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SUMMARY

Computational psychiatry is a nascent field that attempts to use multi-level ana-
lyses of the underlying computational problems that we face in navigating a com-
plex, uncertain and changing world to illuminate mental dysfunction and disease.
Two particular foci of the field are the costs and benefits of environmental adap-
tivity and the danger and necessity of heuristics. Here, we examine the extent to
which these foci and others can be used to study the actual and potential flaws of
the artificial computational devices that we are increasingly inventing and em-
powering to navigate this very same environment on our behalf.

To err is human, but really to foul up takes a computer.—Paul R. Ehrlich

INTRODUCTION

To err is human. We can be irrational, illogical, ignorant and irresponsible, and our actions and decisions

can lead to irredeemable harm to ourselves and others. When such behaviors are extreme relative to so-

cietal norms, and persistent even in the light of evidence of the attendant damage, they are often consid-

ered dysfunctions. We then enter the medical realms of neurology and psychiatry, which, put very crudely,

consider breakdowns respectively in the neural and psychological architectures of thought, feeling and ac-

tion and the way these are underpinned by learning and adaptation.

However, there is an increasing realization that the manifold flaws that afflict even the healthy have their roots

in what is a fundamental and foundational problem of existence. We have to make choices in an environment

replete with threats as well as opportunities, but of which, because of both initial uncertainty and change, we

are only rather dimly aware. Performing perfectly, or in many cases even well, over the long run in such cir-

cumstances is radically computationally intractable. Thus, approximations and heuristics, which by their

very nature can never lead to perfect performance in all circumstances, are inevitable. How then should

we think of the dysfunctional escalation of these problems in psychiatric and neurological disorders?

The field of computational psychiatry (CP) adopts this perspective as its leitmotif (Montague et al., 2012;

Huys et al. 2016). CP considers the interactions between individuals, populations of individuals and evolu-

tionary, developmental and current environments that collectively define good- and bad-quality choice. It

then attempts to use these to provide insights into the nosology, prognoses and even possible cures for

some of the aforementioned flaws.

Here, along with, for instance, Mainen (2018), we argue that there is a further unavoidable consequence of

this perspective that applies to sufficiently complex systems of any sort making decisions in similarly such

complex environments. These systems exactly include the newly powerful agents developed in modern

artificial intelligence and machine learning, which are being applied to domains spanning object recogni-

tion, speech recognition, and control, and to which we are increasingly delegating authority and autonomy.

The unavoidable fact is that such systems will also be faced with trade-offs which, while they might differ in

detail from ours because of the different capacities of their idiosyncratic computational implementations,

will nevertheless run into the same theoretical buffers, and so the same opportunities for bad-quality

behavior. Understanding this is essential for us to control their actions, reap their benefits, and minimize

their harm (Rahwan et al., 2019).

We therefore propose to turn the lens of CP onto computers themselves to help us to illuminate their sys-

tematic failures. We also hope that a CP for computers will enrich our understanding of human psychiatry,
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Figure 1. Marr’s Levels of Analysis and the Nature of Possible Flaws that Can Occur at Each Level

ll
OPEN ACCESS

iScience
Review
for instance by telling us which symptoms are universally associated with computational and statistical

complexity, and which are idiosyncratically wet and dry.

We first define what CP attempts to understand and show how its scope can be expanded to analyze ma-

chine behavior. We then consider several criteria for psychiatric symptoms in computers and some key dif-

ferences with human psychiatry. Finally, we make some remarks on the perspective that this analysis affords

over treatment.

One important caveat is that CP is itself only in its earliest days, and its foundations, formulation, and future

utility are all incompletely certain. A second caveat is that we follow CP’s broad program in focusing first on

maladaptive decisions, rather than the accompanying and separate emotions and feelings which are crit-

ical in many aspects of human psychiatry. Emotions are certainly of great interest in CP (e.g., Bach and

Dayan 2017; Sen et al., 2019). However, given the active debate about the status of emotions even in

non-human animals (LeDoux 2014; Paul et al., 2020), we pragmatically, if pusillanimously, punt.
COMPUTATIONAL PSYCHIATRY

CP locates symptoms and causes for dysfunctional decision-making in diverse possible breakdowns in the

architecture of adaptive choice. We therefore start from a brief description of this architecture and its po-

tential vulnerabilities. This sets the stage for understanding potential flaws in natural and artificial agents.

The architecture can be usefully described at different levels of computational and biological analysis. We

adopt the famous division of Marr (1982) (see also Peebles and Cooper 2015; Hamrick and Mohamed 2020;

