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Abstract 
Although an established model organism, Tetrahymena thermophila remains comparatively 
inaccessible to high throughput screens, and alternative bioinformatic approaches still rely on 
unconnected datasets and outdated algorithms. Here, we report a new approach to 
consolidating RNA-seq and microarray data based on a systematic exploration of parameters 
and computational controls, enabling us to infer functional gene associations from their co-
expression patterns. To illustrate the power of this approach, we took advantage of new data 
regarding a previously studied pathway, the biogenesis of a secretory organelle called the 
mucocyst. Our untargeted clustering approach recovered over 80% of the genes that were 
previously verified to play a role in mucocyst biogenesis. Furthermore, we tested four new 
genes that we predicted to be mucocyst-associated based on their co-expression and found that 
knocking out each of them results in mucocyst secretion defects. We also found that our 
approach succeeds in clustering genes associated with several other cellular pathways that we 
evaluated based on prior literature. We present the Tetrahymena Gene Network Explorer 
(TGNE) as an interactive tool for genetic hypothesis generation and functional annotation in this 
organism and as a framework for building similar tools for other systems. 
 
Key Points 

● Our approach integrates nearly 20-year-old microarray and contemporary RNA-seq 
datasets. 

● We rigorously compare co-expression clustering parametrization by way of 
computational controls. 

● Co-expression clustering identifies known and novel functionally associated genes in 
Tetrahymena. 
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Introduction 
Gene co-expression, particularly in response to an experimental perturbation, has long been 
used as evidence for the functional association of genes that are otherwise uncharacterized (1). 
The transcriptome is an intermediary between genotype and phenotype, and transcriptomics is 
often cheaper, faster, and higher throughput than using biochemistry or genetic engineering to 
functionally associate a given gene with a biological pathway or process (2). The number of 
transcriptomic datasets has grown dramatically over the past two decades, raising deep 
questions such as: how well do co-expression patterns translate from one set of experimental 
conditions to another? How many cellular processes are driven by genetic co-expression, and 
does this change under different growth or environmental conditions? These questions point to 
the importance and challenge of using the wealth of publicly available data to pursue new 
hypotheses, rather than treating whole-transcriptome experiments as either purely descriptive or 
one-and-done assays to study a single organism- or condition-specific problem. Answering 
these questions requires appropriate model systems and principled approaches. 
 
The ciliate Tetrahymena thermophila is a unicellular eukaryote that has featured in 
groundbreaking discoveries regarding programmed genome rearrangements, 
telomeres/telomerase, and cytoskeletal motor proteins (3). However, some features of T. 
thermophila present challenges to its use in uncovering new biology broadly. Ciliates are over a 
billion years diverged from better studied organisms such as fungi and animals (4), an 
evolutionary distance that frequently creates obstacles to identifying gene orthologs and thereby 
inferring conserved functions. Moreover, interesting novel mechanisms may have arisen over 
that large evolutionary distance, such as the recently discovered unique secretory apparatus 
that ciliates share only with the related apicomplexans and dinoflagellates (5). One way to 
address these issues would be a forward genetic approach, using random mutagenesis to 
identify phenotypes of interest and then associate them with causative mutations (6–8). 
However, ciliate nuclear organization makes it challenging to undertake high throughput forward 
genetic approaches in these organisms (9). Due to all these factors, high throughput 
bioinformatic studies offer a potential breakthrough for interrogating both the evolutionarily 
conserved and novel biology in T. thermophila. Previous research has indicated that protein 
expression in T. thermophila tends to be regulated on the level of transcription as opposed to 
transcript degradation or translation rates, which is in line with observations in yeast (10, 11). 
Thus, gene co-expression studies promise to be informative for the analysis of gene functions. 
 
T. thermophila has distinct vegetative and sexual life stages. Consequently, many genes are 
tuned for differential expression during stages of vegetative growth/mitosis or 
conjugation/meiosis, previously explored in microarray-based experiments and co-expression 
analyses (12–15). Strikingly, we found that many characterized genes involved in the 
biosynthesis and secretion of a particular secretory organelle, called the mucocyst, are co-
expressed across growth, starvation, and conjugation (16–18). This allowed us to subsequently 
identify multiple other co-expressed genes. A large subset of these were then verified as 
involved in mucocyst biogenesis or secretion (16–18). This success led us to develop a tool we 
called the Co-regulation Data Harvester (CDH), which scraped the available co-expression data 
for T. thermophila and performed reciprocal-best-BLAST queries to indicate potential functional 
annotations based on orthologous genes in other organisms (19). This tool also allowed us to 
identify candidates for genes involved in the secretion of homologous organelles in the 
apicomplexan Toxoplasma gondii, which were then experimentally verified (20).  
  
