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aptive molecular substructures for
explainable drug–drug interaction prediction by
substructure-aware graph neural network†

Ziduo Yang,‡a Weihe Zhong,‡a Qiujie Lva and Calvin Yu-Chian Chen *abc

Drug–drug interactions (DDIs) can trigger unexpected pharmacological effects on the body, and the causal

mechanisms are often unknown. Graph neural networks (GNNs) have been developed to better understand

DDIs. However, identifying key substructures that contribute most to the DDI prediction is a challenge for

GNNs. In this study, we presented a substructure-aware graph neural network, a message passing neural

network equipped with a novel substructure attention mechanism and a substructure–substructure

interaction module (SSIM) for DDI prediction (SA-DDI). Specifically, the substructure attention was

designed to capture size- and shape-adaptive substructures based on the chemical intuition that the

sizes and shapes are often irregular for functional groups in molecules. DDIs are fundamentally caused

by chemical substructure interactions. Thus, the SSIM was used to model the substructure–substructure

interactions by highlighting important substructures while de-emphasizing the minor ones for DDI

prediction. We evaluated our approach in two real-world datasets and compared the proposed method

with the state-of-the-art DDI prediction models. The SA-DDI surpassed other approaches on the two

datasets. Moreover, the visual interpretation results showed that the SA-DDI was sensitive to the

structure information of drugs and was able to detect the key substructures for DDIs. These advantages

demonstrated that the proposed method improved the generalization and interpretation capability of

DDI prediction modeling.
1 Introduction

Complex or co-existing diseases are commonly treated using
drug combinations by taking advantage of the synergistic
effects caused by drug–drug interactions (DDIs).1 However,
unexpected DDIs also increase the risk of triggering adverse
side effects or even serious toxicity.2 With the increasing need
for multi-drug treatments, the identication of unexpected
DDIs becomes increasingly crucial. Traditionally, the detection
of DDIs is performed through extensive biological or pharma-
cological assays. However, this process is time-consuming and
labor-intensive, because a great number of combinations of
drugs should be considered for experiments. As a result,
computational methods can be used as a low-cost, yet effective
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alternative to predict potential DDIs by identifying patterns
from known DDIs.

Existing computational methods can be divided into two
categories, namely, text mining-based and machine learning-
based methods.2 Text mining-based methods extract drug–
drug relations between various entities from scientic litera-
ture,3–7 insurance claim databases, electronic medical records,8

and the FDA Adverse Event Reporting System;9 these methods
are efficient in building DDI-related datasets. However, they
cannot detect unannotated DDIs or potential DDIs before
a combinational treatment is made.10 Conversely, machine
learning-based methods have the potential to identify unseen
DDIs for downstream experimental validations by generalizing
the learned knowledge to unannotated DDIs.

Machine learning-based methods can be further classied
into three categories, namely, deep neural network (DNN)-based
methods, knowledge graph-based, and molecular structure-
based methods. DNN-based methods11–15 rst represent drugs
as handcraed feature vectors according to drug properties,
such as structural similarity proles,12,13 chemical substruc-
tures, targets, and pathways.11,14 Then, they use them to train
a DNN to predict DDIs.

Knowledge graph-based methods16–23 represent biomedical
data as graphs and use different graph-specic methods, such
as label propagation,20 matrix factorization,21,23 and graph auto-
Chem. Sci., 2022, 13, 8693–8703 | 8693
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encoders,18 to analyze them. The advantage of knowledge graph-
based methods is that the model performance can be boosted
by external biomedical knowledge. However, these approaches
cannot be generalized to drugs in the early development phase,
because the only available information at that time is chemical
structure.18,20,24,25

In contrast, molecular structure-based methods25–30 regard
drugs as independent entities, and predict DDIs only by relying
on drug pairs. This is no need for external biomedical knowl-
edge. DDIs depend on chemical reactions among local chemical
structures (i.e., substructures) rather than their whole struc-
ture.25,31 Molecular structure-based methods assume that the
learned chemical substructure information can be generalized
to different drugs with similar substructures.25,30 For instance,
MR-GNN29 leveraged the powerful structure extraction ability of
graph neural networks (GNNs) to extract multi-scale chemical
substructure representations of a molecular graph. CASTER25

designed a chemical sequential pattern mining algorithm to
generate recurring chemical substructures molecular repre-
sentations of drugs, followed by an auto-encoding module and
dictionary learning to improve model generalizability and
interpretability. SSI-DDI,28 MHCADDI,27 and CMPNN-CS30

leveraged the co-attention mechanism between the learned
substructures of a drug pair so that each drug can communicate
with the other. CMPNN-CS considered bonds as gates that
control the ow of message passing of GNN, thereby delimiting
the substructures in a learnable way. However, the gates are
computed before the message passing, which means that they
do not fully exploit the molecular structure information.

Overall, many computational models for DDI prediction
have been developed, and these methods show promising
performance on various datasets. However, at least three
problems have not been well addressed for structure-based
methods in DDI prediction. First, most of the works consider
molecular substructures as xed size and therefore use GNNs
with a predetermined number of layers/iterations to capture
substructures with the xed radii. However, the sizes and
shapes of chemical substructures are oen irregular as shown
in Fig. 1(a). Second, we argue that the most common readout
functions (i.e., global mean/sum pooling) for GNNs are
Fig. 1 The motivation of the proposed method. (a) The two high-
lighted functional groups in dacarbazine have different sizes and
shapes. (b) The substructures with a radius of 1 (also called 1-hop
substructures) for palmitic acid and their frequency. The propyl group
has the largest frequency but it is the less important substructure for
DDIs.
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inappropriate for DDI prediction. For example, the essential
substructures (e.g., ethanoic acid) may be overwhelmed by the
minor ones (e.g., propyl) by directly calculating the sum/mean
of the substructure representations, as shown in Fig. 1(b).
Third, most of the works only conducted experiments under
a warm start scenario (i.e., training and test sets share common
drugs). However, practical applications usually require cold
start scenarios for DDI prediction to deduce interactions
between new drugs and known drugs or interactions among
new drugs.