Hauser et al., 2016) into computational, algorithmic and implementational levels (Figure 1). The computa-

tional level concerns the tasks the system is trying to solve –here, making choices that maximize survival

over the long run in an only partially known and changing environment replete with threats. At this level,

we also treat ethological considerations of how systems are fit for the niches they occupy. The algorithmic

level concerns the nature of the solutions – e.g., the manifold methods of representing observed and latent

aspects of the environment, evaluating options, and thereby making choices. Here, psychological pro-

cesses characterize the effective procedures that are executed. Finally, the implementational level con-

cerns the physical realization of the solutions – in whatever neural, semiconductor or other computational

substrate is relevant. Challenges for natural or artificial decision-making systems can often be most
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parsimoniously described at specific of these levels, so keeping them at least conceptually distinct is impor-

tant. We shall see, nevertheless, that they become intertwined in rather particular ways – for instance – inev-

itable algorithmic incompetence can force us to consider merely satisfactory or boundedly optimal com-

putations (Gershman et al. 2015).
Computation

Perhaps themost general computational level formalization is Bayesian Decision Theory (Berger 2013). This

is a comprehensive account of evaluative choice, according to which an agent must consider states, utili-

ties, and actions. The state of the environment is a summary of everything about it that the agent knows and

is important for predicting what will happen in the future. The agent has to infer the state from its prior be-

liefs and past and current observations. The agent should then make a prediction of the long-run future

utility that is expected to accrue based on their possible actions. Finally, it should choose the action asso-

ciated with the optimal expected future utility.

This decision-theoretic characterization of the task faced by the agent already points to failure modes –

essentially – the agent could be engaged in solving what amounts to the wrong problem (Huys et al.,

2015). For instance, it could attempt to maximize an objective function that leads to behavior that could

possibly hurt itself or others. This can happen even if all complexities of the decision-making problem

have been taken into account. Examples of this type of error are plentiful in science fiction. Isaac Asimov’s

robotic stories contain various versions of artificial agents who come to behave in unintended ways whilst

still notionally obeying the ‘‘three laws of robotics’’. In Stanley Kubrick’s movie ‘‘2001: A Space Odyssey’’,

the artificial intelligence HAL is worried about the completion of its mission to go to Jupiter in case it gets

shut down and therefore attempts to kill the mission’s crew members.

A more contemporary example of solving the wrong problem comes from Bostrom (2003), who proposed a

thought experiment about a ‘‘paperclip maximizer’’. Here, an artificial general intelligence is supposed to

maximize the number of paperclips that are produced. This maximization problem is chosen deliberately,

because it is unlikely to ever be implemented and – at first sight – appears to be relatively harmless. How-

ever, Bostrom argues that following such a reward function to its logical extreme will lead the AI to trans-

form ‘‘first all of earth and then increasing portions of space into paper clip manufacturing facilities’’.

What these examples show is that the utility function of artificial agents has to be carefully constructed if

one wants to avoid unintended consequences. Arguably, similar mechanisms can also be found in aberrant

human behavior. For instance, one potential source of anxiety is concern about either the chance or conse-

quence of catastrophic negative events. Solving the problem of avoiding these can lead to caution that

other people might consider to be unreasonable (Bishop and Gagne, 2018).

A rather separate collection of problems – thewrong environment (Huys et al., 2015) arises when agents are

either programmed (by evolution or design), or learn, to accomplish a task in one environment, but are

thereby poorly adapted to solve new tasks when that environment changes. In machine learning terms,

their choices and learning embody very strong actual, or inductive, biases. This has the huge advantage

of allowing good behavior to arise immediately or after small amounts of learning – something at which

natural systems excel. However, problems arise when those biases are inaccurate.

One example of this is Pavlovian misbehavior (Breland and Breland 1961; Dayan et al., 2006). Here, agents

have built-in or default propensities (barely mutable inductive biases, to use the terminology in machine

learning) that can work against their best interests in particular tasks. For instance, (Hershberger, 1986) built

an apparatus in which if chicks approached a cup of food, it would move away at twice the speed, whereas if

they moved away from the food, it would move toward them. The chicks have an automatic, default policy

to approach and engage with food and its predictors. Although one can imagine good reasons why this

might have evolved, in this particular task, it is inappropriate. Human subjects exhibit similar maladaptive

behaviors (Guitart-Masip et al., 2014).

A second example of this has become a classic, though potentially apocryphal cautionary tale in machine

learning (Dreyfus and Dreyfus 1992). Apparently, researchers in the 1960s trained neural networks on

photos of camouflaged tanks and forests. However, because the photos of the tanks had been taken on

cloudy days, while photos of plain forest had been taken on sunny days, the neural network learned to
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distinguish cloudy days from sunny days, instead of – as intended – distinguishing camouflaged tanks from

empty forest. Similar problems arise in modern machine learning – as so-called covariate or data set shifts

(Quionero-Candela et al., 2009). Equally, when Dasgupta et al. (2019) analyzed the behavior of machine

learned representations of sentence embeddings methods, they found that these models frequently

thought that one sentence was a negation of another sentence simply because it contained an additional

word: although wrong in general, this was true in the training data set because negations of sentences

mostly contained an additional ‘‘not’’.