However, the CDH became obsolete as new algorithms for identifying gene co-expression, as 
well as new databases for orthology searches, became available after our publication (21–24). 
Additionally, extensive new revisions of the T. thermophila genome model were published, as 
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well as an RNA-seq dataset from cell cycle-synchronized cultures (25–27). These developments 
prompted us to align the original microarray data with the newest genome model, while also 
bridging insights from the different transcriptomic datasets, to develop a stable, accessible tool 
for the research community. Here, we report the Tetrahymena Gene Network Explorer (TGNE), 
an interactive tool for revealing co-expression patterns, by taking advantage of the gene 
annotations and expression data that have only recently become available (21, 22, 28). One 
important aspect of the expanded datasets is that the microarray and RNA-seq expression 
profiles are independent from each other, the former covering bulk growth, starvation, and 
sexual conjugation, and the latter covering a synchronized mitotic cell cycle. Using the TGNE, 
we found that co-expression of many mucocyst-related genes is a feature of both datasets. We 
further found that these genes are also upregulated during experimentally induced mucocyst 
biosynthesis, implying that their co-expression in “untargeted” experiments reflects functional 
association. This demonstrates that the TGNE can be used to generate experimentally verifiable 
hypotheses and provides a direct insight into the dynamics of functionally associated genes in 
T. thermophila. A similar pattern emerges from TGNE analysis with regard to other cellular 
processes in T. thermophila, such as regulation of histone, ribosomal, and proteasomal 
subunits.  
 
Beyond drawing insights specific to T. thermophila biology, our approach to developing the 
TGNE provides a framework for revitalizing microarray data and integrating it with RNA-seq 
results. We leverage computational negative controls to support our choice of (dis)similarity 
metric for co-expression profiles and our optimization of parameters for partitioning the profiles 
into clusters. We also compare different normalization strategies to show the degree to which 
gene expression pattern shape and magnitude differently affect the clustering results. 
Approaches to computational negative controls, distance metrics, normalization, and clustering 
algorithms have all been detailed in prior work (1, 24, 29–32). However, to our knowledge, these 
strategies have not been previously brought together to unite bioinformatic insights from 
different experiments. Our results indicate that there are more testable hypotheses to be found 
and more insights to glean from the troves of publicly available bioinformatic data, even for 
evolutionary distant and experimentally challenging organisms.   
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Materials and Methods 
 
Code and data availability 
All code and data necessary to reproduce our analysis is available through Zenodo 
(https://doi.org/10.5281/zenodo.14353373) and figshare 
(https://doi.org/10.6084/m9.figshare.28022501).  Our new microarray dataset for mucocyst 
regeneration after secretion is available on the NCBI Gene Expression Omnibus: 
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE276404. 
 
Microarray co-expression analysis 
The microarray data analyzed in this study were sourced from the NCBI Gene Expression 
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession numbers GSE11300, 
GSE26650, GSE26384, and GSE26385. Experimental probes were aligned to the June 28, 
2024 release of the Tetrahymena thermophila genome model CDS using HISAT2 with default 
parameters (27, 33). In the NimbleGen Design File (NDF), the SEQ_ID of each singly aligned 
probe was replaced with the TTHERM_ID of the corresponding sequence. Probes that did not 
align to a single gene coding sequence were discarded with the exception of RANDOM probes. 
All raw microarray data files were converted to XYS format. All XYS files were compiled to 
create an expression set and RMA normalized with oligo and pdInfoBuilder in R (34, 35).  
 