In this paper, we proposed a substructure-aware GNN based
on medicinal chemistry knowledge for DDI prediction (SA-DDI).
An overview of the proposed SA-DDI is shown in Fig. 2. SA-DDI
mitigates the aforementioned limitations via the following
technical contributions:

(a) A directed message passing neural network (D-MPNN)32

equipped with a novel substructure attention mechanism was
presented to extract exible-sized and irregular-shaped
substructures. In SA-DDI, different scores determined by the
substructure attention mechanism were assigned to substruc-
tures with different radii (i.e., different receptive elds). The
weighted sum of substructures centering at an atom with
different radii results in a size-adaptive molecular substructure,
as shown in Fig. 2. The substructure attention was also expected
Fig. 2 An overview of the proposed SA-DDI for DDI prediction. The
model takes a pair of drugs as input and then feeds them into a feed-
forward layer, followed by a D-MPNN equipped with the substructure
attention to extract the size- and shape-adaptive substructures. The
directed message passing network updates the node-level features
with T iterations where T is 6 in this example. The extracted
substructures are then fed into the SSIM to learn the substructure–
substructure interactions. Finally, the model predicts DDI based on the
result of substructure–substructure interactions.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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to assign a lower score to a substructure from a higher level to
prevent over-smoothing.33

(b) A novel substructure–substructure interaction module
(SSIM) was introduced to model the chemical reactions among
functional substructures of a drug pair. SSIM leverages the
structure information of a drug to identify the important
substructures of another drug for a drug pair. This overcomes
the limitation of global mean/sum pooling, which regards each
substructure as equally important.

(c) The experiments were conducted under both warm and
cold start scenarios, where the latter provides a more realistic
and challenging evaluation scheme for the models.
Fig. 3 A brief introduction to graph neural networks. (a) The typical
workflow of graph neural networks. (b) Message passing phase. (c)
Readout phase.
2 Methods

This section presents the technical details of the SA-DDI. The
overall framework is shown in Fig. 2. In general, the DDI
prediction task was to develop a computational model that
takes two drugs dx and dy with an interaction type r as inputs
and generates an output prediction that indicates whether an
interaction (i.e., side effect) exists between them. First, an input
feed-forward module (i.e., a multi-layer perceptron) was utilized
to nonlinearly transform the nodes for better feature repre-
sentation. Then, the two molecular graphs are fed into a GNN
(D-MPNN in our case) equipped with substructure attention to
extract the size- and shape-adaptive substructures. Finally, the
extracted substructures are fed into the SSIM to learn the
substructure–substructure interactions from which the model
makes a DDI prediction.
2.1 Graph neural network for substructures extraction

GNNs have received attention for their natural t in chemical
problems to describe the atoms and bonds of a molecule. In the
current application, the atoms of a molecule serve as nodes of
a graph, and edges/bonds are formed by the chemical bonds.
Formally, a drug d is represented as a molecular graph
G ¼ ðn; 3Þ, where n is the set of nodes/atoms, and 3 is the set of
edges/bonds. In a molecule, vi ˛ n is the i-th atom and eij ˛ 3 is
the chemical bond between i-th and j-th atoms. Each node vi has
a corresponding feature vector xi˛ℝd, and each bond eij has
a feature vector xij˛ℝd0 . The features used for atoms and bonds
can be found in Tables S1 and S2 of ESI.†

A typical workow of GNNs is depicted in Fig. 3(a). In
general, GNNs are composed of three stages, as follows: (1)
updating node-level features by aggregating messages from
their neighbor nodes (i.e., message passing), as shown in
Fig. 3(b); (2) generating a graph-level feature vector by aggre-
gating all the node-level features from a molecule graph using
a readout function, as shown in Fig. 3(c); and (3) predicting
a label of the graph based on the graph-level feature vector, as
shown in Fig. 3(a). In the rst stage, the node-level hidden
feature h(t)i , which represents the attribute of the i-th node at the
time step t (or t-th iteration) and h(0)i ¼ xi, is updated T times
(i.e., T iterations) by passing the message between its neigh-
boring nodes. At each iteration, the receptive eld, which
represents the radius of a node, can be enlarged by accessing
© 2022 The Author(s). Published by the Royal Society of Chemistry
information from its neighbor nodes, as shown in Fig. 3(a) and
(b). A node can be viewed as a substructure centered on itself
with a radius of T aer T-th iteration, as shown in Fig. 3(a).
Then, the updated node-level hidden features h(T)i at the last
time step T are aggregated across all nodes to produce a graph-
level feature vector hG for a given graph G, as shown in Fig. 3(c).
Finally, the graph-level feature vector is used to predict a label of
the entire graph, e.g., molecular properties. In this study, we
used the D-MPNN,32 a variant of the generic message passing
neural network (MPNN)34 architecture, for molecule substruc-
tures extraction. The precise denition of MPNN and D-MPNN
as well as their difference can be found in Section S1 of ESI.†

So far the GNN is learned in a standard manner, which has
two shortcomings for DDI prediction. First, the GNN extracts
xed-size substructures aer the T-th iteration, as shown in
Fig. 3(a), which has a drawback as described in Fig. 1(a). Second,
a typical readout function (i.e., global mean/sum pooling)
computes the mean/sum of all node-level features from a graph