Particularly pernicious cases of the wrong environment involve path-dependencies in the course of adap-

tation to environments (Dayan et al., 2018), whereby initial differences can lead to large and persistent

divergence in outcomes later on. For instance, it has been observed that children tested in a delayed grat-

ification task with reliable later rewards waited considerably longer for the eventual rewards than children

tested in unreliable conditions, and it has been suggested that this could explain why the ability to delay

rewards depends on early life events (Kidd et al. 2013). However, imagine a child that goes from an unstable

to a stable environment. If the child remains impulsive in the way we have described – indeed appropriately

for the original environment – the opportunity to discover that the environment has changed so that it has

become more reliable might never be discovered. Such path-dependencies, also prominently suggested

for learned helplessness (Maier and Seligman 2016) can bake maladaptive behavior into choice in a rather

rigid and fixed manner. Being adaptive to the original environment is essential to be adequately flexible;

but it comes at a large potential cost of getting stuck. Modern machine learning to learn algorithms that

implicitly learn about priors by repeatedly encountering tasks drawn from a distribution (Thrun and Pratt

1998; Clune 2019) face similar concerns. For example, there is clear evidence that machine learning algo-

rithms can acquire biases that result in detrimental predictions (Gianfrancesco et al., 2018) and unfair de-

cisions (Dwork et al., 2012) with severe real-life consequences.
Algorithm

Unfortunately, although Bayesian decision theory is descriptively simple, it is computationally penal. This is

the source of inevitable algorithmic incompetence – agents are finding the wrong solution even if they are

trying to solve the correct problem (Huys et al., 2015). This can afflict all the components described. First,

take states – these have two aspects: the objective state of the environment and the agent’s subjective rep-

resentation thereof. Although the first is the full description of the decision-making problem at a given time

point, the latter can be expressed as a probabilistic Bayesian summary of the agent’s knowledge of this

description. The agent constantly has to perform inferences about the current state of the environment,

thereby integrating its own beliefs about the environment, i.e. its evolving priors, with the incoming

data, (known as the likelihood). Since an agent rarely knows its state precisely, it has to maintain a distribu-

tion over its uncertainty – this is often wildly intractable.

How does the brain cope with these inferential complexities? One general idea is that it embodies various

shortcuts or heuristics (Tversky and Kahneman 1974; Gigerenzer and Selten 2002) that perform approxi-

mate computations. For instance, it might perform a very limited form of inference (Lieder and Griffiths

2019; Vul et al., 2014) and thereby trade-off computational sloth for inferential imprecision. This notion

can explain several cognitive shortcuts in human decision-making: because people halt their mental com-

putations earlier to safe time and energy, the resulting inferences can then be systematically biased (Das-

gupta et al. 2017). Even with their vastly more powerful calculational tools, artificial agents suffer from the

same formal problems and so can be biased in the same way.

The second algorithmically problematic component of Bayesian decision theory is the prediction of long-

run utility associated with a choice. Optimal behavior needs to weigh the future against the present. For

example, as in the example of delayed gratificationmentioned above, a brief moment of positive outcomes

can lead to dire consequences and, although tempting, might better be avoided; on the other hand, expe-

riencing a small loss now can lead to greater gains later on. Thus, even in the rare circumstances where

inference about the present is perfectly possible, the agent faces an additional set of issues in making es-

timations and predictions that are correct over the long run.

The field of reinforcement learning (Sutton and Barto 2018) includes a number of algorithms that learn

how to calculate these estimates, and which can operate singly or in combination. One prominent dichot-

omy is between so-called model-based and model-free reinforcement learning methods (Daw et al. 2005).
4 iScience 23, 101772, December 18, 2020
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Model-free methods learn directly, from experienced rewards and punishments, and without building an

explicit model of the environment, to estimate the future utility consequences of different actions. These

direct estimates are immediately available; however, learning values that are correct over the long run is

statistically challenging, and so model-free predictions are rather inflexible to changes. This means, for

instance, that model-free agents might perseverate with actions even when they have experienced that

they are no longer appropriate – an evident dysfunction. By contrast, model-based methods construct

and use models of the environment. They estimate expected long-run utilities by previsioning, i.e., predict-

ing forward using the models. This property makes model-based choice very flexible – as soon as the agent

knows that some characteristic of the environment has changed, this can influence its behavior, even many

steps before the characteristic will arise. Unfortunately, calculating long-run estimates using the model is

time-consuming, and can place a large burden on working memory, a resource in very short supply in hu-

mans at least. Research on the trade-off between model-based and model-free learning has revealed that

several psychiatric diseases can be linked to an overexertion of either of the two systems (Gillan and Daw

2016; Voon et al., 2017); and there is speculation that interactions between the systems, with samples drawn

from the model being used to train model-free mechanisms (Sutton 1991; Mattar and Daw 2018) could

themselves be associated with psychiatric conditions involving issues such as rumination (Gagne et al.

2018). The differing computational and statistical characteristics of model-based and model-free methods

imply that artificial systems, just like natural ones, should optimally include both. Thus, artificial systems can

suffer the same problems when these systems are misapplied.

Implementation

Implementational issues, e.g., frank hard- or wet-ware flaws, although critical for the nature and some clas-

ses of treatment of dysfunction, are obviously more divergent between humans and machines. We should

note, however, that some implementational details span the levels of analysis in a deleterious manner. For

instance, one common initial mode of action of very many drugs of addiction appears to be their ability to

hijack the normal mechanisms by which the brain reports computationally specific aspects of reward or util-

ity (Redish et al. 2008) to influence current and future behavior. We have already discussed how utility func-

tions can lead tomaladaptive choice – effects of drugs on thesemechanisms can lead to some similar prob-

lems which, in humans and other animals, are then unfortunately exacerbated by other effects of the drugs.

