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Abstract

The neuropathic glycosphingolipidoses are a subgroup of lysosomal storage disorders for which there are no effective
therapies. A potential approach is substrate reduction therapy using inhibitors of glucosylceramide synthase (GCS) to
decrease the synthesis of glucosylceramide and related glycosphingolipids that accumulate in the lysosomes. Genz-529468,
a blood-brain barrier-permeant iminosugar-based GCS inhibitor, was used to evaluate this concept in a mouse model of
Sandhoff disease, which accumulates the glycosphingolipid GM2 in the visceral organs and CNS. As expected, oral
administration of the drug inhibited hepatic GM2 accumulation. Paradoxically, in the brain, treatment resulted in a slight
increase in GM2 levels and a 20-fold increase in glucosylceramide levels. The increase in brain glucosylceramide levels might
be due to concurrent inhibition of the non-lysosomal glucosylceramidase, Gba2. Similar results were observed with NB-DNJ,
another iminosugar-based GCS inhibitor. Despite these unanticipated increases in glycosphingolipids in the CNS, treatment
nevertheless delayed the loss of motor function and coordination and extended the lifespan of the Sandhoff mice. These
results suggest that the CNS benefits observed in the Sandhoff mice might not necessarily be due to substrate reduction
therapy but rather to off-target effects.
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Introduction

Sandhoff disease, or type 2 GM2 gangliosidosis, is caused by

mutations in the HEXB gene and the resultant deficiency in b-

hexosaminidase activity. This deficiency causes aberrant lysosomal

accumulation of the ganglioside GM2, b-N-acetylgalactosamine-

terminal glycolipids and b-N-acetylglucosamine-terminal oligosac-

charides [1]. Sandhoff disease manifests primarily as a neuropathic

disease of infants, though subjects exhibit a range of severities, as

noted for most lysosomal storage disorders. Presently, there are no

approved therapies for Sandhoff disease.

Glycosphingolipidoses that do not present with neuropathic

disease (such as type 1 Gaucher disease and Fabry disease) can be

treated effectively by enzyme-replacement therapy (ERT) by

periodic intravenous infusions of the respective recombinant

enzymes [2,3]. However, ERT does not address the CNS

manifestations of neuropathic glycosphingolipidoses (e.g. types 2

and 3 Gaucher disease, GM1 and GM2 gangliosidoses) since the

lysosomal enzymes are unable to traverse the blood-brain barrier

[4,5]. An alternative therapeutic strategy is to target glucosylcer-

amide synthase (GCS), the enzyme that catalyzes the first step in

the biosynthesis of glycosphingolipids. Inhibition of GCS effects

what is commonly referred to as substrate reduction therapy

(SRT). SRT is designed to abate the synthesis of glucosylceramide,

and by extension the aberrant lysosomal storage of glycosphingo-

lipids. Indeed, preclinical and clinical studies in type 1 Gaucher

disease have shown that such inhibitors significantly improve the

disease manifestations in the viscera [6,7]. Preclinical studies with

a GCS inhibitor have also shown that SRT is potentially

therapeutic in Fabry disease [8].

Presently, one GCS inhibitor (miglustat) has been approved for

use in mild to moderate type 1 Gaucher patients for whom ERT is

not a therapeutic option and in Niemann-Pick C patients [6,9].

Another, eliglustat tartrate, is in phase 3 clinical trials for type 1

Gaucher patients [7]. Miglustat but not eliglustat tartrate is able to

traverse the blood-brain barrier and thus might be used to treat
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the neuropathic glycosphingolipidoses. While excessive inhibition

of the glycosphingolipid biosynthetic pathway could be detrimen-

tal to neuronal development and stabilization [10–12], the goal is

to effect a partial reduction such that the rate of synthesis is

matched by the residual capacity of the cells to degrade the

substrates. Accordingly, SRT is arguably best suited for those

indications that retain some measure of residual enzyme activity as

in type 3 Gaucher patients and late-onset Tay-Sachs diseases.

