Landscape genetics as a discipline integrates spatially ex-
plicit data to investigate the influence of landscape heterogeneity 

on contemporary gene flow (Balkenhol, Cushman, Storfer, & 
Waits, 2016). Landscape features and habitat characteristics can 
have a profound impact on genetic structure of populations, by ei-
ther restricting or enhancing individual movements and populations 
connectivity (Taylor, Fahrig, Henein, & Merriam, 1993; Taylor, Fahrig, 
& With, 2006). A central tenet of landscape genetics is to identify 
patterns of suitable habitats or sets of features that promote or hin-
der connectivity among patches and shape the genetic structure 
of species (Zeller, McGarigal, & Whiteley, 2012). Landscape resis-
tance to gene flow is parameterized using different approaches: (a) 
expert opinions (Murray et al., 2009), (b) optimization and parame-
terization methods (e.g., Peterman, 2018; Spear, Balkenhol, Fortin, 
McRae, & Scribner, 2010), or (c) occurrence, presence-data, or sat-
ellite-collar relocations coupled with species distribution modeling 
(Shafer et al., 2012; Yannic, Pellissier, Le Corre, et al., 2014; Zeller 
et al., 2018). The advantage of data-based inferences in relation 
to environmental variables is that it allows constructing more ob-
jective models of habitat use and can identify corridors based on 
true locations or species’ preferred habitat (Fattebert, Robinson, 
Balme, Slotow, & Hunter, 2015; Panzacchi et al., 2016). Landscape 
feature shown to impact connectivity and genetic distinctiveness 
today could have had a similar effect in the past. Hence, the study 
of intraspecific genetic structure requires the identification of his-
torical landscape elements that shaped gene flow through the anal-
ysis of paleo-environmental maps coupled with species ecological 
information.

The climate distribution within landscapes was largely dynamic 
over the past millennia (Batchelor et al., 2019). Originally, the dis-
tributions of paleoclimate were reconstructed using indicators such 
as pollens, environmental DNA (eDNA), oxygen isotopes, or other 
features (Koch, 1998; Lyman, 2017; Parducci et al., 2017; Willerslev 
et al., 2007, 2014). The position of moraines was, for example, used 
for reconstructing the extent of glaciated area in the past millen-
nia and its effect on landscape connectivity (Nesje, Bakke, Dahl, 
Lie, & Matthews, 2008). Fossilized indicators and eDNA from lake 
sediments were used for reconstructing past vegetation patterns 
and informed on species range segregation (Alsos et al., 2016). 
Vegetation reconstruction using fossil records showed that the tree 
line largely shifted during glacial periods (Binney et al., 2017; Payette 
& Lavoie, 1994), possibly shaping connectivity for other organisms. 
The development and refinement of global climate models (GCMs) 
provide another source for the reconstruction of past landscape 
dynamics (Haywood et al., 2019). The downscaling of GCMs from 
coarse to fine resolution can generate the changes in abiotic condi-
tions that constrain the distribution of organisms over time (Latombe 
et al., 2018). Combining different sources for reconstructing past 
species range dynamics can help understand how past dynamics 
shaped present intraspecific genetic structure of species (Fordham 
et al., 2016; Fordham, Brook, Moritz, & Nogués-Bravo, 2014; Gavin 
et al., 2014).

Beyond current landscape configuration, the genetic structure of 
populations is the result of an intermingling of past climatic effects, 
geography, and anthropogenic pressures on species (e.g., Lorenzen 
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et al., 2011). Disentangling effects of different drivers on the cur-
rent genetic structure of populations is however challenging and re-
quires the use of integrative modeling tools (Epperson et al., 2010; 
Landguth, Cushman, & Balkenhol, 2015). We present an overview 
of the simulation approaches that were used to explore the determi-
nants of extant genetic diversity and structure. We further illustrate 
a new modeling approach, conceptually simpler, which provides an 
expectation of intraspecific genetic structure as a result of the dy-
namic landscape suitability and connectivity for species.

2  | INTEGR ATING SIMUL ATIONS AND 
MODELING IN A GLOBAL L ANDSC APE 
GENETIC APPROACH

Genetic data, increasingly available (e.g., Lorenzen et al., 2011), can 
be used to infer past demographic history of species (a) directly, using 
genetic models, in the light of geographic information data, or (b) in-
directly, using process-based spatial simulation models (e.g., Campos 
et al., 2010; Drummond, Rambaut, Shapiro, & Pybus, 2005; Shapiro 
et al., 2004). Moreover, advanced analyses from genomic data can 
support the quantification of past demographic events such as esti-
mations of past population sizes or the occurrence of demographic 
bottlenecks (Hansen et al., 2018; Nadachowska-Brzyska, Li, Smeds, 
Zhang, & Ellegren, 2015; Pilot et al., 2014; Stoffel et al., 2018). 
Through the comparison of spatially structured populations, genetic 
analyses can inform about ancestral population connectivity (e.g., 
temporal changes in the level of isolation-by-distance among ancient 
DNA samples; Lorenzen et al., 2011) and demographic history such 
as genetic bottlenecks driven by population disconnection (Broquet 
et al., 2010).