A DIAGNOSTIC MANUAL OF DISORDERS FOR COMPUTERS?

Our essential argument and examples so far have suggested that many of the failure modes of humans that

are characterized in computational and algorithmic terms extend to artificial complex systems operating in

the same environments. Machine evidently escape some of our flaws (notably severe limits to processing

speed and memory, fatigue, boredom and aging) but could current computers suffer from problems that

we do not? To put this another way, the famous Diagnostic and Statistical Manual of Mental Disorders

(DSM5) (American Psychiatric Association, 2013) is the latest incarnation of a series of attempts to codify

human mental dysfunction. Thus what might one imagine encountering in a DSM5 for computers, or

DSM5c?

Of course, one of the main premises of CP’s evolving approach (Stephan et al., 2016) to nosology, or the

decomposition of mental dysfunction, is that the underlying, largely statistical, categories in DSM5 need

enriching with the sort of computational structure that we provided above. Thus, a DSM5c could start

off on firmer foundations. However, we conjecture that the conjoint complexity of the architectures of

our computers and the amorphous data used to train them, mean that at least some elements of the sta-

tistical construction of DSM5 (i.e., the basis it provides for mutually agreed diagnosis) will remain.

One large source of problems for computers stems from the rather overly tabula rasa and structurally im-

poverished nature of many current methods in machine learning, leading to a set of issues that have been

well discussed elsewhere (Lake et al., 2017). In a way, these are the flip side of not suffering from the

Pavlovian misbehavior we briefly described above (Dayan et al., 2006).

A second source of issues in which machines are currently rather wanting concerns robustness. Brains are

extremely robust to the turnover, damage and even destruction of many of their components. By contrast,

machines are typically much more vulnerable; it therefore comes as no surprise that increasing the robust-

ness of machine learning algorithms (Feurer et al., 2015), as well as building robots that can cope with dam-

age (Cully et al., 2015) is an exciting topic of ongoing research.
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A potentially different aspect of robustness concerns priors. Consider what happens when very unlikely but

impactful events occur. For computational decision-making systems, it can be complicated to adjust their

internal models in the face of these so-called ‘‘black swan’’ events (Taleb 2007), which live outside previ-

ously plausible ranges. By contrast, people (at least when not suffering from anxiety; Gagne et al. 2018)

are often more able to update their internal models. One example of this phenomenon occurs in so-called

‘‘cautious control’’ algorithms, which reduce their actions in cases of high uncertainty. This mitigates a com-

mon drawback of traditional models, which tend to produce extremely high learning updates in what ac-

tions they think are best to perform but then leads to another problem: since these algorithms decrease

control with rising uncertainty, this can entirely prevent learning, causing the whole system to turn off dur-

ing events of high uncertainty (Klenske and Hennig 2016). This is indeed what can happen to algorithmic

trading algorithms, which – instead of providing liquidity – can shut down as they detect sharp rises in

buying and selling of stocks, thereby intensifying market swings (Easley et al., 2011).

Of course, computers can execute commands orders of magnitudes faster, and over a much larger canvas

than human decision-making. This is one of their major strengths and is a main reason why we outsource

decision-making to computers in the first place. However, it also means that decision can go wrong far

faster, more comprehensively, and at a much larger scale. An example of this effect are the series of vulner-

abilities (collectively called ‘‘Ripple20’’) in a widely used, low-level software library that were discovered in

2020. These vulnerabilites could potentially affect hundreds of millions of devices and put them at risk of

attackers to steal their data or modify their devices’ source code. The moniker comes from the potential

ripple-effect, where a single vulnerable component, although it may be relatively small in and of itself,

can ripple outward to impact a wide range of applications, given its widespread usage.

A further area in which machines are currently vulnerable to deficits concerns social factors. We, and many

other species of animals, are highly social, and duly enjoy an elaborate, but incompletely understood,

collection of social propensities - including such things as socially directed contributions to our utilities

(formalizing such factors as envy and guilt and altruism, Fehr and Schmidt 1999; Crockett et al., 2014),

learning from imitation and demonstration, emotion contagion (Hatfield et al. 1993), and theory of mind

(Frith and Frith 2005). Coming back to the ‘‘paperclip maximizer’’ example, for instance, it is likely that a

human decision maker would eventually realize that transforming the whole universe to paperclips, even

at the cost of the lives of others, might be a bad idea, and therefore stop before it is too late. Equally,

the catastrophic failure of the chatbot Tay to avoid becoming inflammatory and offensive when learning

from human interactors shows something of the difficulty machines have in navigating social environments.

Of course, we readily anthropomorphize our computational artifacts (Reeves andNass 1996). However, cur-

rent programs rarely incorporate such social factors (perhaps unless explicitly to exploit us). This means that

(albeit with important exceptions; (Breazeal et al., 2016) current machines risk exhibiting in interaction with

us what would be considered personality disorders of various sorts if exhibited by other humans. This could

have substantial attendant costs. One deep-rooted concern is that source verification, that is telling

whether or not another agent shares the same reality, is already hard to accomplish for us humans, and

perhaps it could even be much worse for computers with their vastly broader and more diverse input

base. It would also be interesting to step back and consider the benefits of the cooperation with which

we are endowed, for instance with its close ties to culture (Hinde and Groebel, 1991), but that insufficiently

social machines lack.