As iminosugar-based GCS inhibitors (N-butyl-deoxynojirimycin

(NB-DNJ), or miglustat) have been shown capable of entering the

brain parenchyma and improving disease outcomes in mouse

models of lysosomal storage disorders [13–15], we have elected to

evaluate structural analogs that are reportedly more potent. One

such molecule is AMP-DMP or Genz-529468 [16,17] as it is

referred to in this report. Testing was performed in a mouse model

of Sandhoff disease [18] that lacks b-hexosaminidase activity and

accumulates GM2 and GA2 throughout the CNS, liver and

kidney. CNS manifestations are apparent by 3 months of age and

progressive, with death occurring at 4–5 months of age. The CNS

involvement is the likely cause of death, as the peripheral nervous

system shows no significant abnormalities [19]. The potential

utility of SRT in Sandhoff disease was elegantly demonstrated by

the generation of a mouse that was deficient in both b-

hexosaminidase and GM2/GA2 synthase [20]. The resulting

double knockout mouse no longer accumulated glycosphingolipids

and exhibited an increased lifespan.

Previous studies have shown survival benefit when Sandhoff

mice were treated with the GCS inhibitor NB-DNJ or its galactose

analog [13,21,22]. As Genz-529468 is approximately 250-fold

more potent as a GCS inhibitor than NB-DNJ [23], we sought to

evaluate its therapeutic potential for neuropathic glycosphingoli-

pidoses. Our studies showed that Genz-529468 was comparable to

NB-DNJ at increasing the survival of Sandhoff mice, but could do

so at much lower doses. However, notable treatment-induced

increases in CNS glycosphingolipids, particularly of glucosylcer-

amide, suggest that the mechanism of action of the iminosugar

GCS inhibitors is not necessarily through the anticipated

mechanism of substrate reduction.

Results

Iminosugar-based glucosylceramide synthase inhibitors
reduce GM2 levels in the livers of Sandhoff mice

To test the inhibitory activities of the GCS inhibitors, Genz-

529468 and NB-DNJ, were administered to Sandhoff mice

through their food (100 mg/kg/day and 600 mg/kg/day, respec-

tively) starting at 25 days of age. As a comparator, eliglustat

tartrate (Genz-112638), which is non blood-brain barrier perme-

ant, was included in the study. Analysis of glycosphingolipid levels

in the livers of drug-treated Sandhoff mice showed a 40–60%

reduction in GM2 levels when compared to age-matched

untreated Sandhoff mice at 112 days of age [data not shown

and 21]. Hence, the formulations of Genz-529468 and NB-DNJ

used in these studies were equally active at inhibiting non-CNS

GCS despite using a 6-fold lower dose of Genz-529468.

Genz-529468 and NB-DNJ significantly increase
glucosylceramide levels in the brains of Sandhoff mice

To evaluate whether the inhibitors (Genz-529468 and NB-DNJ)

were also active in the CNS of Sandhoff mice, their brains were

weighed and analyzed for changes in glycosphingolipid levels.

Brain weight as a ratio to body weight was not significantly

different between wild-type and Sandhoff mice at 112 days of age,

and was unaffected by treatment with Genz-529468 or NB-DNJ

(data not shown). Glycosphingolipid analysis was focused on the

proximal target of the inhibitors, namely glucosylceramide (GL1),

together with the two main storage products found in Sandhoff

disease, the gangliosides GM2 and GA2. Untreated Sandhoff and

wild-type mice harbor similar levels of GL1, but the former have

.100-fold higher levels of GM2 and GA2 (data not shown).

Contrary to our expectations, Sandhoff mice treated with Genz-

529468 beginning at 25 days of age showed a rapid increase in

brain GL1 levels, with levels rising to .10-fold those of untreated

mice after 2–3 days of treatment (Figure 1A). These GL1 levels

continued to increase further, rising to .20-fold those of untreated

mice at all subsequent time points assayed (56, 84 and 112 days of

age). Significant increases in GA2 and GM2 were also observed

(Figure 1A), though these increases were more modest (120–

150% those of untreated Sandhoff mice). Sandhoff mice treated

with NB-DNJ resulted in a similar temporal profile of brain

glycolipids, with GL1 levels increasing to .10-fold higher than

those of untreated Sandhoff control mice (Figure 1B), However,

in contrast to the effects of Genz-529468, NB-DNJ effected a

modest but significant reduction in GM2 (,90% of untreated

mice) at 84 and 112 days of age, and had no effect on GA2 levels.

Treating Sandhoff mice with the non-CNS permeant GCS

inhibitor Genz-112638 (eliglustat tartrate) had no impact on brain

glycosphingolipid levels.

In a separate study, Sandhoff mice were treated with Genz-

529468 as in Figure 1A, and brain tissue at day 112 was analyzed

for the levels of a panel of glycosphingolipids and other lipids.