A variety of spatial data can be used to investigate the origin of 
intraspecific genetic structure of species, which include contempo-
rary landscape descriptors (Sork et al., 2013; Storfer et al., 2007) and 
historical species distribution reconstruction (Nogués-Bravo, 2009). 
Various landscape habitat characteristics are expected to influence 
the connectivity for populations and determine their genetic struc-
ture (Balkenhol et al., 2016). Methods to measure connectivity using 
cost-weighted distance allowed refined quantification of landscape 
barriers to gene flow (Balkenhol et al., 2016). Another complemen-
tary spatial information is provided by species distribution models 
(SDMs), which by estimating species habitat suitability, can help un-
derstand the historical dynamics that shaped intraspecific genetic 
structure of populations (Carnaval, Hickerson, Haddad, Rodrigues, 
& Moritz, 2009; Lorenzen et al., 2011; Razgour et al., 2013; Yannic, 
Pellissier, Ortego, et al., 2014). Hindcasted SDMs were used to iden-
tify the geographic position of refugia (but see Davis, McGuire, & 
Orcutt, 2014), and assess visually if they match a similar structure 
found in the geographic distribution of genetic clusters (e.g., Waltari 
et al., 2007). The availability of more temporal steps for climate re-
constructions between the LGM and the present allowed tracking 
climatic suitability area over time (Hijmans, Cameron, Parra, Jones, & 
Jarvis, 2005; Karger et al., 2017) and combined with simple dispersal Pr

og
ra

m
Si

m
ul

at
or

s
Le

ve
l

D
es

cr
ip

tio
n

Re
f.

SL
iM

Fo
rw

ar
d

Po
pu

la
tio

n
Si

m
ul

at
io

n 
fr

am
ew

or
k 

th
at

 c
om

bi
ne

s 
a 

po
w

er
fu

l, 
fa

st
 e

ng
in

e 
fo

r f
or

w
ar

d 
po

pu
la

tio
n 

ge
ne

tic
 

si
m

ul
at

io
ns

 w
ith

 th
e 

ca
pa

bi
lit

y 
of

 m
od

el
in

g 
a 

w
id

e 
va

rie
ty

 o
f c

om
pl

ex
 e

vo
lu

tio
na

ry
 s

ce
na

rio
s.

 
Su

pp
or

ts
 m

od
el

s 
th

at
 o

cc
up

y 
co

nt
in

uo
us

 s
pa

tia
l l

an
ds

ca
pe

s,
 in

cl
ud

in
g 

bu
ilt

-in
 s

up
po

rt
 fo

r s
pa

tia
l m

ap
s 

th
at

 d
es

cr
ib

e 
en

vi
ro

nm
en

ta
l c

ha
ra

ct
er

is
tic

s.
 P

os
si

bl
e 

to
 m

od
el

 th
e 

ex
pl

ic
it 

m
ov

em
en

t o
f i

nd
iv

id
ua

ls
 

ov
er

 a
 c

on
tin

uo
us

 la
nd

sc
ap

e,
 li

fe
 c

yc
le

s 
w

ith
 o

ve
rla

pp
in

g 
ge

ne
ra

tio
ns

, i
nd

iv
id

ua
l v

ar
ia

tio
n 

in
 

re
pr

od
uc

tio
n,

 d
en

si
ty

-d
ep

en
de

nt
 p

op
ul

at
io

n 
re

gu
la

tio
n,

 in
di

vi
du

al
 v

ar
ia

tio
n 

in
 d

is
pe

rs
al

 o
r m

ig
ra

tio
n,

 
lo

ca
l e

xt
in

ct
io

n 
an

d 
re

co
lo

ni
za

tio
n,

 m
at

in
g 

be
tw

ee
n 

su
bp

op
ul

at
io

ns
, a

ge
 s

tr
uc

tu
re

, f
itn

es
s-

ba
se

d 
su

rv
iv

al
 a

nd
 h

ar
d 

se
le

ct
io

n,
 e

m
er

ge
nt

 s
ex

 ra
tio

s,
 a

nd
 m

or
e.

H
al

le
r a

nd
 M

es
se

r (
20

19
)

qu
an

tiN
em

o
Fo

rw
ar

d 
an

d 
ba

ck
w

ar
d

In
di

vi
du

al
In

di
vi

du
al

-b
as

ed
, g

en
et

ic
al

ly
 e

xp
lic

it 
st

oc
ha

st
ic

 s
im

ul
at

io
n 

pr
og

ra
m

. D
ev

el
op

ed
 to

 in
ve

st
ig

at
e 

th
e 

ef
fe

ct
s 

of
 s

el
ec

tio
n,

 m
ut

at
io

n,
 re

co
m

bi
na

tio
n,

 a
nd

 d
rif

t o
n 

qu
an

tit
at

iv
e 

tr
ai

ts
 in

 s
tr

uc
tu

re
d 

po
pu

la
tio

ns
 c

on
ne

ct
ed

 v
ia

 m
ig

ra
tio

n 
in

 a
 h

et
er

og
en

eo
us

 la
nd

sc
ap

e

N
eu

en
sc

hw
an

de
r, 

M
ic

ha
ud

, a
nd

 
G

ou
de

t (
20

18
)

M
EM

G
EN

E
Si

de
w

ay
Po

pu
la

tio
n

M
et

ho
d 

an
d 

so
ft

w
ar

e 
fo

r i
de

nt
ify

in
g 

sp
at

ia
l n

ei
gh

bo
rh

oo
ds

 in
 g

en
et

ic
 d

is
ta

nc
e 

da
ta

. U
se

 a
 m

ul
tiv

ar
ia

te
 

te
ch

ni
qu

e 
de

ve
lo

pe
d 

fo
r s

pa
tia

l e
co

lo
gi

ca
l a

na
ly

se
s.