(i.e., hG ¼ 1
n

Xn

i¼1

hðTÞi or hG ¼ Pn

i¼1
hðTÞi ) to obtain the graph-level

representation hG for a given graph G, but it has a disadvan-
tage for DDI prediction as described in Fig. 1(b). Therefore, we
introduced the novel substructure attention mechanism and
SSIM in Sections 2.2 and 2.3 to solve these two limitations.
2.2 Substructure attention mechanism

The substructure attention was designed to extract substruc-
tures with arbitrary sizes and shapes. During the k-th iteration,
the D-MPNN extracts substructures with a radius of k. The
weighted sum of substructures centering on an atom with
different radii leads to size-adaptive molecular substructures, as
shown in Fig. 2.

Unlike standard GNN which operates on nodes, the messages
are propagated through bonds in D-MPNN, as shown in Fig. S1(b)
of ESI.† Similar to standard GNN, in which there is a node-level
hidden feature h(t)i with each node vi, we use h(t)ij to represent
a bond-level hidden feature with each bond ei/j. The D-MPNNrst
Chem. Sci., 2022, 13, 8693–8703 | 8695



Fig. 4 The overall computational steps for interaction probability.
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operates on bonds in a way similar to standard GNN that operates
on nodes. Then, it transforms the bond-level hidden feature
h(T)ij back to node-level hidden feature h(T)i aer the last iteration.

The idea of substructure attention is to assign different
scores to substructures with different radii. Concretely, for
a bond-level hidden feature h(t)ij at t step, we rst obtained its
graph-level representation gðtÞ˛ℝh by utilizing a topology-aware
bond global pooling:

gðtÞ ¼
Xn

i¼1

X

vj˛NðviÞ
bjih

ðtÞ
ji (1)

where bij can be computed by the SAGPooling35 as follows:

bji ¼ softmax(GNN(Ae,Xe)) (2)

where Xe is the bond-level hidden feature matrix and Ae is the
adjacencymatrix in which the nonzero position indicates that two
bonds share a common vertex. GNN is an arbitrary GNN layer for
calculating projection scores. We then assigned an attention
score to each graph-level representation g(t) at the step t as follows:

e(t) ¼ a(t)�s(Wg(t) + b) (3)

where � represents dot product, aðtÞ˛ℝh is a weight vector for
step t, and s is an activation function. We chose the tanh
function as the activation function, because it works fairly well
in practice. To make coefficients easily comparable across
different steps, we normalize e(t) across all steps using the
somax function

aðtÞ ¼ exp
�
eðtÞ

�
P

k˛f1;.;Tg
expðeðkÞÞ (4)

where each aðtÞ˛ℝ1 indicates the importance of the substruc-
tures with a radius of t. The nal representation of a bond ei/j,
which captures the substructure information with different
radii, is given by the weighted sum of bond-level hidden
features across all steps according to the following:

hij ¼
XT

t¼1

aðtÞhðtÞij (5)

Finally, we returned to the node-level features by aggregating
the incoming bond-level features as follows:

mi ¼
X

vj˛NðviÞ
hji (6)

hi ¼ f(xi + mi) (7)

where f is a nonlinear function implemented as a multilayer
perceptron, and hi contains the substructure information from
different receptive elds centering at i-th atom.
2.3 Substructure–substructure interaction module

To overcome the limitation of the most common readout
functions for GNN (i.e., global mean/sum pooling), as shown in
8696 | Chem. Sci., 2022, 13, 8693–8703
Fig. 1(b), we proposed an SSIM to identify the crucial
substructures for DDIs. By using substructure attention, the SA-
DDI extracted several size-adaptive substructures, each
centering at an atom, as shown in Fig. 2. The SSIM was used to
assign each substructure of the drug a score, where the score is
determined by its interaction probability with another drug, as
shown in Fig. 4.

Given a drug pair (dx, dy), we assumed that the substructure
information of dx can be used to detect the essential substruc-
tures of dy. Specically, we rst used a topology-aware global
pooling (TAGP) to obtain the graph-level representation of dx as
follows:

gx ¼
Xn

i¼1

bih
ðxÞ
i (8)

bi ¼ softmax(GNN(Av,Xv)) (9)

where Xv is the node-level hidden feature matrix, and Av is the
adjacency matrix in which the nonzero position indicates that
two vertices are connected. Next, we computed the interaction
probability s(y)i between dx and i-th substructure in dy, as follows:

s(y)i ¼ softmax((Wxgx)�(Wyh
(y)
i )) (10)

where Wx˛ℝh0�h and Wy˛ℝh0�h are two weight matrices. s(y)i can
be viewed as the importance for substructure centering at i-th
atom of dy. The overall computational steps for s(y)i are depicted
in Fig. 4. Finally, the graph-level representation of dy can be
computed by the following:

hGy
¼

Xn

i¼1

s
ðyÞ
i $h

ðyÞ
i $gx (11)

where ($) indicates element-wise multiplication. As opposed to
the global mean/sum pooling that considers every substructure
equally important, the SSIM utilizes the structure information of
dx to enhance the representation of dy by assigning higher scores
to important substructures in dy and vice versa. The graph-level
representation of dx (i.e., hGx) can be calculated by using
computational steps similar to those described in eqn (8)–(11).