One avenue that has been well explored in machine learning systems is adversarial examples, i.e., suitably

minimally altered inputs that cause a network to fail (Szegedy et al., 2013). These can be revealing about the

structure of the computation andmodes of failure. Although it is putatively such adversarial cases that keep

industries such as gambling and social media in their cups, systematic investigations in the case of decision-

making are currently thinner on the ground (Dan and Loewenstein 2019; Dezfouli et al. 2020).
TREATING COMPUTERS (AND PEOPLE) AT DIFFERENT LEVEL

Given this CP-based analysis of some of the problems that artificial systems face, what can we say about

potential treatments and how we can learn from common practice in human psychiatry? The different

levels of computational analysis (see Figure 2) play a more complicated role here – evidenced by

the fact that humans might take a systemic drug such as a serotonin reuptake inhibitor, whose direct

effects are hard to describe other than implementation, to address a condition that exhibits itself at a
6 iScience 23, 101772, December 18, 2020
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psychological/algorithmic level. Indeed, it is perhaps remarkable that the sort of systemic pharmacother-

apies that are mainline treatments for humans work at all – given the inevitable severe limits to their spec-

ificity of action, and the complex heterogeneity of the brain. The fact that drugs do work invites speculation

about modularity and thereby perhaps lead to algorithmic insights (Dayan 2012). Some of these insights

might be useful for treating artificial systems too – for instance – if rigidity had set in (perhaps because

of an environmental mismatch), then boosting aspects of the way that rewards are processedmight provide

contrary evidence that resets adaptivity.

In contrast to pharmacotherapy is themachine equivalent of psychotherapy or cognitive behavioral therapy

that one might consider directing to the computational and algorithmic levels. At first sight, one might

think this to be mildly ridiculous – if we program a device, why are we not in complete, explicit and detailed

control of its function. However, if that function is realized by the conjoint values of millions of weights in an

artificial neural network, then reprogramming weights directly, though obviously theoretically possible, is a

fool’s errand – so the tools of a computational psychiatrist are actually surprisingly limited.

Computationally, the question is how to influence utility functions or maladaptive priors about the environ-

ment. We have already discussed the difficulty of choosing utility functions that lack unintended conse-

quences – it is very hard to account or legislate for taste. By contrast, empirical priors can often be changed

by changing the experience that the agent gets; something that could, for instance, help ameliorate fair-

ness-destroying biases (Corbett-Davies and Goel 2018). This is particularly important for breaking path

dependence for reinforcement learning agents that are generally responsible for determining themselves

what experience they choose to collect.

The algorithmic level is peopled by heuristics that are typically variable themselves, with parameters deter-

mining such things as the relative weighting of model-based andmodel-free reasoning (which governs flex-

ibility to change), expectations about the potential profitability of the environment (which governs the will-

ingness and structure of exploration), or its volatility (which governs the speed of adaptation and also the

speed of forgetting, which can be particularly important for negative events), or its smoothness (which gov-

erns generalization from one part to another Schulz et al., 2017). Even when these heuristics are not quite

appropriate from a computational level perspective, it is often the case that properties of the environment

and/or the agent that are best expressed at the computational level determine good values of the param-

eters. If these values are incorrect – perhaps because of inaccuracy or over-rigidity, then one can imagine

resetting these terms by fiat, thereby generating better behavior and, as with the priors, potentially reset-

ting the computational level to extinguish the maladaptive setting.

DISCUSSION

CP is a burgeoning field investigating computational differences between healthy subjects and patients

who suffer from mental disorders, starting from issues of decision-making. Since problems arise from

the radical complexity of the underlying problem, rather than necessarily the fact that biological systems

are trying to solve it, we have proposed to use CP to understand artificial systems also (Mainen 2018).

The fact that humans and machines are facing similar decision-making problems implies that they can

also converge on similar solutions such as developing multiple systems, employing shortcuts, or falling

back on hard-wired solutions. Although these solutions can be adaptive, they can also lead to unwanted

behavior, where computers canmake errors much faster and at greater scale and are less robust to changes

in the environment.
iScience 23, 101772, December 18, 2020 7
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Even though these ideas are in their infancy, with much to do even to disentangle the various proposed

failure modes in a fully general manner, we suggest that CP for computers offers an additional toolkit of

principles and ideas for studying shortcomings and failures in machine behavior. It casts particular light

on environmental and developmental issues, as well as fitting and misfitting heuristics. In particular, we

intend for this article to motivate researchers to think about and study the similarities and differences be-

tween the failure modes of computational and biological systems, eventually leading to a unique and co-

ordinated program of research that will help to to describe, prevent, and treat both sorts. Ultimately,

although, we hope that by refining our understanding of failure and success, one of its most important con-

tributions will be to cast new light on ourselves and our unique strengths and shortcomings.

ACKNOWLEDGMENTS

E.S. was funded by the Max Planck Society and the Jacobs Foundation. P.D. was funded by the Max Planck

Society and the Alexander von Humboldt Foundation.