 U
si

ng
 s

im
ul

at
ed

 g
en

et
ic

 d
at

a,
 a

llo
w

 re
co

ve
r 

pa
tt

er
ns

 re
fle

ct
in

g 
th

e 
la

nd
sc

ap
e 

fe
at

ur
es

 th
at

 in
flu

en
ce

d 
ge

ne
 fl

ow
.

G
al

pe
rn

, P
er

es
-N

et
o,

 P
ol

fu
s,

 a
nd

 
M

an
se

au
 (2

01
4)

TA
B

LE
 1

 
(C

on
tin

ue
d)



1530  |     YANNIC et Al.

models (Engler & Guisan, 2009), following the geographic range 
dynamics of isolated populations (Espíndola et al., 2012; Nobis & 
Normand, 2014). For example, Yannic, Pellissier, Ortego, et al. (2014) 
found two main refugia for the caribou/reindeer Rangifer tarandus, 
which explain current structure, whose dynamic until the present 
matches the current genetic structure of the species. Habitat suit-
ability values can be used in more complex process-based model to 
simulate intraspecific genetic structure in forward-going simulations 
(Hoban, Bertorelle, & Gaggiotti, 2012).

The adoption of spatial models including genetic mechanisms can 
inform the process that shapes current intraspecific genetic diversity 
and structure (Landguth et al., 2015). Generally, the best available con-
firmation of the understanding of the causes of a phenomenon is the 
ability to build a model from the expected underlying mechanisms and 
reproduce realistic emergent patterns (Leprieur et al., 2016). Process-
based models place causal hypotheses on a leading role, as an a priori 
abstraction of the inner workings of the system that is used to build the 
model (Grimm et al., 2005). More specifically, process-based models in 
landscape genetics are primarily built to evaluate analytical issues, for 
example, the effects of spatial and temporal scale in landscape genetics 
(Jaquiéry, Broquet, Hirzel, Yearsley, & Perrin, 2011), or to investigate 
theoretical questions, for example, quantifying the lag time between 
the emergence of a barrier to movement and its effects on spatial ge-
netic data (Landguth et al., 2010). The expectation of those models can 
be then compared to empirical data qualitatively and quantitatively 
(Jeltsch et al., 2013; Landguth et al., 2015). Based on a limited number 
of principles and in combination with the reconstructed dynamics of 
landscape suitability for species, process-based models are able to pro-
duce expectations related to intraspecific genetic diversity and struc-
ture that matches empirical data (Landguth et al., 2015). A variety of 
spatial process-based models of species genetics have been developed 
and include a variety of processes (Table 1; Box 2), such as genetic drift 
(CDPop; Landguth & Cushman, 2010), geographic isolation (IBDSim; 
Leblois, Estoup, & Streiff, 2006), selection, and adaptation (Nemo; 
Guillaume & Rougemont, 2006). The importance of simulation studies 
for this specific research has been emphasized in a number of recent 
articles (e.g., Balkenhol, Waits, & Dezzani, 2009; Epperson et al., 2010).

We present a parsimonious model allowing inference on population 
genetic structure given the suitability of species occupancy of the 

landscape, the species dispersal capacity, and the landscape struc-
ture shaping connectivity among cells (Figure 1, Box 2). In contrast 
to previous approaches focused on the demographic processes 
that are shaping the genetic diversity within populations (or genetic 
alpha diversity), this modeling approach focuses on how landscape 
dynamics generate differentiation between populations (or genetic 
beta diversity) over time. We adopt a parsimony principle, where 
the model is conceptually simple as the genetic processes are not 
modeled explicitly. The model can integrate the effect of various 
landscape features on population connectivity and work at high 
spatial resolution. The model includes a limited number of param-
eters, where dispersal is central to generate simulated population 
isolation. Dispersal determines populations spatial clustering in 
interaction with the landscape features via the computation of 
connectivity matrices (Balkenhol et al., 2016). The computation 
of the connectivity matrix is as important as the suitability matrix 
itself to determine species dynamics and the connectivity of popu-
lations. Features of the environment can be included to determine 
whether they act as barriers or as corridors for species dispersal, 
and rely on the computation of matrices as classically performed in 
landscape ecology (Balkenhol et al., 2016; Sork et al., 2013; Storfer 
et al., 2007). Our framework is presented on Figure 1. We illustrate 
our approach using a previously published dataset on the case 
study of reindeer/caribou across North America and Eurasia (Yannic 
et al., 2018; Yannic, Pellissier, Ortego, et al., 2014).