Figure 1C shows that in addition to the .20-fold increase in GL1

levels in the treated mice (as in Figure 1A), the relative levels of

other glycosphingolipids in the pathway (GL2, GM3, GM2, GA2

and GM1) were also increased to 120–150% of untreated mice.

Genz-529468 treatment had no effect on the relative brain levels

of ceramide (Cer), sphingomyelin (SPM), phosphatidylcholine (PC)

and galactosylceramide (Gal), but sphingosine-1-phosphate (S1P)

levels were reduced to about 75% those of untreated Sandhoff

mice (Figure 1D). Hence, enteric administration of the

iminosugar-based GCS inhibitors Genz-529468 and NB-DNJ

acted to increase rather than decrease glycosphingolipid levels in

the brains of Sandhoff mice. In particular, GL1, the proximal

glycosphingolipid in the GCS pathway, was increased many fold

by both inhibitors. This effect on brain GL1 levels did not appear

to be restricted to the Sandhoff mouse, as similar increases in brain

GL1 levels were found in other mouse strains following treatment

with Genz-529468 or NB-DNJ (data not shown).

Treatment with iminosugar-based GCS inhibitors delays
the development of pathology in Sandhoff mouse brain

To evaluate the effects of the iminosugar-based GCS inhibitors

on the brain pathology of Sandhoff mice, time-dependent changes

in CD68 immunopositive cells, glial fibrillary acidic protein

(GFAP) expression, and a-synuclein immunopositive cells were

determined. CD68 is a marker for cells of the monocyte lineage

(macrophages, dendritic cells, microglia), granulocytes and acti-

vated T cells. In wild-type mice, CD68+ cells were absent or rare

within the neuroparenchyma, though a few scattered CD68+ cells

were occasionally observed in leptomeninges. In contrast, Sandh-

off mice exhibited significant numbers of CD68+ cells in the brain

stem, cerebellum, hippocampus and thalamus. A few scattered

CD68+ cells were also observed in the cerebral cortex and

leptomeninges. Figure 2A shows the time-dependent changes in

CD68+ staining in the brain stem of untreated wild-type and

Sandhoff mice and Sandhoff mice treated with Genz-529468 or

NB-DNJ. Untreated Sandhoff mice exhibited a higher number of

CD68+ cells than age-matched wild-type mice at all ages. This
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increase was exacerbated as the Sandhoff mice aged, with a

dramatic increase in CD68+ cells noted between 84 and 112 days

of age. Treatment with either Genz-529468 or NB-DNJ appeared

to reduce the number of CD68+ cells at each time point. This

reduction was also apparent in other regions of the brain

(Figure 2B). Quantitative analysis of the cerebellum, hippocam-

pus and thalamus of Sandhoff mice treated with Genz-529468 or

NB-DNJ at day 112 showed a similar decrease in the number of

CD68+ cells noted in the brain stem. These observations are

consistent with previous studies with GCS inhibitors [21,24] or

bone marrow transplantation [25].

Glial fibrillary acidic protein (GFAP) is an astrocyte marker that

increases during astrocytic activation, including in response to

neurodegeneration. Elevations in GFAP staining in the brains of

Sandhoff mice have been reported previously [24,26]. In

untreated Sandhoff mice, the most prominent GFAP immunola-

beling was observed in the brain stem, thalamus, cerebellum,

hippocampus and cerebral cortex. As with the CD68 marker,

there was a temporal increase in GFAP immunolabeling within

these brain regions, especially in the brain stem and thalamus.

Immunohistochemical analysis of the brain stem and thalamus of

Sandhoff mice treated with either Genz-529468 or NB-DNJ (at

day 112) showed a reduction in GFAP staining when compared

with age-matched wild type mice (Figure 3A). Quantitation of the

number of GFAP-positive cells confirmed these apparent histo-

logical reductions in drug-treated animals (Figure 3B).

Accumulation of a-synuclein in the CNS is a common feature of

many neurodegenerative diseases including Sandhoff disease [27].