2.4 Drug–drug interaction prediction

Given a DDI tuple (dx, dy, r), the DDI prediction can be expressed
as the joint probability as follows:

P
�
dx; dy; r

� ¼ s
��
Wxy

�
hGx

khGy

��� ur
�

(12)
© 2022 The Author(s). Published by the Royal Society of Chemistry
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where Wxy˛ℝb�h, ur˛ℝb is a learnable representation of inter-
action type r, s is the sigmoid function, and k represents
concatenation. The learning process of the model can be ach-
ieved by minimizing the cross-entropy loss function,36 which is
given as follows:

L ¼ � 1

jM j
X

ðdx ;dy ;rÞ
i
˛M

yilogðpiÞ þ ð1� yiÞlogð1� piÞ (13)

where yi ¼ 1 indicates that an interaction exists between dx and
dy, and vice versa; and pi is the predictive interaction probability
of a DDI tuple (i.e., eqn (12)).

3 Results and discussion
3.1 Dataset

We evaluated the model performance in two real-world data-
sets—DrugBank and TWOSIDES.

�DrugBank is a unique bioinformatics and cheminformatics
resource that combines detailed drug data with comprehensive
drug target information.37 It contains 1706 drugs with 191 808
DDI tuples. Eighty-six interaction types describe how one drug
affects the metabolism of another one. Each drug is represented
as the simplied molecular-input line-entry system (SMILES)
and we converted it into a molecular graph using RDKit. Each
DDI tuple from DrugBank is a positive sample from which
a negative sample is generated using the strategy described by
Wang et al.38 In the DrugBank dataset, each drug pair is only
associated with a single type of interaction.

� TWOSIDES is constructed by Zitnik et al.39 aer ltering
and preprocessing the original TWOSIDES dataset.40 It includes
645 drugs with 963 interaction types and 4 576 287 DDI tuples.
As against the DrugBank dataset, these interactions are at the
phenotypic level (i.e., headache, pain in the throat, and others)
rather than metabolic. The negative samples are generated by
a procedure the same as the DrugBank dataset.

3.2 Experimental setup

We compared the proposed SA-DDI with state-of-the-art
methods, namely, DeepCCI,26 MR-GNN,29 SSI-DDI,28 GAT-
DDI,30 and GMPNN-CS.30 These baselines only consider chem-
ical structure information as input and can work in both warm
and cold start scenarios. The parameter settings for MR-GNN,
SSI-DDI, and GMPNN-CS are consistent with their published
Table 1 Comparison results (mean � std in %) of the proposed SA-DDI

ACC AUC F1

DeepCCI 93.21 � 0.27 97.03 � 0.14 93.37
MRGNN 93.23 � 0.19 97.31 � 0.08 93.39
SSI-DDI 92.48 � 0.21 97.01 � 0.09 92.65
GAT-DDI 92.03 � 0.18 96.28 � 0.09 92.29
GMPNN-CS 95.31 � 0.07 98.45 � 0.01 95.40
SA-DDI_MPNN 94.27 � 0.09 97.91 � 0.03 94.37
SA-DDI_noSA 96.00 � 0.07 98.72 � 0.07 96.06
SA-DDI_GMP 93.54 � 0.16 97.22 � 0.06 93.62
SA-DDI 96.23 � 0.10 98.80 � 0.02 96.29

© 2022 The Author(s). Published by the Royal Society of Chemistry
source codes. As the source codes for DeepCCI and GAT-DDI are
not provided, we implemented them with parameters recom-
mended by the papers.26,30 To investigate how the D-MPNN,
substructure attention and substructure–substructure interac-
tion module improve the model performance, we also consider
the following variants of SA-DDI:

� SA-DDI_MPNN replaces the D-MPNN with MPNN.
� SA-DDI_noSA is a variant of the SA-DDI that removes

substruction attention.
� SA-DDI_GMP replaces the SSIM with global mean pooling

(i.e., hGx ¼
1
n

Xn

i¼1

vðxÞi and hGy ¼
1
n

Xn

i¼1

vðyÞi ).

Experiments were conducted using an NVIDIA GeForce RTX
A4000 with 16 GB memory. Adam optimizer41 with a 0.001
learning rate was used to update model parameters. The batch
size was set to 256 for all baselines. We optimized the hyper-
parameters of the model in the validation set. Table S3 of
ESI† lists the detailed hyper-parameters setting. The accuracy
(ACC), area under the curve (AUC), F1-score (F1), precision
(Prec), recall (Rec), and average precision (AP) were the perfor-
mance indicators.
3.3 Performance evaluation under warm start scenario

The warm start scenario was the most common dataset split
scheme where the whole dataset was split randomly and each
drug in the test set can be found in the training set. In this
scenario, we split the datasets randomly into training (60%),
validation (20%), and test (20%) sets. All experiments were
repeated thrice, each with a different random seed. Note that all
methods share the same training, validation, and test sets each
time. We nally reported the mean and standard deviation of
results in the test set. We applied a weight decay of 5 � 10�4 for
all methods to prevent overtting.