AUTHOR CONTRIBUTIONS

E.S. and P.D. wrote the paper.
REFERENCES

American Psychiatric Association (2013).
Diagnostic and Statistical Manual of Mental
Disorders (DSM-5�) (American Psychiatric Pub).

Bach, D.R., and Dayan, P. (2017). Algorithms for
survival: a comparative perspective on emotions.
Nat. Rev. Neurosci. 18, 311–319.

Berger, J. (2013). Statistical Decision Theory:
Foundations, Concepts, and Methods (Springer
Science & Business Media).

Bishop, S.J., and Gagne, C. (2018). Anxiety,
depression, and decision making: a
computational perspective. Annu. Rev. Neurosci.
41, 371–388.

Bostrom, N. (2003). Ethical issues in advanced
artificial intelligence. In Science Fiction and
Philosophy: From Time Travel to
Superintelligence, S. Schneider, ed. (Wiley-
Blackwell), pp. 277–284.

Breazeal, C., Dautenhahn, K., and Kanda, T.
(2016). Social robotics. In Springer Handbook of
Robotics, B. Siciliano, Bruno., and O. Khatib, eds.
(Springer), pp. 1935–1972.

Breland, K., and Breland, M. (1961). The
misbehavior of organisms. Am. Psychol. 16, 681.

Clune, J. (2019). AI-gas: AI-generating
algorithms, an alternate paradigm for producing
general artificial intelligence. arXiv
arXiv:1905.10985.

Corbett-Davies, S., and Goel, S. (2018).
Themeasure andmismeasure of fairness: a critical
reviewof fair machine learning. arXiv
arXiv:1808.00023.

Crockett, M.J., Kurth-Nelson, Z., Siegel, J.Z.,
Dayan, P., and Dolan, R.J. (2014). Harm to others
outweighs harm to self in moral decision making.
Proc. Natl. Acad. Sci. U S A 111, 17320–17325.

Cully, A., Clune, J., Tarapore, D., and Mouret,
J.-B. (2015). Robots that can adapt like animals.
Nature 521, 503–507.
8 iScience 23, 101772, December 18, 2020
Dan, O., and Loewenstein, Y. (2019). From choice
architecture to choice engineering. Nat.
Commun. 10, 1–4.

Dasgupta, I., Guo, D., Gershman, S.J., and
Goodman, N.D. (2019). Analyzing machine-
learned representations: a natural language case
study. arXiv arXiv:1909.05885.

Dasgupta, I., Schulz, E., and Gershman, S.J.
(2017). Where do hypotheses come from? Cogn.
Psychol. 96, 1–25.

Daw, N.D., Niv, Y., and Dayan, P. (2005).
Uncertainty-based competition between
prefrontal and dorsolateral striatal systems for
behavioral control. Nat. Neurosci. 8, 1704–1711.

Dayan, P. (2012). Twenty-five lessons from
computational neuromodulation. Neuron 76,
240–256.

Dayan, P., Niv, Y., Seymour, B., and Daw, N.D.
(2006). The misbehavior of value and the
discipline of the will. Neural Netw. 19, 1153–1160.

Dayan, P., Roiser, J., and Viding, E. (2018). The
first steps on long marches: the costs of active
observation. In Rethinking Biopsychosocial
Psychiatry, W. Davies, J. Savulescu, R. Roache,
and J.P. Loebel, eds. (Oxford University Press),
pp. 213–228.

Dezfouli, A., Nock, R., and Dayan, P. (2020).
Adversarial manipulation of human decision-
making. bioRxiv.

Dreyfus, H.L., and Dreyfus, S.E. (1992). What
artificial experts can and cannot do. AI & Society
6, 18–26. https://link.springer.com/article/10.
1007/BF02472766.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and
Zemel, R. (2012). Fairness through awareness. In
Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, pp. 214–226.

Easley, D., De Prado, M.M.L., and O’Hara, M.
(2011). ‘‘The microstructure of the ‘‘flash crash’’:
Flow toxicity, liquidity crashes, and the
probability of informed trading. J. Portf. Manag.
37, 118–128.
Fehr, E., and Schmidt, K.M. (1999). A theory of
fairness, competition, and cooperation. Q. J.
Econ. 114, 817–868.

Feurer, M., Klein, A., Eggensperger, K.,
Springenberg, J., Blum, M., and Hutter, F. (2015).
Efficient and robust automatedmachine learning.
Adv. Neural Inf. Process. Syst. 28, 2962–2970.

Frith, C., and Frith, U. (2005). Theory of mind.
Curr. Biol. 15, R644–R645.

Gagne, C., Dayan, P., and Bishop, S.J. (2018).
When planning to survive goes wrong: predicting
the future and replaying the past in anxiety and
PTSD. Curr. Opin. Behav. Sci. 24, 89–95.

Gershman, S.J., Horvitz, E.J., and Tenenbaum,
J.B. (2015). Computational rationality: a
converging paradigm for intelligence in brains,
minds, and machines. Science 349, 273–278.

Gianfrancesco, M.A., Tamang, S., Yazdany, J.,
and Schmajuk, G. (2018). Potential biases in
machine learning algorithms using electronic
health record data. JAMA Intern. Med. 178, 1544–
1547.