3  | METHODS

3.1 | Genetic data

We used a set of 1,297 caribou and reindeer genotyped at 16 nu-
clear microsatellite markers (Yannic et al., 2018; Yannic, Pellissier, 
Ortego, et al., 2014). Samples were obtained from 57 locations 
located across the entire Holarctic native species’ range, includ-
ing Alaska, Canada, Greenland, Svalbard, Norway, Finland, and the 
Russian Federation (Figure 2). Samples were collected over a dec-
ade (2000–2010). We tried to cover as much as possible the known 
circumpolar distribution of the species, although some areas are 
not evenly represented (e.g., few populations from Russia versus 

F I G U R E  B 1   Word cloud of Louis 
Bernatchez’ s research interests © Louis 
Bernatche (http://www2.bio.ulaval.ca/
louis berna tchez/ prese ntati on.htm)

http://www2.bio.ulaval.ca/louisbernatchez/presentation.htm
http://www2.bio.ulaval.ca/louisbernatchez/presentation.htm
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numerous herds from Canada; Figure 2). In these previous works, 
using multivariate and Bayesian analysis, we identified that the ge-
netic structure of Rangifer was split into two main phylogeographic 
clusters at the uppermost hierarchical level (Yannic et al., 2018; 
Yannic, Pellissier, Ortego, et al., 2014). Using climatic niche mod-
eling, we further identified refugia occupied by the two lineages 
at the LGM (i.e., 21 kyr BP), as defined by discontinuous suitability 
for the species, that is, suitable areas located south and northwest 
of the Laurentide Ice Sheet in North America (see panel “21 ka” in 
Figure 2; Yannic, Pellissier, Ortego, et al., 2014). We finally used a 
dispersal model (Engler & Guisan, 2009) to track the species range 
shift overtime (between 21 kyr BP to present) from these distinct 
refugia that lead to the current observed genetic structure of 
Rangifer populations.

2 | Box A geographic model of genetic beta 
diversity

Process-based models of intraspecific genetic diversity and 
structure represent a simplification of the reality, and their 
development is generally done along three main lines of ab-
straction: (a) the nature of the modeled agent (e.g., individuals 
or populations), (b) the detail of the mechanisms (e.g., drift, 
selection), and (c) the characterization of the landscape dy-
namic. A first line of abstraction is the characterization of 
the agent, which might depend on the mechanisms and the 
type of emergent pattern (e.g., population genetic diversity, 
FST) that the model should explore. The definition of the 
agent, over which mechanisms are acting and whose inter-
actions with the landscape generate emergent genetic pat-
terns is crucial. Depending on the research questions, the 
agent can be (a) genes (e.g., Guillaume & Rougemont, 2006), 
(b) individuals (e.g., Melián, Seehausen, Eguíluz, Fortuna, & 
Deiner, 2015), or (c) populations (e.g., Rangel et al., 2018). A 
second line of abstraction is the implementation of processes 
acting on agents, ranging from genetic drift (e.g., CDPop), mu-
tation (e.g., EcoGenetics), recombination (e.g., quantiNemo), 
or hybridization (e.g., PhyloGeoSim, Splatche; see Table 1 for 
details on simulation models). A third line of abstraction is the 
numerical simplification of the landscape over which agents 
and mechanisms play out. The landscape can be modeled 
with more or less complexity, for instance how different fea-
tures (e.g., water, forested areas) influence the permeability 
to the dispersal of a species or using the outputs of SDMs.

Simulation studies require simplifying assumptions tai-
lored to the specific research question, and those should 
correspond to the foreseen comparison to empirical data 
(Landguth et al., 2015). In order to study the variety of em-
pirical patterns, relying on a unique general modeling ap-
proach is unrealistic and a diversity of more specific model 
implementations should be preferred (Landguth et al., 2015). 
Specific models could be implemented in agreement with the 
research question and the property of interest (Landguth 
et al., 2015). A model generally represents a simplification of 
the complexity of natural processes and can be developed 
to specifically investigate one or a limited number of specific 
properties of a system (e.g., neutral genetic diversity rather 
than genetic structure, Grimm et al., 2005). The implementa-
tion of a model depends on very specific assumptions that are 
made when translating biological processes into a computer 
algorithm (Grimm & Railsback, 2012). The complexity of the 
models largely depends on data availability (e.g., species dis-
persal capacity, population demographic parameters). Hence, 
even when investigating a specific empirical property, it is 
recommended to rely on models developed independently. 
As a result, understanding the spatial variability in population 
genetic data can be tackled from different modeling angles.

1 | Box Scientific curiosity and expertise know 
no boundaries

This word cloud was picked up on the web page of Louis 
Bernatchez (Figure Box 1). This figure illustrated the main 
research topics of Louis’ laboratory, that is, fish and genes. It 
would however be restrictive to resume the Louis’ research ac-
tivities to the population genetics and genomics of fishes, and 
more generally, of freshwater and marine organisms, as high-
lighted by some seminal papers not directly related to fishes, 
for example, on MHC in nonmodel vertebrates (Bernatchez & 
Landry, 2003) or on the definition of conservation units (Fraser 
& Bernatchez, 2001). Louis also regularly hosts in his labora-
tory some outliers. I was one of them, working mainly on ques-
tions related to mammal and bird population genetics (e.g., in 
collaboration with Louis on black bear Ursus americanus (Roy, 
Yannic, Côté, & Bernatchez, 2012) or caribou (Yannic, Pellissier, 
Ortego, et al., 2014; Yannic et al. 2016)). My few years as a post-
doc in Louis' laboratory in early 2010 gave me a glimpse into the 
world of “omics,” and since marked my progressive shift from 
population genetics to population genomics. All along these 
years, I was really impressed by the stimulating and friendly 
atmosphere within the Louis Bernatchez’ laboratory, the easi-
ness of people to share experience, codes, laboratory tips, and 
to work collaboratively. In the same vein, stimulated by Louis, 
people were always aware of the most recent scientific litera-
ture, sharing papers and ideas. During my time in Quebec City, 
I also remember (“Je me souviens”) the use of the cutting-edge 
molecular biology technologies and methods to answer theo-
retical questions in evolutionary biology, but which often have 
strong implications for applied science. One of the strengths 
of Louis’ work is to build bridges between a high-level aca-
demic research and conservation and management programs. 
Scientific curiosity and expertise know no boundaries.
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3.2 | Paleoclimate