Staining of cortical sections from 112 day-old wild type mice

showed no detectable a-synuclein staining (Figure 4A; panel i).
In contrast, the cortex of age-matched Sandhoff mice exhibited

clear indications of positive a-synuclein staining (Figure 4A;
panel ii). Similar results were seen in the hippocampus and brain

stem of Sandhoff mice, with more infrequent positive staining in

Figure 1. Iminosugar-based GCS inhibitors increase brain glycosphingolipid levels. Beginning at 25 days of age, Sandhoff mice were treated
with either (A) Genz-529468 or (B) NB-DNJ, sacrificed over time and their brain tissue glycosphingolipids quantified (n = 4–5 mice per group per time point).
Brain levels of GL1, GM2 and GA2 are shown relative to amounts in untreated age-matched controls. A larger range of brain (C) glycosphingolipids and (D)
lipids, are shown following treatment with Genz-529468 at 112 days of age. Cer = ceramide, SPM = sphingomyelin, PC = phosphatidylcholine,
Gal = galactosylceramide, S1P = sphingosine-1-phosphate. Statistics were performed between Sandhoff mice that were untreated and treated with drug,
and were determined using the Graphpad Prism software t test; * = p,0.05, ** = p,0.01, *** = p,0.001. Error bars indicate SEM.
doi:10.1371/journal.pone.0021758.g001
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the striatum and thalamus (data not shown). Intense immuno-

staining for a-synuclein was observed in the cytoplasm of neurons

in these areas. Immunoreactivity was also observed in a few

cortical neurons containing cytoplasmic vacuoles (suggesting

substrate accumulation). Sandhoff mice treated with Genz-

529468 or NB-DNJ showed a reduced number of cells staining

positive for a-synuclein and the intensity of staining was also lower

(Figure 4A; panels iii and iv). Quantitation of the number of a-

synuclein-positive cells in the cortex of 112 day-old animals

showed that treatment had reduced the number by ,50%

(Figure 4B). Together, these data suggest that the iminosugar-

based inhibitors of GCS were able to reduce the extent of

inflammation and neurodegeneration in multiple brain regions of

Sandhoff mice.

Genz-529468 and NB-DNJ significantly delay the rate of
loss of motor-coordination and locomotion in Sandhoff
mice

Mouse locomotor ability was measured using an activity

chamber apparatus (open-field) in which the mice were allowed

to explore freely for 30 min. Figure 5A shows that at the 112 day

time point, both NB-DNJ and Genz-529468 treated mice

exhibited significantly greater ambulatory activity (as measured

by the distance traversed and the number of rearing events) than

the untreated Sandhoff controls. There was no significant

difference between the groups treated with NB-DNJ and Genz-

529468. These results are consistent with previous reports of

Sandhoff mice treated with iminosugar-based GCS inhibitors

[21,22].

Mice were also evaluated using the elevated plus maze

(habituation) and rotarod (motor coordination) assays. Motor

coordination deficits have previously been demonstrated in the

Sandhoff mouse model [18,20,26,28]. Testing was initiated prior

to the onset of overt disease symptoms and continued until either

the mice were unable to perform the test, or there were fewer than

8 mice/group surviving. No measurable deficit was detected in the

Sandhoff mice using the elevated plus maze test. However,

untreated Sandhoff mice showed a loss of motor coordination

starting at 100 days of age when tested with the rotarod assay

(Figure 5B). Treatment with Genz-529468 significantly delayed

the onset (by approximately 2 weeks) and rate of loss in motor

coordination. Sandhoff mice treated with NB-DNJ showed a

similar if not better benefit than those treated with Genz-529468

(Figure 5B). Age-matched wild-type mice showed no loss in

motor coordination over the same period.

Genz-529468 and NB-DNJ are equally effective at
increasing the longevity of Sandhoff mice

Sandhoff mice were administered the maximal effective dose of

either Genz-529468 or NB-DNJ in their diet; for Genz-529468 this

was ,100 mg/kg/day (determined empirically) and for NB-DNJ

,600 mg/kg/day [22]. A dose of 1200 mg/kg/day of NB-DNJ

caused diarrhea and resulted in no survival benefit, although this and

higher doses have previously been reported as beneficial [13,21].

Body weights and food intake were the same between Sandhoff and

wild-type mice (through day 100), and were unaffected by treatment.

In agreement with previous studies [22,28,29], untreated Sandhoff

mice became moribund (criterion for sacrifice) at a median age of 135

days (Figure 6). Treatment with either iminosugar-based GCS

inhibitor significantly (p,0.0001) increased their lifespan; with Genz-

529468, the median lifespan was 181 days and with NB-DNJ it was

191 days, which represented increases of 34% and 41%, respectively.