Tables 1 to 2 summarize the predictive performance of SA-
DDI and previous models on the DrugBank and TWOSIDES
datasets. The SA-DDI surpasses other baselines in the two
datasets, which demonstrates the effectiveness of the proposed
SA-DDI for DDI prediction. The SA-DDI exceeds SA-DDI_GMP by
a notable margin in two datasets, which reveals the validity of
the proposed SSIM. We analyzed why the SSIM improves model
performance in Section 3.6. Moreover, we found that the SA-DDI
gains less improvement from the substruction attention.
However, the substruction attention can reduce the over-
and baselines on the DrugBank dataset under the warm start setting

Prec Rec AP

� 0.27 91.26 � 0.25 95.58 � 0.47 95.95 � 0.20
� 0.17 91.14 � 0.39 95.76 � 0.09 96.45 � 0.09
� 0.20 90.59 � 0.27 94.80 � 0.19 96.11 � 0.14
� 0.16 89.47 � 0.34 95.29 � 0.21 94.64 � 0.12
� 0.07 93.58 � 0.14 97.29 � 0.01 97.91 � 0.02
� 0.09 92.74 � 0.14 96.06 � 0.06 97.22 � 0.04
� 0.07 94.63 � 0.05 97.53 � 0.09 98.25 � 0.12
� 0.15 92.49 � 0.43 94.79 � 0.42 95.80 � 0.07
� 0.09 95.02 � 0.12 97.59 � 0.07 98.36 � 0.04

Chem. Sci., 2022, 13, 8693–8703 | 8697



Table 2 Comparison results (mean � std in %) of the proposed SA-DDI and baselines on the TWOSIDES dataset under the warm start setting

ACC AUC F1 Prec Rec AP

DeepCCI 75.16 � 0.30 82.42 � 0.31 77.03 � 0.05 71.65 � 0.68 83.31 � 0.84 79.47 � 0.35
MRGNN 85.39 � 0.31 91.93 � 0.20 86.46 � 0.27 80.57 � 0.37 93.28 � 0.21 89.32 � 0.22
SSI-DDI 82.21 � 0.41 89.27 � 0.38 83.11 � 0.44 79.10 � 0.31 87.56 � 0.81 86.19 � 0.41
GAT-DDI 67.32 � 2.04 75.16 � 2.47 63.70 � 3.28 71.54 � 2.31 57.62 � 5.09 72.50 � 2.45
GMPNN-CS 86.96 � 0.03 92.94 � 0.02 87.85 � 0.04 82.20 � 0.03 94.35 � 0.10 90.38 � 0.04
SA-DDI_MPNN 87.23 � 0.02 93.02 � 0.03 88.17 � 0.01 82.09 � 0.05 95.23 � 0.06 90.32 � 0.03
SA-DDI_noSA 87.21 � 0.09 93.03 � 0.05 88.12 � 0.10 82.23 � 0.05 94.92 � 0.17 90.33 � 0.07
SA-DDI_GMP 75.32 � 0.43 82.59 � 0.66 78.14 � 0.80 70.11 � 0.70 88.35 � 2.90 78.22 � 0.74
SA-DDI 87.45 � 0.03 93.17 � 0.04 88.35 � 0.04 82.43 � 0.02 95.18 � 0.10 90.51 � 0.08

Chemical Science Edge Article
smooth problem and improve the model's generalization
ability, as discussed in Section 3.5.

Fig. 5 shows the performance of each DDI type for each
method on the two datasets. In general, the results for the
DrugBank dataset have a much larger standard deviation than
those for the TWOSIDES data. This phenomenon stems from
the fact that the DrugBank dataset has a very unbalanced
distribution of DDI types as shown in Fig. S2(a) of ESI.† The SA-
DDI still leads to competitive results on each DDI type on the
two datasets.

Furthermore, to evaluate how the size of the training set
affects the model performance, we randomly sampled 20%,
40%, 60%, 80%, and 100% of the original training set from the
DrugBank dataset and considered them as the new training sets
to retrain the SA-DDI. Increasing the training data always adds
information and improves the model performance in the test
set, as shown in Fig. 6(a). A signicant jump can be observed by
increasing the ratios of training data from 20% to 40%.
However, the performance increment shows the trend of slow-
ing down with increasing ratios from 40% to 100%. Having
more data certainly increases the accuracy of the model, but
there comes a stage where even adding innite amounts of data
can no longer improve accuracy, which is caused by the natural
noise of the data. When 60% of data are used, the model
Fig. 5 The accuracy and F1-score of different methods for each
interaction type in the (a) DrugBank dataset and (b) TWOSIDES dataset.

8698 | Chem. Sci., 2022, 13, 8693–8703
achieves an accuracy of 94.67%, which is only about 1.5% lower
than the best (i.e., 100% of data are used).

Moreover, we analyze the training efficiency of the proposed
SA-DDI in the DrugBank dataset. The SA-DDI achieves the
fastest training speed (i.e., convergence rate), as shown in
Fig. 6(b), with a moderate number of parameters and training
time, as shown in Fig. 6(c) and (d). A larger number of param-
eters do not mean better performance. The number of param-
eters for DeepCCI is about thrice those of SA-DDI, whereas its
test accuracy is approximately 3% lower than the SA-DDI.
Although GMPNN-CS has a lower number of parameters
compared with SA-DDI, it requires a much larger training time.
GMPNN-CS uses a co-attention to compute the interaction
between substructures of a drug pair, which leads to a much
lower computation efficiency. Overall, the SA-DDI achieves the
best performance with a moderate training efficiency.

3.4 Performance evaluation under cold start scenarios

The warm start scenario can lead to over-optimistic results,
because it causes information leakage (i.e., drug structure
information) to the test set. To further demonstrate the efficacy
of the proposed SA-DDI, we assessed all the baselines in two
additional splitting schemes:
Fig. 6 Training efficiency of the proposed SA-DDI in the DrugBank
dataset. (a) The relationship between the ratio of training data and test
accuracy for the SA-DDI. (b) The training loss of six models. (c) The
number of parameters of six models. (d) The training time of six
models.