We created a centennial time series for the times from 21’000 
BP to 1990 using a variant of the CHELSA V1.2 algorithm (Karger 
et al., 2017) on the TraCE-21ka data (Liu et al., 2009) (hereafter: 
CHELSA-TraCE). The TraCE-21ka dataset contains monthly atmos-
pheric output from transient simulations of a fully coupled, nonac-
celerated atmosphere-ocean-sea ice-land surface simulation using 
CCSM3 and starting at the LGM to present. The simulation starts 
at 22,000 years before present (22 kyr BP) and finishes in 1990 CE. 
TraCE-21ka runs at a T31 grid resolution with 96 by 48 horizontal 
grid cells (approximately 3.75°) resolution, which is too coarse for 
ecological inference. We downscaled the TraCE-21ka data to 30-
arc second resolutions by complementing the CHELSA V1.2 algo-
rithm with a temperature coupled ice sheet interpolation using ICE 
6G (Peltier, Argus, & Drummond, 2015) to estimate the potential 
orography at 100-year time steps. Based on this orography, we cal-
culated mean monthly precipitation rates, mean monthly daily maxi-
mum, and mean monthly daily minimum temperatures, bioclimatic 

variables, and snow cover using the methods described in Karger 
et al. (2017) and Karger et al. (2019).

3.3 | Species distribution model

Species distribution models were calibrated using ensembles of four 
statistical techniques: generalized linear models (GLM), generalized 
additive models (GAM) with the gam R package (Hastie, 2019), gra-
dient boosting machine (GBM) with the gbm R package (Greenwell, 
Boehmke, Cunningham, & Developers, 2019), and RandomForest 
(RF) with the randomForest R package (Liaw & Wiener, 2002). 
We randomly sampled 3,000 pseudo-absences on the Northern 
Hemisphere from 20 to 84 degrees north at 1° resolution (Barbet-
Massin, Jiguet, Albert, & Thuiller, 2012). We rasterized the IUCN 
range map for the caribou (Gunn, 2016) at 1° and randomly sampled 
1’500 presences. We weighed the presences to provide an equal 
weight to pseudo-absences. Four climatic variables from CHELSA-
TraCE (Karger et al., 2017) were used: (a) minimum temperature of 

F I G U R E  1   Workflow delineating the main steps used in our integrative approach harnessing current and past species distribution 
modeling, landscape genetics simulation, empirical genetic, and fossil data in order to identify the drivers that shape the current intraspecific 
genetic diversity
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the coldest month, precipitation of the (b) coldest and (c) warmest 
quarter, and (d) the snow cover days (average number of days per 
year where a cell is covered with snow). We evaluated the model 
performance using the area under the ROC plot curve (AUC), 
Kappa, and true skill statistics (TSS). We used a split sample ap-
proach (70% calibration data and 30% evaluation data) with 20 
repetitions. Models are considered to have a reliable performance 
with AUC scores > 0.7 and TSS values > 0.4 (Allouche, Tsoar, & 
Kadmon, 2006; Guisan, Thuiller, & Zimmermann, 2017). We ap-
plied a binary classification of the suitability from each model out-
put using the maximum TSS approach to define the threshold with 
the presenceAbsence R package. Areas covered by glaciers (Clark 
et al., 2009; Clark, 2012) were classified as nonsuitable habitat. To 
apply binary classification to the ensembles, we classified cells with 
predictions of at least two models as suitable climate. We used the 
threshold maximizing the TSS value to convert occurrence prob-
abilities in presences/absences from the PresenceAbsence R pack-
age (Freeman & Moisen, 2008). The distribution was predicted with 
100-year time steps till the LGM, 20,000 years BP. We validated 
the projection to the past with dated fossil records from Matthew 
T. Boulanger (Pers. Comm.), Lorenzen et al. (2011), Sommer, Kalbe, 
Ekström, Benecke, and Liljegren (2014), and all references therein.

3.4 | Computation of landscape connectivity 
through time

We precomputed matrices of connectivity between all the cells that 
are suitable for the species for all 100-year time steps from the LGM 

to the present. Cost distance and electric circuit are common tool in 
landscape genetics to investigate the connectivity among populations 
(McRae, Dickson, Keitt, & Shah, 2008) and can be directly compared to 
genetic distance metrics such as FST, chord distance, or distance-based 
principal components analysis (see Shirk, Landguth, & Cushman, 2017 
for an overview). We computed connectivity matrices based on cost 
functions but generalized the computation to multiple time steps from 
the LGM to the present. The connectivity matrix computation is based 
on the gdistance R package (van Etten, 2018) and can accommodate 
various dispersal costs of the different features of the landscape. 
Nonsuitable habitat increases the cost of crossing the particular cell(s) 
according to their classification (e.g., glacier or sea) and thus decreases 
the possible geographic distance over which a population can disperse. 
A population can disperse to another cell as long as the least cost path 
between them is cheaper than the dispersal distance of that popula-
tion. We prepared matrices with different costs: Crossing unsuitable 
habitat and glaciers had a cost factor of 1.1 to 1.25, and crossing the 
(frozen) sea had a cost factor of 1.1 to 3.