There was no significant difference in survival between mice treated

with NB-DNJ and Genz-529468. This enhancement of survival is in

concordance with published reports using NB-DNJ [13,21,22,29].

Delivery of these inhibitors across the blood-brain barrier was key to

their efficacy, since Genz-112638 (eliglustat tartrate), which is non

blood-brain barrier-permeant [7,8] showed no survival benefit

(median lifespan of 132 days).

Discussion

Substrate reduction therapy has shown promise in preclinical

studies as a therapeutic approach for several lysosomal storage

diseases, including Gaucher [6,7], Fabry [8], Pompe [30], and the

gangliosidoses [13,14]. However, as a tolerated dose of SRT is

unlikely to completely block the synthesis of the respective storage

products, this strategy is expected to be most applicable to diseases

where there is some residual enzyme activity or in which an

alternative mechanism or pathway exists for substrate removal. In

this regard, neuropathic glycosphingolipidoses that are likely to

benefit from this therapeutic paradigm are type 3 Gaucher disease,

and late-onset Sandhoff and Tay-Sachs diseases [31,32]. However,

clinical trials with miglustat (NB-DNJ) have demonstrated limited

success [33–36]. A suggestion was that the drug might not have

sufficient potency at the tolerated doses. Consequently, we elected

to evaluate the therapeutic potential of Genz-529468, another

iminosugar-based inhibitor of GCS, whose IC50 is 250-fold greater

than that of miglustat [23].

Sandhoff mice treated with either Genz-529468 or NB-DNJ (at

their maximal effective doses) showed similar improvements in a

number of parameters assayed, perhaps reflecting a shared

mechanism of action for these two structurally related molecules.

These improvements included a delay in the loss of motor function

and coordination, reduced neuroinflammation and histopatholo-

gy, as well as increased survival. Several of these observations are

consistent with those reported previously for NB-DNJ [13,21].

However, it would appear that the use of Genz-529468, a more

potent GCS inhibitor than NB-DNJ, provided no additional

benefit in the parameters measured, suggesting that a maximal

therapeutic effect might have been attained with this class of GCS

inhibitors.

Profiling the glycosphingolipids in the livers of Sandhoff mice

treated with the GCS inhibitors revealed the expected lowering of

the levels of the glycosphingolipids GL1, GM2 and GA2.

Paradoxically, analysis of brain lipids from treated Sandhoff mice

showed a dramatic increase in the GL1 levels as well as significant

increases in other glycosphingolipids. This finding of higher lipid

levels (GM2) in the brains of drug-treated Sandhoff mice had been

reported previously [22] and also for another iminosugar-based

GCS inhibitor, NB-DGJ [21], though these were both end-stage

measurements. The basis for the observed increase in brain GL1

levels by these iminosugar-based GCS inhibitors was likely due to

its reported secondary inhibitory activity of the non-lysosomal

enzyme b-glucosidase 2 (Gba2) [16,37,38]. Gba2 is a plasma

Figure 2. Iminosugar-based GCS inhibitors decrease the number of brain CD68 positive cells. (A) CD68 immunolabeling of brain stem
from 28, 56, 84 and 112 day old Sandhoff mice, untreated or treated with either Genz-529468 or NB-DNJ. Dark brown cells are positive for CD68; scale
bar = 50 mm. (B) Quantification of CD68+ cell counts in the brain stem, cerebellum, hippocampus and thalamus of 112 day old drug-treated Sandhoff
mice (n = 4–5 mice per group). Cell counts are presented relative to those in untreated Sandhoff mice. Statistics are between untreated and treated
Sandhoff mice, and were determined using the Graphpad Prism software t test; * = p,0.05. Error bars indicate SEM.
doi:10.1371/journal.pone.0021758.g002
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membrane-associated enzyme involved in GL1 homeostasis and is

expressed maximally in testis and brain tissue [37]. Consistent with

this suggestion is the observation that Gba2 knockout mice develop

elevated levels of GL1 in the brain, though with no apparent

detrimental effects on health [37].