© 2022 The Author(s). Published by the Royal Society of Chemistry



Table 3 Comparison results (mean � std in %) of the proposed SA-DDI and baselines on the DrugBank dataset under the cold start for a single
drug (new 4 old)

Setting Models ACC AUC F1 Prec Rec AP

Random split DeepCCI 79.53 � 0.44 87.28 � 1.47 77.17 � 0.10 87.39 � 2.47 69.18 � 1.69 87.57 � 1.19
MRGNN 75.99 � 0.53 84.85 � 1.53 72.30 � 0.32 85.52 � 2.19 62.68 � 1.22 84.89 � 1.55
SSI-DDI 75.13 � 0.32 83.26 � 0.52 72.36 � 0.34 81.52 � 2.24 65.15 � 1.94 83.48 � 0.86
GAT-DDI 77.94 � 0.25 86.58 � 0.21 75.28 � 0.27 85.63 � 0.32 67.16 � 0.24 85.81 � 0.01
GMPNN-CS 79.95 � 0.57 89.34 � 0.43 77.22 � 0.79 89.33 � 0.45 68.02 � 1.16 89.25 � 0.39
SA-DDI_MPNN 79.09 � 1.19 87.85 � 1.91 76.45 � 1.17 87.62 � 2.74 67.86 � 1.41 88.14 � 1.97
SA-DDI_noSA 83.66 � 0.41 91.56 � 0.80 81.90 � 0.21 91.83 � 1.77 73.95 � 0.82 92.31 � 0.88
SA-DDI_GMP 79.39 � 0.22 88.12 � 0.11 76.46 � 0.36 89.13 � 0.25 66.94 � 0.66 87.73 � 0.13
SA-DDI 84.18 � 0.11 92.22 � 0.55 82.45 � 0.37 92.56 � 1.34 74.38 � 1.47 92.99 � 0.50

Structure-based split DeepCCI 73.32 � 1.20 81.56 � 2.67 69.07 � 0.83 83.05 � 6.26 59.72 � 4.76 81.98 � 3.39
MRGNN 67.33 � 1.38 76.52 � 2.65 59.71 � 2.16 78.41 � 5.04 48.59 � 4.10 75.25 � 3.25
SSI-DDI 68.52 � 1.75 77.41 � 2.45 62.06 � 0.71 78.63 � 5.30 51.43 � 1.32 77.14 � 3.70
GAT-DDI 71.55 � 0.39 80.71 � 1.18 65.91 � 0.29 82.23 � 1.60 55.02 � 0.87 80.44 � 1.20
GMPNN-CS 71.57 � 0.72 81.90 � 1.30 63.83 � 1.29 87.68 � 1.11 50.21 � 1.62 82.90 � 1.17
SA-DDI_MPNN 72.33 � 0.53 81.42 � 1.17 64.93 � 1.03 88.58 � 0.42 51.26 � 1.35 83.39 � 0.72
SA-DDI_noSA 75.94 � 0.15 84.58 � 0.94 70.83 � 0.36 90.04 � 2.10 58.42 � 1.38 86.39 � 0.94
SA-DDI_GMP 74.14 � 0.31 84.64 � 0.16 68.04 � 0.89 89.08 � 1.15 55.08 � 1.61 84.98 � 0.45
SA-DDI 76.49 � 0.16 85.75 � 0.37 71.15 � 0.34 92.07 � 0.79 57.98 � 0.70 87.71 � 0.26

Edge Article Chemical Science
� Cold start for a single drug (new 4 old) is a cold start
scenario in which one drug in a drug pair in the test set is
inaccessible in the training set. We further considered two
settings in this scenario, as follows: (1) the drugs are split
randomly; and (2) the drugs are split according to their struc-
tures. Drugs in the training and test sets are structurally
different (i.e., the two sets have guaranteed minimum distances
in terms of structure similarity). We used Jaccard distance on
binarized ECFP4 features to measure the distance between any
two drugs in accordance with the method described in
a previous study.42

� Cold start for a pair of drugs (new 4 new) is also a cold
start scenario where both drugs in a drug pair in the test set are
inaccessible in the training set.

The cold start scenarios provide a realistic and more chal-
lenging evaluation scheme for the models. In the cold start
scenarios, we randomly held 20% DDI tuples as the test set
following the criterion described above. Other experimental
settings are the same as those in the warm start scenario. We
only considered the cold start scenarios in the DrugBank
dataset, because the TWOSIDES dataset contains some false
positives (i.e., drug pairs included in the TWOSIDES do not
Table 4 Comparison results (mean � std in %) of the proposed SA-DDI a
drugs (new 4 new)

ACC AUC F1

DeepCCI 66.21 � 2.37 73.79 � 3.66 61.57
MRGNN 61.92 � 1.07 66.89 � 1.45 60.71
SSI-DDI 63.42 � 0.94 68.33 � 1.08 63.21
GAT-DDI 66.36 � 0.23 72.95 � 0.29 64.09
GMPNN-CS 69.30 � 0.53 77.48 � 0.97 66.36
SA-DDI_MPNN 67.79 � 1.81 76.12 � 2.83 65.03
SA-DDI_noSA 68.37 � 0.97 75.34 � 1.94 67.37
SA-DDI_GMP 63.55 � 2.59 68.88 � 4.13 64.60
SA-DDI 70.52 � 0.85 79.14 � 1.07 67.12

© 2022 The Author(s). Published by the Royal Society of Chemistry
interact) that would cause unreliable assessments for the
models in the cold start scenarios.20 We applied a weight decay
of 5 � 10�3 for all methods, because the models are easy to
overt to the drugs on which the model is trained in the cold
start scenarios.28