Microarray chip quality control 
Chips were removed if they met the following three criteria: (i) had a 25th percentile NUSE 
(normalized unscaled standard error) > 1, (ii) had a relatively large NUSE interquartile range, 
and (iii) had expression intensity autocorrelation on reconstructed pseudo-images of the original 
chips (36). After this quality control, if there remained only one replicate for a given time point, it 
was also excluded from the analysis. The microarray chips were hierarchically clustered with 
hclust in R to observe any clustering biases. All microarray chips from GEO Accession 
GSE26385 were removed, as they clustered away from other replicates for their respective 
conditions and were collected by a specific individual, which is indicative of a batch effect (13).  
 
Microarray gene filtering 
Genes were filtered to remove ones that had too low expression or variance to be informative in 
the analysis. All genes were subjected to two filters: one based on the distribution of their 
respective expression statistics and one based on likelihood of differential expression. The first 
filter required that: 

1) The gene’s geometric mean expression was greater than or equal to the 25th percentile 
of the geometric means of expression for all genes; OR, 

2) The gene’s geometric coefficient of variation of expression was greater than or equal to 
the median geometric coefficient of variation for all genes; OR, 

3) The gene’s maximum fold-change of expression was greater than or equal to the median 
maximum fold-change of expression for all genes; OR, 

4) The gene’s ratio of its median absolute deviation to its median expression was greater 
than or equal to the median ratio for all genes. 

To identify genes that have robust differential expression patterns that may have been lost to 
the above filter, we used MaSigPro parametrized to a false discovery rate q = 0.001 by the 
Benjamini-Hochberg correction for multiple hypothesis testing (37). The genes identified by 
MaSigPro were added to the ones that passed the first filter, and this total gene set was used 
for subsequent analysis. 
 
RNA-seq analysis 
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The sequencing data used in this study was downloaded from the Sequence Read Archive 
(SRA; https://www.ncbi.nlm.nih.gov/sra/) under the BioProject PRJNA861835. Adapter 
sequences and low-quality reads were removed with Trimmomatic (38) with default parameters. 
The quality of the reads in each sample before and after trimming was accessed with FastQC 
(39) and MultiQC (40). The transcript abundance for each gene was computed with Kallisto (41) 
using the trimmed reads and the T. thermophila genome model CDS. Transcripts per million 
(TPM) and counts per million (CPM) were computed from transcript abundance and the 
effective length of each transcript. 
 
RNA-seq gene filtering 
Jaccard filtering was applied to the RNA-seq gene expression data to remove genes with noisy 
and unreplicated expression patterns (42). We determined the maximum Jaccard similarity 
index between replicate gene measurements to be 0.9422, which corresponded to a CPM of 
0.0802. Only genes with a maximum CPM measurement above 0.0802 were kept for the 
subsequent analyses. After filtering, the TPM values for expression were used to compute co-
expression clustering. 
 
Orthology-based annotation 
eggNOG-mapper v2.1.12 was applied to the T. thermophila genome model protein sequences 
to mine annotations of orthologs using the following parameters: the HMMER database with 
2759 as the taxID, tax scope constrained to Eukaryota, 2759 selected for the target taxa, report 
orthologs enabled, non-electronic GO terms only, the HMM database, and no PFAM 
realignment (21, 22, 43). The exact command was: -m hmmer -d 2759 --no_annot --tax_scope 
Eukaryota --target_taxa 2759 --report_orthologs --report_no_hits --go_evidence non-electronic -
-pfam_realign none --dbtype hmmdb. Interproscan 5.68-100.0 was applied to the T. thermophila 
genome model protein sequences to mine annotations of orthologs using the default parameters 
(28, 44). 
 
Enrichment analysis 
The modified two-tailed Fisher’s Exact Test with a Bonferroni correction for multiple hypothesis 
testing, as implemented in the DAVID database, was used to determine if any GO, COG, EC, 
KEGG_ko, PFAM, and/or InterPro annotation terms were enriched in each cluster relative to the 
genome background (45, 46). 
 