GL1 accumulation has also been previously reported in the

testis and brain tissue of wild-type mice treated with this class of

GCS inhibitors [39]. This increase in GL1 levels probably led to

the observed increased levels of the additional complex glyco-

sphingolipids, presumably through greater synthesis. Previous

studies using NB-DNJ in the Sandhoff mouse had not reported

altered brain GL1 levels [13,21,22,40], possibly because some

assay methods do not easily differentiate galactosylceramide from

glucosylceramide, and galactosylceramide is generally present in a

10–20 fold excess over GL1 in the mouse CNS. These data suggest

that the survival benefit elicited by the iminosugar-based GCS

inhibitors might not be primarily due to substrate reduction in the

CNS. It is possible that the increase in survival reflected a delay in

the onset or severity of disease manifestations in the visceral

organs. Indeed, bone marrow transplantation of Sandhoff mice

[28] has been shown to reduce storage pathology in the visceral

organs but not the brain but nevertheless conferred a 3 month

extension in longevity [28]. However, as the non-CNS permeant

GCS inhibitor (Genz-112638) did not provide the same improve-

ments noted with the CNS-permeant inhibitors (Genz-529468 and

NB-DNJ), this could not be the sole explanation.

The documented pathophysiology of neuropathic diseases such

as Sandhoff [41] and the complex roles of gangliosides in the CNS

[24] provide some potential mechanisms of action through which

the iminosugar-based GCS inhibitors might have worked to effect

the observed positive outcomes. For example, it is possible that

their activities altered the extent of neurodegeneration, inflamma-

tion, autophagy and intracellular calcium regulation. Changing

the lipid profiles in the brain to contain higher levels of GM1 and

GL1 and lower levels of sphingosine-1-phosphate could have

contributed to moderating disease severity. GM1 has been shown

to enhance the functional recovery of damaged neurons [42], and

GL1 reportedly can stimulate neuronal growth and development

[43]. The noted Genz-529468-mediated reduction in sphingosine-

1-phosphate levels could also have translated to a reduction in

astroglial proliferation in the Sandhoff mice as suggested

previously [44]. As inflammation is a major pathophysiologic

feature of Sandhoff disease [24,45] and a contributor to

neurodegeneration or apoptosis [46], these inhibitors could also

be acting to limit the inflammatory response. Anti-inflammatory

drugs have been reported to provide a survival benefit in the

Sandhoff mouse [26,29]. Similarly, survival benefit following

bone-marrow transplantation in Sandhoff mice has been postu-

lated as being through an anti-inflammatory mechanism [22,28].

Genz-529468 exhibits systemic anti-inflammatory properties

[47,48], which raises the possibility that this might be part of the

basis for the improved survival seen in the treated Sandhoff mice.

Brains of animals treated with Genz-529468 showed less

astrogliosis and microglial activation, which in turn might have

reduced the degree of neuronal damage. Treatment also caused

significant reductions in both the intensity and number of a-

synuclein positive aggregates in the brain. In murine models of

Parkinson’s disease, aggregates of a-synuclein have been shown to

activate microglia and amplify neurodegenerative processes

[49,50].

In summary, these studies clearly demonstrated and confirmed

the ability of iminosugar-based GCS inhibitors to delay the onset

of disease and increase the longevity of a mouse model of Sandhoff

disease. However, contrary to prior suggestions [13,21,22] it

would appear that these benefits are unrelated to substrate

reduction therapy, since treatment led to elevated levels of

glycosphingolipids in the brain. Potential alternate mechanisms

to explain the observed benefits of this class of drugs might be

through their ability to (i) lessen the extent of a-synuclein

aggregation, (ii) act as an anti-inflammatory agent or (iii) inhibit

the non-lysosomal b-glucosidase resulting in altered levels of

neuronal glycosphingolipids. Further studies are necessary to

elucidate fully the basis for the neurologic benefits of this class of

GCS inhibitors in Sandhoff mice.

Materials and Methods

Animal studies
Ethics Statement: Procedures involving mice were reviewed and

approved by Genzyme Corporation’s Institutional Animal Care

and Use Committee (Protocol 07-1115-2-BC) following guidelines

established by the Association for Assessment of Accreditation of

Laboratory Animal Care. The review board specifically approved

all the studies (identification numbers 09-3706, 09-3784, 09-4157,

09-4231) reported in this manuscript. Sandhoff mice [18] were

purchased from Jackson Labs (Bar Harbor, ME) and contract bred

at Charles River Labs (Bedford, MA). This mouse model develops

neurodegenerative disease and exhibits physical difficulties in

feeding, drinking and grooming at about 100 days of age. To

minimize the potential for suffering, mice were assessed daily from

day 80 and euthanized when they were unable to right themselves

from a supine position within 30 sec.