3.5 | Simulating differentiation among populations 
through time

The model components are defined as the following steps. Step 1: 
Habitat suitability change: The new binary classification of the SDMs 
discriminating suitable habitat from nonsuitable habitat is loaded. Step 
2: A “genetic” divergence matrix between each population in each cell 
records the accumulation of differentiations (D) among occupied cells 
over time. Two populations are connected if the species dispersal capa-
bility (d) is higher than the least cost path between them. Disconnected 
populations accumulate differentiation by drift, while connected one 
loss genetic differentiation over time by gene flow. After preliminary 
analyses (data not shown), we found that during the colonization 
process, genetic differentiation by drift occurred faster than genetic 
homogenization by gene flow. Therefore, we set the accumulation 
of divergence to occur three times as fast as the reduction. Step 3: 
Dispersal allows gene flow among connected cells at a distance d as 
presented above, but further allows the colonization of uncolonized 
cells. Species can disperse to all connected cells, which have a least 
cost path less than the dispersal distance d. The cells occupied by the 
species will change over time together with the genetic distance matrix 
quantifying pairwise differentiation between all the occupied cells.

As a burn-in at the start of the simulation, we replicated the oldest 
time step (20,000 years BP) for 50 time steps to accumulate genetic 
differentiations between the isolated populations before the dynamic 
simulation starts. As parameters in the illustration simulations, we 
randomly draw dispersal distances for each cell from a Weibull dis-
tribution with shapes of 1 and 2.5 with median dispersal ranges from 
2.1 km to 26 km per year (95% quantile ranging from 4.7 to 89 km/
year). Values were selected according to the reported changes in calf 
ground location which reach a maximum speed of 15 km/year (Taillon, 
Festa-Bianchet, & Côté, 2012) to 25 km/year (Couturier, Jean, Otto, & 
Rivard, 2004) over nearly 20 years. Together with the sets of distance 

F I G U R E  2   Distribution of caribou and reindeer Rangifer 
tarandus sampled herds across the Holarctic distribution of the 
species. Sampling locations are colored according to population 
membership of each herd to the North American clade, considering 
two genetic clusters (from blue for North American clade to red 
for Euro-Beringian clade) as inferred in Yannic, Pellissier, Ortego, 
et al. (2014). For more details on sampling locations, see Yannic, 
Pellissier, Ortego, et al. (2014); Yannic et al., 2018)

Sampling locations and  genetic clustering
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matrices, we run in total 70 simulations exploring different dispersal 
and landscape connectivity parameters combinations.

3.6 | Comparison between model and genetic data

We applied a principal coordinate analysis (PCoA) on the pairwise 
distance matrices obtained from our model as well as the Cavalli-
Sforza chord distance Dc (Cavalli-Sforza & Edwards, 1967) and FST 
value from 1,297 caribou individuals sampled from 57 locations 
around their circumpolar distribution (Yannic et al., 2018; Yannic, 
Pellissier, Ortego, et al., 2014). The PCoA was computed with 
the vegan R package (Oksanen et al., 2019) and the phylogenetic 
trees with the ape R package (Paradis, Claude, & Strimmer, 2004; 
Paradis & Schliep, 2018). We mapped the resulting ordinated 
values and compared simulated ordination and empirical data. 
We also compared simulated and empirical pairwise genetic dis-
tance matrices using Spearman's correlation, and significance was 
tested with Mantel tests implemented in the vegan R package. 
Because not all currently viable populations have been predicted 

with the model (and vice versa), we removed all populations which 
are not included in both the model and the genetic dataset for the 
comparison (see Results). We applied a buffer of 200 km around 
the genetic sampling location to assign the location to the simula-
tion cluster.

4  | RESULTS

4.1 | Species distribution models

The AUC value for the averaged model ensemble was 0.81 (GLM: 0.82, 
GAM: 0.83, GBM: 0.83, RF: 0.78), the Kappa value 0.49 (GLM: 0.48, 
GAM: 0.49, GBM: 0.5, RF: 0.47), and the TSS 0.58 (GLM: 0.56, GAM: 
0.57, GBM: 0.59, RF: 0.58). We observed a large congruence between 
the projections of the four different SDMs. On average, 71% of cells, 
which were classified as suitable habitat, were predicted by all models, 
87% by at least three and 95% by at least two models. The congruence 
between the models generally decreased over time. The average con-
gruence between all four models between the present and 5’000 years 