Tables 3 to 4 summarize the experimental results in the cold
start scenarios. A signicant degradation in performance was
found in the cold start scenarios. Moreover, the structure-based
split is more challenging to the DDI prediction models
compared to the random split, which is consistent with the fact
that the structure-based split can prevent the structural infor-
mation of drugs from leaking to the test set.33 Improving the
generalization ability of the DDI model is still a challenge.
Another possible reason for this phenomenon is that most of
the drugs in the DrugBank dataset are signicantly different in
terms of scaffolds (core chemical structure). Therefore, drugs in
the test and training sets are not only different but also share
a few common structures in the cold start scenarios.28 However,
the SA-DDI still outperforms the other methods. By comparing
SA-DDI with SA-DDI_MPNN, SA-DDI_noSA, and SA-DDI_GMP,
we found that the model can benet from the proposed strat-
egies for DDI prediction. Although the performance of DDI
nd baselines on the DrugBank dataset under the cold start for a pair of

Prec Rec AP

� 1.55 72.00 � 5.63 54.13 � 2.96 71.65 � 4.22
� 1.11 62.71 � 1.15 58.83 � 1.07 64.31 � 2.70
� 1.16 63.80 � 2.43 63.03 � 4.70 66.01 � 0.92
� 0.46 68.75 � 1.02 60.07 � 1.58 71.42 � 0.27
� 0.52 73.41 � 0.77 60.54 � 0.45 75.57 � 0.72
� 0.74 71.84 � 4.98 60.00 � 4.87 75.27 � 3.03
� 0.82 69.87 � 3.06 65.44 � 4.46 73.19 � 2.45
� 0.36 63.38 � 4.54 66.47 � 4.15 66.09 � 3.73
� 1.98 75.81 � 1.18 60.38 � 3.88 78.06 � 0.93

Chem. Sci., 2022, 13, 8693–8703 | 8699



Chemical Science Edge Article
prediction models in the cold start scenarios is signicantly
lower than in the warm start scenario, the results are still much
better than random guesses, which suggests that the learned
chemical substructure information can be generalized to
different drugs with similar substructures.

3.5 How does substruction attention solve over-smoothing
problems?

Theoretically, a GNN with more layers/iterations would be more
aware of the graph structure.33 However, increasing the depth of
the GNN may cause an over-smoothing representation of
vertices. Our demand for a model that is more expressive and
aware of the graph structure (by adding more layers/iterations
so that vertices can have a large receptive eld) could be
transformed into a demand for a model that treats vertices all
the same (i.e., features at vertices within each connected
component converging to the same value).33

In our design, the substruction attention is used to extract
substructures with arbitrary size and shape. Therefore, the
substruction attention is expected to identify which size of the
substructures (i.e., receptive eld) is the most important.
Moreover, as over-smoothing is caused by the substructures
from higher levels, the substruction attention is also expected to
assign less weight to the substructures from higher levels.

Fig. 7 provides the quantitative analysis of the substructure
attention mechanism. As shown in Fig. 7(a) and (b), the
performance of SA-DDI_noSA decreases greatly with increasing
network depth (by adding more iterations). On the other hand,
the SA-DDI can be extended to 25 iterations without signicant
degradation in performance. This is because the substructure
attention decreases the weight of substructures from higher
levels as shown in Fig. 7(c), which is consistent with our original
design. The distribution of attention scores is plotted from all of
Fig. 7 Quantitative analysis of the substructure attention mechanism.
(a) The relationship between accuracy and the number of iterations for
the SA-DDI and SA-DDI_noSA. (b) The relationship between the F1-
score and the number of iterations. (c) The distribution of substructure
attention scores for the 10 iterations/steps SA-DDI in the DrugBank
dataset. (d) The improvement of accuracy by increasing the number of
iterations from 1 to 6 for SA-DDI_noSA.
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the data in the DrugBank dataset. Moreover, Fig. 7(c) shows that
the substructures with a radius of 2 are the most important for
the model, which is consistent with the result of a previous
study.43 This result is reasonable, because extracting the
substructures with a radius of 2 leads to more substructure
types than that with a radius of 1.44 The nding is also consis-
tent with the result shown in Fig. 7(d), in which the model gains
the most signicant improvement from increasing the number
of iterations from 1 to 2.

One of the advantages of substructure attention is that it
increases the robustness of the model. A previous study has
found that the number of iterations would affect the general-
izability of the message passing model, and using a pre-
specied number of iterations might not work well for
different kinds of datasets.45 This problem can be alleviated by
the substructure attention mechanism, as it makes the model
insensitive to the number of iterations, as shown in Fig. 7(a) and
(b).

Besides, as shown in Tables 1, 3, and 4, the SA-DDI achieves
improvements of 0.23%, 0.52%, 0.55%, and 2.15% in terms of
accuracy by using substructure attention for the warm start,
cold start for a single drug (random split), cold start for a single
drug (structure-based split), and cold start for a pair of drugs,
respectively. A correlation was found between improvements
and task difficulties. The more difficult the task was, the more
improvement can be obtained by using substructure attention,
suggesting that substructure attention can improve the gener-
alization capability of DDI prediction by detecting size-adaptive
substructures.

3.6 Why does SSIM improve model performance?

The key substructures may be overwhelmed by the minor ones
by using a global mean/max pooling as the readout function, as
shown in Fig. 1(b). In fact, treating each substructure equally
important (i.e., equal probability) has the largest entropy/
uncertainty.46 Conversely, the SSIM reduces the entropy by
increasing the weight of central substructures while scaling it
down for unimportant ones. To analyze SSIM from the
perspective of entropy, we plotted the distribution of predictive
probability across the DrugBank dataset for the SA-DDI and SA-
DDI_GMP. The results are shown in Fig. 8(a). The SA-DDI_GMP
has a relatively broad probability distribution compared with
the SA-DDI, which means that it has a larger entropy. The idea
of selecting important features by reducing entropy is similar to
feature selection using decision trees.47 Moreover, reducing the
entropy by the SSIM can accelerate training as well as improve
the generalization ability, as shown in Fig. 8(b).