Gigerenzer, G., and Selten, R. (2002). Bounded
Rationality: The Adaptive Toolbox (MIT press).

Gillan, C.M., and Daw, N.D. (2016). Taking
psychiatry research online. Neuron 91, 19–23.

Guitart-Masip, M., Duzel, E., Dolan, R., and
Dayan, P. (2014). Action versus valence in decision
making. Trends Cogn. Sci. 18, 194–202.

Hamrick, J., and Mohamed, S. (2020). Levels of
analysis for machine learning. arXiv.

Hatfield, E., Cacioppo, J.T., and Rapson, R.L.
(1993). Emotional contagion. Curr. Dir. Psychol.
Sci. 2, 96–100.

Hauser, T.U., Fiore, V.G., Moutoussis, M., and
Dolan, R.J. (2016). Computational psychiatry of
ADHD: neural gain impairments across Marrian
levels of analysis. Trends Neurosci. 39, 63–73.

http://refhub.elsevier.com/S2589-0042(20)30969-X/sref1
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref1
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref1
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref1
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref2
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref2
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref2
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref3
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref3
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref3
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref4
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref4
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref4
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref4
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref5
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref5
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref5
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref5
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref5
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref6
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref6
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref6
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref6
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref7
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref7
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref8
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref8
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref8
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref8
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref9
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref9
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref9
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref9
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref10
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref10
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref10
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref10
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref11
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref11
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref11
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref12
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref12
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref12
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref13
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref13
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref13
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref13
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref14
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref14
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref14
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref15
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref15
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref15
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref15
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref17
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref17
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref17
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref18
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref18
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref18
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref16
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref16
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref16
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref16
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref16
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref16
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref19
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref19
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref19
https://link.springer.com/article/10.1007/BF02472766
https://link.springer.com/article/10.1007/BF02472766
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref21
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref21
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref21
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref21
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref22
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref22
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref22
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref22
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref22
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref22
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref22
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref22
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref23
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref23
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref23
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref24
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref24
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref24
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref24
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref25
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref25
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref26
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref26
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref26
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref26
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref27
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref27
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref27
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref27
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref28
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref28
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref28
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref28
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref28
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref29
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref29
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref30
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref30
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref31
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref31
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref31
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref32
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref32
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref33
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref33
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref33
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref34
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref34
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref34
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref34


ll
OPEN ACCESS

iScience
Review
Hershberger, W.A. (1986). An approach through
the looking-glass. Anim. Learn. Behav. 14,
443–451.

Hinde, R.A., and Groebel, J. (1991). Cooperation
and Prosocial Behaviour (Cambridge University
Press).

Huys, Q.J., Guitart-Masip, M., Dolan, R.J., and
Dayan, P. (2015). Decision-theoretic psychiatry.
Clin. Psychol. Sci. 3, 400–421.

Huys, Q.J., Maia, T.V., and Frank, M.J. (2016).
Computational psychiatry as a bridge from
neuroscience to clinical applications. Nat.
Neurosci. 19, 404.

Kidd, C., Palmeri, H., and Aslin, R.N. (2013).
‘‘Rational snacking: young children’s decision-
making on themarshmallow task is moderated by
beliefs about environmental reliability. Cognition
126, 109–114.

Klenske, E.D., and Hennig, P. (2016). Dual control
for approximate Bayesian reinforcement
learning. J. Machine Learn. Res. 17, 4354–4383.

Lake, B.M., Ullman, T.D., Tenenbaum, J.B., and
Gershman, S.J. (2017). Building machines that
learn and think like people. Behav. Brain Sci. 40,
e253.

LeDoux, J.E. (2014). Coming to terms with fear.
Proc. Natl. Acad. Sci. U S A 111, 2871–2878.

Lieder, F., and Griffiths, T.L. (2019). Resource-
rational analysis: understanding human cognition
as the optimal use of limited computational
resources. Behav. Brain Sci. 43, e1.

Maier, S.F., and Seligman, M.E. (2016). Learned
helplessness at fi_y: insights from neuroscience.
Psychol. Rev. 123, 349.

Mainen, Z. (2018). What depressed robots can
teach us about mental health. The Guardian,
Monday 16th April.
Marr, D. (1982). Vision: A Computational
Investigation into the Human Representation and
Processing of Visual Information (Henry Holt/Co.,
Inc), isbn: 0716715678.

Mattar, M.G., and Daw, N.D. (2018). Prioritized
memory access explains planning and
hippocampal replay. Nat. Neurosci. 21, 1609–
1617.

Montague, P.R., Dolan, R.J., Friston, K.J., and
Dayan, P. (2012). Computational psychiatry.
Trends Cogn. Sci. 16, 72–80.