F I G U R E  3   Simulated present genetic distinctiveness for five different simulation parameter settings of dispersal and landscape costs. 
Upper row (a)-(c): costs for crossing water equal costs for crossing glaciers. They are increased by a factor of 5/4 compared to suitable 
habitat. Lower row (d)-(e): costs for crossing water are increased by a factor of 10/3 compared to suitable habitat and costs for glaciers by 
5/4. The dispersal distances are increasing from left to right; 1st column (a): median dispersal distance (mdd): 2.5km/year (95% quantile: 
4.7km/year); 2nd column (b)-(d): mdd: 4.3km/year (95%: 7.8km/year); 3rd column (c)-(e): mdd 17km/year (95%: 31km/year). (b) Exhibits 
the output matching mostly to the observed genetic structure. Increasing the dispersal distance leads to only two genetic clusters, while 
increasing clearly the costs for crossing water results in two distinct populations on the side of the Bering Strait. The difference between (c) 
and (e) both with a high dispersal rate, but with a lower cost to cross the sea for (c) in comparison with (e), results in lower genetic difference 
between the Eurasia-Beringia population and the one from northeastern America
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BP was 76%, while it decreased to 64% between 15,000 years BP to 
20,000 years BP. All SDMs showed two distinct refugia in northern 
America during the LGM. The northeastern refugia located in Alaska 
close to the Bering Strait and the southern one from the plains in the 
Midwest toward the Atlantic (see also Figure 3). Fifty out of 57 (88%) 
sampling locations were predicted as suitable habitat by the models 
(incl. 200-km buffer; 45/57, 79%, with a 100km buffer).

4.2 | Genetic simulation results

4.2.1 | Formation of the clusters. Effect of the 
cost distance

The cost distance for different habitat types strongly influenced 
the formation of population clusters (Figure 3). Simulations with 
lower costs for nonsuitable habitat showed more limited popula-
tion structure in Northern America when the dispersal capacity was 
high or disconnected populations between Russia and Eastern North 
America in case of very low dispersal capacities. Exponential disper-
sal (Weibull shape of 1) resulted in events of long-distance dispersal, 

which largely reduced the genetic structure among populations. The 
landscape and the dispersal parameters modulate the simulation 
outputs, which generate alternative expectations for the present ge-
netic structure among populations that can be compared to the data.

4.2.2 | Comparison of the simulations with the data

Simulation outputs can be displayed in the form of genetic dendro-
grams and the corresponding distribution maps of the genetic clus-
ters through time (Figures 4 and 5). The correlation between the 
pairwise genetic distances predicted by the best simulated model 
and the empirical genetic distances estimated with Chord distance 
is highly significant (Spearman's correlation = 0.65; Mantel's test p-
value < .001; R2: 0.34, p-value < .001) as well as with FST (Spearman's 
correlation = 0.59; Mantel's test p-value < .001; R2: 0.40, p-
value < .001; Figure 6). According to the SDMs and the simulations, 
the isolation during the glaciation formed two distinct clusters south 
of the North American ice sheet and in Beringia-Siberia. Therefrom, 
the southern population started to expand its range northwards 
about 16,000 years ago, while the Beringian population dispersed 

F I G U R E  4   Simulated genetic distinctiveness among populations of caribou (Rangifer tarandus) from (a) 20,000 years BP, (b) 15,000 years 
BP, (c) 10,000 years BP, (d) 5,000 years BP, and (e) to the present. The parameters used in this simulation correspond to the one of 
Figure 3b): Median dispersal distance per year is 4.3 km, costs for crossing water equal cost for crossing unsuitable habitat. They are 
increased by a factor of 5/4 compared to suitable habitat. Black crosses represent fossil records in the interval [−1,000, +1,000] years 
around the time step, except for the present time step where the interval corresponds to [−1,000, 0] years. The habitable cells are defined 
as suitable from at least two out of four SDMs. The colors indicate the genetic distinctiveness of the populations/clusters according to their 
position on the first two axes of the PCoA (f) based on our model to simulate genetic distances. PCoA dimension one explains > 90% of the 
variance in all the examples shown. PCoA, principal coordinate analysis; SDM, species distribution models
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southeastwards. The two populations became connected around 
11,000 years BP. This formed a contact zone between the two ge-
netically differentiated groups.

5  | DISCUSSION

We provide a parsimonious method to simulate intraspecific genetic 
structure over a temporally dynamic landscape, which can be com-
pared to empirical data. As a proof of concept, our illustrative ap-
plication show the formation of two genetic clusters in the reindeer/
caribou associated with two main different refugia during the LGM 
20 kyr BP, that is, in Eurasia and central North America south of the 
ice sheet (see also Yannic, Pellissier, Ortego, et al., 2014). The simula-
tion reproduces their dynamics from the LGM to the present shaping 

the extant genetic differentiation among populations (Figure 4). The 
simulation resulted in an intraspecific structure with two main clus-
ters, each divided into subclusters, which corresponds to the ob-
served genetic differentiation observed in the sampled populations 
(Figure 5). The SDMs provide the main constraints on the climatic 
suitability for a species from the LGM to the present, but the con-
nectivity among suitable habitat patches further shapes the genetic 
structure within species. A broad parameter exploration allows eval-
uating the influence of landscape features and dispersal on the re-
sulting genetic structure, where the comparison to the data informs 
on the biology of the species.