3.7 Visual explanations for SA-DDI

GNNs cannot be fully trusted without understanding and veri-
fying their inner working mechanisms, which limits their
application in drug discovery scenarios.48,49 In this study, we
conducted two visual explanation-related experiments to ratio-
nalize the SA-DDI. First, to investigate how the atom hidden
vectors evolved during the learning process, we obtained the
similarity coefficient between atom pairs by measuring the
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 8 Quantitative analysis of the SSIM. (a) The distributions of
predictive probability for SA-DDI and SA-DDI_GMP in the DrugBank
dataset. (b) The training and testing losses for SA-DDI and SA-
DDI_GMP in the DrugBank dataset.
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Pearson correlation coefficient for those hidden vectors. We
chose the hidden vectors aer the last iteration (i.e., vi in eqn
(7)), because they have the best compromise between high-level
semantics and detailed spatial information.33 Fig. 9 gives four
drugs with their atom similarity matrices during the learning
process. The heat maps show some degree of chaos at the
beginning and then clearly group into clusters during the
learning process. Taking Fig. 9(b) as an example, we found that
the atoms in procyclidine at epoch 150 approximately separate
into four clusters, as follows: isopropanol (atoms 0–3), tetrahy-
dropyrrole (atoms 4–8), phenylcyclohexane (atoms 9–14), and
benzene (atoms 15–20). This nding is in accordance with our
intuition regarding the procyclidine structure. These results
suggest that the SA-DDI can capture the structure information
of a molecule. Besides, the SA-DDI is able to recognize the same
Fig. 9 Heat maps of the atom similarity matrix for compounds (a)
glycopyrronium, (b) procyclidine, (c) dyclonine, and (d) benzatropine.
The atoms in the compounds are automatically grouped into clusters
during the learning process where the corresponding substructures
for clusters are highlighted in the drugs.

© 2022 The Author(s). Published by the Royal Society of Chemistry
functional groups in a molecule such as the benzenes b1 and b2,
as shown in Fig. 9(d). It can also distinguish the functional
groups with subtle structural differences, such as phenyl-
cyclohexane and benzene, as shown in Fig. 9(b).

To further explore which substructures provide the most
signicant contribution to DDI prediction, we visualized the
most essential substructures for drug–drug interactions
between dicoumarol and the other seven drugs in the warm
start scenario, as shown in Fig. 10. Specically, we chose two
atoms with the largest interaction probability s(x)i and s(y)j , which
are described by eqn (10), as the center of the most vital
substructures. Their size and shape can be determined by the
largest attention score as described by eqn (4) (e.g., a substruc-
ture with a radius of 2 is determined if the second iteration has
the largest attention score). The SA-DDI identies the common
substructures (i.e., barbituric acid) for secobarbital, pentobar-
bital, amobarbital, methylphenobarbital, and primidone, which
agrees with the fact that drugs with a barbituric acid substruc-
ture can decrease the curative effect of dicoumarol by acceler-
ating its metabolism, because barbituric acid can enhance the
activity of human liver microsomes.50 The SA-DDI also detects
sulfonamide and indanedione substructures for drugs bosen-
tan and phenindione, which is consistent with the fact that
drugs with these two functional groups may increase the anti-
coagulant activities of dicoumarol, because they can bind to
plasma proteins competitively.51 More examples are found in
Fig. S3 of ESI.†

In addition, to explore why cold start scenarios lead to poor
performance from the perspective of the substructure, we also
visualized the most central substructures for these eight drugs
under cold start scenarios. We rst removed drug pairs con-
taining dicoumarol and the other seven drugs from the training
Fig. 10 Visualization of the key substructures for DDIs between
dicoumarol and the other seven drugs. The center of the most
important substructure and its receptive field are shown as blue and
orange colors respectively.
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set and retrained the SA-DDI. We then visualized the key
substructures of these eight drugs, as shown in Fig. S4 of ESI.†
In general, the substructures that the model highlights in the
cold start scenarios had a larger size than those in the warm
start scenario. This result was in accordance with our intuition
that a model would try to include more information (larger
substructures in this case) when it shows higher uncertainty for
its predictions in unseen drugs. The mean uncertainty of the
predictions made by the SA-DDI trained in cold start scenarios
is 0.62, whereas that in the warm start scenario is 0.05, which is
consistent with our analysis above. However, DDIs are mainly
caused by essential chemical substructure interactions. Thus,
the large-sized substructures may introduce noise and cause
a degradation of performance.

4 Conclusion

This work presented a graph-basedmodel called SA-DDI for DDI
prediction. Based on the fact that DDIs are fundamentally
caused by chemical substructure interactions, two novel strat-
egies, including the substructure attention and SSIM, were
proposed specically to detect substructures with irregular size
and shape and model the substructure–substructure interac-
tions. Extensive experiments veried the superiority of the
proposed method, exceeding the state-of-the-art methods on
two datasets under different scenarios. Moreover, we visualized
the atom similarity and key substructures for DDI prediction of
certain molecules from the DrugBank dataset. The visual
interpretation results showed that SA-DDI can capture the
structure information of a drug and detect the essential
substructures for DDIs, making the learning process of the
model more transparent and operable. SA-DDI is a powerful tool
to improve the generalization and interpretation capability of
DDI prediction modeling.
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