Clustering 
The raw microarray and RNA-seq expression datasets were preprocessed and clustered using 
the same approach. Two different preprocessing pipelines were applied to each dataset: (i) 
each gene expression profile was log-transformed elementwise and subsequently z-score 
normalized; (ii) each gene expression profile was min-max normalized. All four preprocessed 
datasets were subject to the same clustering pipeline. The arithmetic mean of the normalized 
expression values was computed for each gene across replicates at each time point. A high-
dimensional Manhattan distance matrix was precomputed with scikit-learn (47). The nearest 
neighbors for each gene expression profile in the high-dimensional space were computed using 
a modified scikit-learn function. By default, scikit-learn does not include a point as its own 
nearest neighbor. The scikit-learn function was used to compute the eleven nearest neighbors, 
and the point itself was added manually to the set of nearest neighbors and distances to 
complete the set of twelve. A graph of the high-dimensional space was built with umap-learn 
(23) with a varying number of nearest neighbors. Genes were clustered via community detection 
of networks with leidenalg (24) using the Constant Potts Model (48) quality function with a 
varying linear resolution parameter. 
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Parameter optimization and partition quality validation 
Partitions were computed with a varying number of nearest neighbors for UMAP graph 
generation (range=[2, 12], step=1) and Leiden linear resolution parameters (range=[0, 1], 
step=0.005). The modularity of each partition was computed using the graph and the clusters 
generated by the partition with networkx (49). The number of enriched clusters was counted, 
and the fraction of enriched clusters was computed as the number of enriched clusters divided 
by the total number of clusters in the partition. The interquartile range among all of the cluster 
sizes was computed for each partition. Pareto-efficient partitions were computed in a three-
dimensional space defined by the fraction of enriched clusters, modularity, and the interquartile 
range of cluster sizes. For a partition to be considered optimal, we required a modularity greater 
than 0.7 and an interquartile range of cluster sizes greater than 10. Computational negative 
control partitions were used to assess the statistical significance of each of the four optimal 
partitions. Scrambled negative control partitions were generated by randomly swapping raw 
expression values within each gene’s expression profile before preprocessing and clustering. 
Simulated negative control partitions were generated by creating a uniformly distributed Latin 
hypercube with SciPy (50) with the same dimensionality as the dataset. The hypercube values 
were then scaled to match the range of values within the dataset and used as raw input for 
preprocessing and clustering. 1000 computational negative control partitions of each type were 
computed with the optimal parameterizations for each of the microarray and RNA-seq datasets. 
A two-tailed one-sample t-test was used to assess the difference between the modularity of 
each optimal partition and each of the corresponding negative control modularity distributions. 
 
Differential expression analysis of induced mucocyst replacement dataset 
To distinguish between genes upregulated due to demands of mucocyst synthesis vs. genes 
upregulated in response to the exocytic stimulus per se, we exploited a mutant cell line, MN173, 
that does not secrete its mucocysts upon stimulation (51). Using biological triplicates, total RNA 
was isolated from wildtype cells (strain CU428) prior to stimulation of exocytosis, and then 60 
minutes post stimulation. In parallel, cells from the MN173 mutant line were treated and 
processed equivalently. Cells were grown in 1% proteose peptone, 0.2% dextrose, 0.1% yeast 
extract, 0.003% ferric EDTA. Cells were grown to 150,000-200,000 cells/ml and pelleted in 50ml 
conical tubes for 45 sec at 800xg. They were washed once and suspended in DMC (0.1 mM 
Na2HPO4, 0.1mM NaH2PO4, 0.65mM CaCls, 0.1mM MgCl2, pH7.1) for 16 h at room 
temperature with shaking. 50 ml aliquots were stimulated by pelleting as above, and 
resuspension in 5 mL. 2% Alcian Blue was added to 0.05% and the tube contents were mixed 
by inversion, and then diluted immediately by addition of 45 mL of 0.25% proteose peptone, 
0.5mM CaCl2. Cells were then washed once in DMC and resuspended for recovery in DMC at 
room temperature with shaking. Pelleted cells were lysed with 5M guanidinium thiocyanate, 
10mM EDTA, 50mM Tris-HCl pH7.5, 8mM 2-mercaptoethanol. RNA was precipitated with 7 
volumes cold 4M LiCl, and the pellet was washed once with 3M LiCl and suspended in 0.5% N-
lauroyl-sarkosine,1mM EDTA, 10m Tris pH7.5. RNA was then phenol/chloroform extracted and 
ethanol precipitated. 
 