The approach developed here combining SDMs, paleo-recon-
structions, and simulations of genetic differentiation can be used 
to investigate the role of landscape features and dispersal ability 
on present intraspecific genetic structure of species. Intraspecific 

F I G U R E  5   Dendrogram of the genetic 
structure recovered (a) from the model 
(left) and (b) from empirical data (right). 
The points are colored according to their 
location on Figure 4 (time series), and gray 
dots represent populations, which are not 
predicted in our model. We used pairwise 
chord distance to create the tree from the 
empirical data
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genetic structure largely depends on the level of gene flow among 
populations, which is shaped by species and landscape factors 
(Balkenhol et al., 2016). First, species display variation in their dis-
persal kernel defined as a probability density function describing the 
spread of individuals (Rogers et al., 2019), which can be explored 
using the dispersal kernel parameters. Caribou exhibit the longest 
terrestrial migrations on the planet, with multiple populations mi-
grating over >1,200 km straight-line, round-trip distance and indi-
viduals moving as much as >4,800 km/year (Joly et al., 2019). This 
species is generally not dispersal limited except with long water 
barriers (Jenkins et al., 2016; Leblond, St-Laurent, & Côté, 2016). 
In simulations, the largest dispersal distance explored best cor-
responded to the empirical data and agrees with measures of calf 
ground displacement, that is, 15–25 km/year (Couturier et al., 2004; 
Taillon et al., 2012). Second, properties of the landscape facilitate 
or hinder the movement of species and can further influence the 
gene flow among populations. Reconstructing vegetation types in 
the past might have provided more structure for the formation of 
genetic differentiation within each of the genetic clusters.

The levels of details in the simulations outputs depend on the 
complexity of the landscape features that are accounted for in the 
computation as well as the resolution of the SDMs. In our illustra-
tion, the simulated genetic structure showed more limited complex-
ity that in empirical data (Figure 5). For instance, the lineage that 
had a refugia South of the North American ice sheet contained only 
three subgroups, which is lower than ~20 distinct lineages found in 
the empirical data. The main probable explanation for the discrep-
ancy between simulations and observation is the simplified distance 
computation considered and the coarse resolution of the SDMs at 
1° resolution used in our illustration. Genetic differentiation among 
populations might happen as a result of small scale landscape fea-
tures that were not included in our reconstructed maps and distance 
matrices, such as small mountain ranges, rivers, forested areas, or 

other landscape features, which are influencing caribou popula-
tion connectivity (Apps & McLellan, 2006; Avgar, Mosser, Brown, 
& Fryxell, 2013). More complex distance matrices should likely lead 
to increased lineage differentiation within each of the main genetic 
clusters. Furthermore, we used an illustration at coarse resolution 
for large spatial extent to run fast illustrative simulations of the 
method. Another limitation resulted from the accuracy of SDMs. A 
few specific isolated locations are either not suitable or not colo-
nized in the simulations, which explain the lower complexity of simu-
lated compared to observed genetic structure, as for instance in the 
case of Svalbard where a highly isolated population occurs (Yannic 
et al., 2018; Yannic, Pellissier, Ortego, et al., 2014). As a result, some 
lineages with significant differentiation are not reproduced in the 
simulations. To calibrate the SDMs, we used the IUCN range map 
rather than accurate locations of species observation. As such, the 
calibrated climatic niche of the species is not accurate and only cap-
tures the most obvious dimensions of the species ecological pref-
erences. More accurate high resolution, but also computationally 
demanding simulations could generate more structured outputs 
with better agreement with the data. In the future, higher landscape 
complexity can be included in order to investigate whether with 
increased landscape features more complex genetic structure can 
emerge in the simulations, beyond the two main groups associated 
with the distinct refugees (Yannic, Pellissier, Ortego, et al., 2014).

5.1 | Management implications and 
future directions

We provide a parsimonious simulation model that generates expecta-
tions on intraspecific genetic differentiation as a result of landscape 
dynamics illustrated with the case of the caribou/reindeer. We pro-
pose to simulate how the interactions between, (a) dispersal ability, (b) 

F I G U R E  6   Violin plots depicting the correlation between pairwise empirical (FST and Chord distance) and simulated genetic distances. 
According to simulations, all populations that belong to the same cluster have a genetic distance equal to zero. Red dots correspond to mean 
values and error bars to standard deviation
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habitat suitability from SDMs, and (c) landscape connectivity shape 
the gene flow between populations and the generation of intraspe-
cific structure over time. Our approach remains simple in nature and 
further properties can be considered. In particular, our approach 
simulates beta diversity, but not alpha diversity: considering continu-
ous suitability as a proxy of carrying capacity within cells can provide 
the means to integrate all diversity facets within the same frame-
work. In a future development, the strength of our framework could 
be reinforced by the use of ancient DNA that could, when available, 
simultaneously validate past distribution modeling as well as genetic 
lineage occurrences. Furthermore, the simulation model provides ex-
pectation for neutral genetic markers and it remains to be seen how 
processes can be integrated in a simplified form to study adaptive loci 
(e.g., Rebaudo, et al., 2013). The simulation model further allows fore-
casting species range shifts and genetic beta diversity under climate 
change scenarios and evaluates how species range shifts will induce 
genetic diversity erosion of species. García-Díaz et al. (2019) show that 
quantitative models have already served an important role in generat-
ing effective conservation, policy, and management actions. We ex-
pect that a better understanding of the genetic changes as a result of 
past climate changes will help predict the future shifts of intraspecific 
genetic variation under ongoing climate changes.
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