Paul, E.S., Sher, S., Tamietto, M., Winkielman, P.,
and Mendl, M.T. (2020). Towards a comparative
science of emotion: A_ect and consciousness in
humans and animals. Neurosci. Biobehav. Rev.
108, 749–770.

Peebles, D., and Cooper, R.P. (2015). ‘‘Thirty years
a_er Marr’s vision: levels of analysis in cognitive
science. Top. Cogn. Sci. 7, 187–190.

Quionero-Candela, J., Sugiyama, M.,
Schwaighofer, A., and Lawrence, N.D. (2009).
Dataset Shi_ inMachine Learning (TheMIT Press).

Rahwan, I., Cebrian, M., Obradovich, N.,
Bongard, J., Bonnefon, J.-F., Breazeal, C.,
Crandall, J.W., Christakis, N.A., Couzin, I.D.,
Jackson, M.O., et al. (2019). Machine behaviour.
Nature 568, 477–486.

Redish, A.D., Jensen, S., and Johnson, A. (2008). A
unified framework for addiction: vulnerabilities in
the decision process. Behav. Brain Sci. 31, 415.

Reeves, B., and Nass, C.I. (1996). The Media
Equation: How People Treat Computers,
Television, and New Media like Real People and
Places (Cambridge University Press).

Schulz, E., Tenenbaum, J.B., Duvenaud, D.,
Speekenbrink, M., and Gershman, S.J. (2017).
Compositional inductive biases in function
learning. Cogn. Psychol. 99, 44–79.
Sen, Z.D., Colic, L., Kasties, V., and Walter, M.
(2019). Concepts and dysfunctions of emotion in
neuropsychiatric research. In Frontiers in
Psychiatry (Springer), pp. 453–477.

Stephan, K.E., Bach, D.R., Fletcher, P.C., Flint, J.,
Frank, M.J., Friston, K.J., Heinz, A., Huys, Q.J.,
Owen, M.J., Binder, E.B., et al. (2016). Charting
the landscape of priority problems in psychiatry,
part 1: classification and diagnosis. Lancet
Psychiatry 3, 77–83.

Sutton, R.S. (1991). Dyna, an integrated
architecture for learning, planning, and reacting.
ACM SIGART Bulletin 2, 160–163.

Sutton, R.S., and Barto, A.G. (2018).
Reinforcement Learning: An Introduction (MIT
Press).

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J.,
Erhan, D., Goodfellow, I., and Fergus, R. (2013).
Intriguing properties of neural networks. In 2nd
International Conference on Learning
Representations, ICLR 2014.

Taleb, N.N. (2007). The Black Swan: The Impact of
the Highly Improbable, Vol. 2 (Random house).

Thrun, S., and Pratt, L. (1998). Learning to learn:
Introduction and overview. In Learning to Learn,
S. Thrun and L. Pratt, eds. (Springer), pp. 3–17.

Tversky, A., and Kahneman, D. (1974). Judgment
under uncertainty: heuristics and biases. Science
185, 1124–1131.

Voon, V., Reiter, A., Sebold, M., and Groman, S.
(2017). Model-based control in dimensional
psychiatry. Biol. Psychiatry 82, 391–400.

Vul, E., Goodman, N., Griffiths, T.L., and
Tenenbaum, J.B. (2014). One and done? Optimal
decisions from very few samples. Cogn. Sci. 38,
599–637.
iScience 23, 101772, December 18, 2020 9

http://refhub.elsevier.com/S2589-0042(20)30969-X/sref35
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref35
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref35
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref36
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref36
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref36
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref37
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref37
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref37
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref38
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref38
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref38
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref38
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref39
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref39
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref39
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref39
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref39
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref39
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref40
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref40
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref40
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref41
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref41
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref41
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref41
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref42
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref42
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref43
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref43
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref43
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref43
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref44
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref44
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref44
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref45
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref45
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref45
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref46
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref46
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref46
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref46
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref47
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref47
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref47
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref47
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref48
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref48
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref48
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref49
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref49
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref49
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref49
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref49
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref50
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref50
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref50
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref50
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref51
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref51
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref51
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref52
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref52
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref52
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref52
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref52
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref53
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref53
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref53
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref54
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref54
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref54
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref54
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref55
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref55
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref55
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref55
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref56
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref56
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref56
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref56
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref57
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref57
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref57
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref57
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref57
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref57
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref58
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref58
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref58
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref59
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref59
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref59
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref60
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref60
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref60
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref60
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref60
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref61
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref61
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref62
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref62
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref62
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref63
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref63
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref63
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref64
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref64
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref64
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref65
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref65
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref65
http://refhub.elsevier.com/S2589-0042(20)30969-X/sref65

	Computational Psychiatry for Computers
	Introduction
	Computational Psychiatry
	Computation
	Algorithm
	Implementation

	A Diagnostic Manual of Disorders for Computers?
	Treating Computers (and People) at Different Level
	Discussion
	Acknowledgments
	Author Contributions
	References