The cDNA synthesis and Cy 3 labeling were done by Roche NimbleGen Systems, as described 
in (52). Hybridization and staining of arrays were carried out by Roche NimbleGen Systems as 
described in (53). Arrays were scanned by Roche NimbleGen using a GenePix 4000B 
(Molecular Devices, Sunnyvale, CA) and the data were extracted using NimbleScan software. 
Array normalization was performed using the quantile normalization method (54). Normalized 
expression values for the individual probes were used to obtain the expression values for a 
given open reading frame by using the multiarray average (RMA) procedure (55). Data were 
analyzed based on the RMA-processed expression values. 
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The microarray data from the mucocyst replacement experiments were processed the same 
way as the untargeted co-expression microarray dataset up to and including the RMA 
normalization step. The RMA normalized expression set was analyzed with limma (56) to 
determine the differential expression data for each gene over one hour in the MN173 mutant 
relative to the wild type T. thermophila. Genes which had a fold-change of greater than 1.5x, a 
Benjamini and Hochberg’s adjusted false discovery rate (q-value) lower than 0.01, and a B-
statistic greater than 1 (i.e., a Bayesian posterior probability greater than a 73.1% chance of 
being differentially expressed) were classified as differentially expressed genes. 
 
Cross-validation of untargeted co-expression analyses against targeted mucocyst replacement 
experiment 
We identified co-expression clusters that were statistically significantly enriched for the 33 
genes that are experimentally validated to be involved in mucocyst biogenesis (Supplementary 
File 1) in both the microarray and RNA-seq datasets. This was done by a Fisher’s Exact Test 
relative to the background genome as in (45). For each respective normalization framework, 
these sets of genes and the set of genes that are upregulated during mucocyst replacement 
were then compared to determine their mutual agreement. A Venn diagram was generated to 
display the intersections of the three sets. To assess whether the intersections between these 
sets are more likely to include experimentally validated genes than the genes excluded from the 
intersections, we again employed a Fisher’s Exact Test, this time looking at the background of 
the union of the three sets, rather than the entire genome. 
 
Macronuclear knockouts of candidate genes 
Genes of interest (TTHERM_00141040, TTHERM_00193465, TTHERM_01213910, 
TTHERM_00047330, TTHERM_00317390, TTHERM_00283800, TTHERM_00241790, 
TTHERM_01332070, TTHERM_00059370, and TTHERM_00227750) were knocked out via a 
standard biolistic bombardment, homologous recombination, and selection protocol (57). In 
brief: PCR was used to amplify the 5’ and 3' flanking regions (1.5–2 kb each) for each gene. 
These amplicons were subsequently subcloned into the SacI and XhoI sites that flank a 
neomycin resistance cassette (Neo4), thus granting the cassette homology arms to replace the 
endogenous gene. These vectors were linearized by KpnI and SapI and transformed into 
CU428 cells by biolistic transformation. Biolistic transformations were as described previously 
(58), with the following modifications: gold particles were prepared as recommended with 15 μg 
of total linearized plasmid DNA. To select positive transformants, paromomycin was added 4 
hours after bombardment to cultures that had been shaking at 30°C. Transformants were 
selected in 120 ug/mL paromomycin, and CdCl2 was added at 1 μg/mL to induce Neo4 
expression. Putative transformants were identified after 3 days of selection. These were then 
serially transferred daily in increasing amounts of paromomycin for at least 4 weeks before 
further testing. 
 
Dibucaine mucocyst secretion assay to experimentally validate new mucocyst gene knockouts 
T. thermophila cells (wildtype or knockout) were grown to a density between 4 × 105 and 6 × 105 
cells/mL and washed once with 10 mM Na-HEPES (pH 7.2) after being pelleted for 30 seconds 
at 400 × g in a clinical centrifuge. Loose cell pellets (concentrated ∼10-fold relative to the initial 
culture) were stimulated for 30 s by addition of 2.5 mM dibucaine (final concentration). The cells 
were then diluted at least five-fold with 10 mM Na-HEPES (pH 7.2) and centrifuged at 1,200 × g 
for 1 min in 15 mL conical tubes. After the centrifugation, we imaged the two-layer pellet, with 
cells overlaid by flocculent extruded mucocyst contents, to determine the strains’ relative 
capability to secrete mucocysts. 
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Results 
 