Drug dosing
Beginning at 3–4 weeks of age, animals were given drug as a

component of the pellet food diet. Drugs were formulated at

0.05% (Genz-529468) or 0.3% (NB-DNJ) w/w in a standard

mouse chow (LabDiet 5053, TestDiet, Richmond, IN) and

provided ad libitum. This formulation was calculated to provide

100 mg/kg of Genz-529468 or 600 mg/kg of NB-DNJ per day for

a 25 g mouse eating 5 g of food per day. These doses of the GCS

inhibitors were considered maximal based on pilot tolerability and

efficacy studies.

Functional studies
Mice were evaluated for motor coordination and locomotion

using accelerating rotarod and open-field assays, respectively.

Tests were run weekly at the same time of day on each occasion.

The rotarod assay consisted of placing the animals on a 30 mm

diameter spindle at a height of 30 cm. The Smartrod program

(AccuScan Instruments, Columbus, OH) controlled the accelera-

tion from 0–15 rpm over 60 s. The time to fall (latency) was

automatically recorded by a light beam sensor underneath the

spindle. Each animal was subjected to 4 trials at each time point

Figure 3. Iminosugar-based GCS inhibitors decrease brain GFAP positive cells. (A) GFAP immunolabeling of brain stem (left panels) or
thalamus (right panels) of 112 day old wild-type or Sandhoff mice (untreated or treated with either Genz-529468 or NB-DNJ). Dark brown cells are
positive for GFAP; scale bar = 50 mm. (B) Quantitative analysis of GFAP staining in brain stem and thalamus of drug-treated Sandhoff mice (n = 4–5
mice per group). GFAP stained area is presented relative to that of untreated Sandhoff mice. Statistics are between untreated and treated Sandhoff
mice, and were determined using the Graphpad Prism software t test; * = p,0.05, *** = p,0.001. Error bars indicate SEM.
doi:10.1371/journal.pone.0021758.g003
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(the first result on each assay day was discarded), with an ,30 min

rest period between each trial. The open-field assay (Med

Associates, Georgia, VT) was used to measure locomotor activity.

Mice were placed individually into a 30 cm/side square high-

walled arena. Movement was automatically detected using a series

of sensor light beams to measure horizontal and vertical

movement. Trials were performed for 30 min in a noise-controlled

room. Data were analyzed using Activity Monitor software (Med

Associates, St. Albans, VT) to evaluate total ambulatory

movement and rearing.

Tissue processing and immunohistochemistry
Mice at 28, 56, 84 and 112 days of age were transcardially

perfused with 0.9% sodium chloride solution and tissues fixed in

fresh 4% paraformaldehyde for 2 days at 4uC. Tissues were

embedded in paraffin and 5 mm sections were cut. CD68 staining

was performed using the Bond Polymer Refine Detection System

(BPRDS; Leica Microsystems, Bannockburn, IL). Brain sections

were incubated with Proteinase K (DAKO, Carpinteria, CA) for

5 min for antigen retrieval prior to staining. Sections were then

incubated with either an anti-CD68 antibody (clone FA-11;

Serotec, Raleigh, NC) or an isotype-matched non-specific

antibody (rat IgG2a; Serotec, Raleigh, NC). Secondary detection

was with a rabbit anti-rat antibody (Vector Labs, Burlingame,

CA). Glial Fibrillary Acidic Protein (GFAP) staining was

performed using the BPRDS and an anti-GFAP antibody (DAKO,

Carpinteria, CA). An isotype-matched, non-specific antibody

(rabbit IgG, Jackson Immunoresearch, West Grove, PA) was used

as the negative control. For a-synuclein staining, antigen retrieval

was achieved by treatment with 70% formic acid (Sigma, St.

Louis, MO) for 10 min prior to boiling in Antigen Unmasking

Solution (Vector Labs, Burlingame, CA) for 30 min. Endogenous

peroxidase activity was quenched by immersion in 0.3% hydrogen

peroxide (Sigma) in methanol for 30 min and a-synuclein was

detected by incubating with rabbit anti-a-synuclein antibody

(Sigma) overnight at 4uC. Visualization was achieved using goat

Figure 4. Iminosugar-based GCS inhibitors decrease brain a-synuclein aggregates. (A) Immunolabeling of a-synuclein in the cortex (Cx)
adjacent to the corpus callosum (CC) of 112 day old (i) wild-type or (ii) untreated Sandhoff mice or (iii) Sandhoff mice treated with Genz-529468 or (iv)
Sandhoff mice treated with NB-DNJ. Dark cells (arrows) are positive for a-synuclein; scale bar = 50 mm. Inset shows a further 36magnification of a-
synuclein positive cells. (B) Quantitation of a-synuclein positive cells in the cortex of untreated or drug-treated 112 day old Sandhoff mice (n = 4–5
mice per group). Statistics are between untreated and treated Sandhoff mice, and were determined using the Graphpad Prism software t test;
*** = p,0.001. Error bars indicate SEM.
doi:10.1371/journal.pone.0021758.g004

Figure 5. Iminosugar-based GCS inhibitors improve Sandhoff
mouse function. (A) Mice were evaluated in an open-field assay at
112 days of age. Total distance traversed (ambulatory distance) and the
number of times the mice raised onto their hind legs (rearing events)
over 30 min are shown. (n = 15/group. Statistics are between untreated
and treated Sandhoff mice, and were determined using the Graphpad
Prism software t test; ** = p,0.01, *** = p,0.001. Error bars indicate
SEM). (B) Mice were evaluated for motor coordination using the rotarod
assay. The amount of time (in secs) the mice remained on the rotarod is
reported as the latency. Latency is shown for wild-type mice, Genz-
529468- and NB-DNJ-treated Sandhoff mice and untreated Sandhoff
mice. (n = 15/group). Statistics compared untreated Sandhoff to Genz-
529468-treated Sandhoff mice, and were determined using the
Graphpad Prism software t test; * = p,0.05, ** = p,0.01,
*** = p,0.001. Error bars indicate SEM.
doi:10.1371/journal.pone.0021758.g005

Figure 6. Iminosugar-based GCS inhibitors increase Sandhoff
mouse survival. Mice were monitored daily from 80 days of age and
euthanized when they became moribund and were unable to right
themselves from a supine position within 30 sec. Untreated mice
displayed a median survival of 135 days; Sandhoff mice treated with
Genz-5294468 or NB-DNJ had median survivals of 181 days and 191
days, respectively. Both iminosugar-based GCS inhibitors significantly
(p,0.0001) increased survival relative to that of untreated Sandhoff
mice. (n = 15/group).
doi:10.1371/journal.pone.0021758.g006
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anti-rabbit-HRP followed by diaminobenzidine (DAB) and

counterstained with hematoxylin.

For quantitation, three non-overlapping fields of view for each

brain region were examined at 4006magnification (for counting

CD68 positive cells) or 2006 (for counting a-synuclein positive

cells) with an n of at least 3 per group. GFAP immunopositive

areas were quantitated at 4006 in the brain stem and thalamus

using the MetaMorph image analysis software (Molecular Devices,

Inc., Sunnyvale, CA). The images were thresholded for brown

areas corresponding to GFAP immunostaining. GFAP immuno-

positive area in each section was determined using three

representative, non-overlapping images.

Sphingolipid analysis
Quantitative analysis of sphingolipids was performed by liquid

chromatography and tandem mass spectrometry (LC/MS/MS)

[51]. Briefly, tissue was homogenized in 10 times its volume of

water (w/v) and 10 ml of homogenate was extracted with 1 ml of

an organic solvent mixture (acetonitrile, methanol, acetic acid, 50/

50/1:v/v/v) for 10 min under strong vortex. For sphingomyelin,

phosphatidylcholine, GL2, GM3, GM2, GA2 and GM1 analyses,

an Acquity HILIC column (2.16100 mm, Waters Corp., Milford,

MA) was used to separate the glycosphingolipids and phospholip-

ids that were then analyzed by triple quadrupole tandem mass

spectrometry (API 4000, Applied Biosystems/MDS SCIEX,

Carlsbad, CA) using MRM mode. An Atlantis HILIC column

(Waters Corp., Milford, MA) was used to separate GL1 and

galactosylceramide prior to detection by tandem mass spectrom-

etry (API 4000). For ceramide and sphingosine-1-phosphate

analyses, a reverse phase column (Acquity C8 2.16100 mm,

Waters Corp., Milford, MA) was used to separate different

isoforms of ceramide before analysis by tandem mass spectrometry

(API 5000 detector). Sphingolipid standards were obtained from

Matreya, LLC (Pleasant Gap, PA).
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