Uniting insights from microarray and RNA-seq datasets 
In order to draw comparisons between gene expression patterns in the disparate microarray 
and RNA-seq datasets, we processed them into a lingua franca of normalized gene expression. 
The microarray expression dataset covered bulk growth, starvation, and conjugation conditions 
(12, 13, 15), and the RNA-seq expression dataset covered 1.5 cell cycle–synchronized mitotic 
cycles (26). We filtered both datasets, removing batch effects, noisy expression, and 
unreplicated samples (Supplementary Figures 1 and 2). After the quality control steps, 20,428 
genes remained in the microarray dataset and 23,113 genes remained in the RNA-seq dataset 
(the total gene number in T. thermophila is 27,494) (27) (Table 1). After normalization, we 
scanned over 5 different distance metrics (Euclidean, Manhattan, context likelihood of 
relatedness (CLR), angular, and linear correlation (13, 32, 59)), nearest neighbors ranging from 
2-12, and scanning the Leiden clustering resolution parameter between zero and one 
(Supplementary Figures 3-7) (24). Using Pareto optimization (30), we settled on Manhattan 
distance, three nearest neighbors, and resolution parameter (r = 0.005) as the most effective 
(Supplementary Figure 3). The Pareto optimization checked for modularity (60), fraction of 
clusters with significantly enriched functional terms, and cluster size interquartile range 
(Supplementary Figures 3-7). To determine the functional term enrichment, we first used 
eggNOG and InterProScan to annotate all the genes in our dataset based on orthologous 
groups and protein domains (21, 22, 28) (Table 1). In each cluster, the enrichment of each 
functional term was calculated against its background abundance in the genome using a 
modified Fisher’s Exact Test and Bonferroni correction against multiple hypothesis testing (45, 
46) (Table 2). 
 
After all these steps, we simulated the null hypothesis that each gene expression profile was 
completely unrelated to other gene expression profiles with two methods: (1) expression value 
scrambling within each gene, or (2) generating simulated expression profiles each gene that 
supported an evenly distributed hypercube of values (Figure 1). For each method, we ran 1000 
independent simulations and found that the normally distributed modularity values 
corresponding to the null hypothesis were statistically significantly lower than the partition 
modularity for the chosen optimal partitions (p < 0.005 by two-tailed t-test), which indicated that 
our parametrization identified significant gene co-expression modules (Figure 1A-D). For both 
the microarray and RNA-seq datasets, and for both normalization strategies, we hierarchically 
clustered the co-expression modules around their centroids, allowing us to plot gene co-
expression modules by their relative similarity (Figure 1E-H). These heatmaps reveal a whole-
transcriptome view of gene expression across all the assayed conditions, and each condition 
has a corresponding co-expression module that reaches either its minimum or maximum at that 
point. 
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Table 1 Annotation statistics of the microarray and RNA-seq datasets. 
 

 Microarray RNA-seq 

Total Number of Genes 20428 23113 

Fraction Genes with COG 
Category Terms 0.55 0.52 

Fraction Genes with GO Terms 0.08 0.07 

Fraction Genes with KEGG KO 
Terms 0.32 0.29 

Fraction Genes with EC Terms 0.14 0.13 

Fraction Genes with PFAM 
Terms 0.49 0.45 

Fraction Genes with InterPro 
Terms 0.65 0.63 
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Table 2 Normalization specific cluster and enrichment statistics of the optimal microarray and RNA-seq partitions. 
 
 Microarray Full RNA-seq 

Normalization  Min-max Z-score Min-max Z-score 

Modularity  0.77 0.76 0.79 0.79 

Number of Clusters  636 636 731 740 

Mean Cluster Size  32.12 32.12 31.62 31.23 

Median Cluster Size  30.0 30.0 31.0 29.0 

Standard Deviation of Cluster 
Size  12.65 13.58 11.45 11.23 

Minimum Cluster Size 3 3 3 3 

Maximum Cluster Size  82 98 76 80 

Number of Enriched Clusters  250 255 199 219 

Mean Enriched Cluster Size  34.57 35.10 35.00 34.25 

Median Enriched Cluster Size  32.0 32.0 34.0 33.0 

Standard Deviation of 
Enriched Cluster Size  14.37 15.09 11.55 11.07 

Maximum Enriched Cluster 
Size  82 98 76 66 

Minimum Enriched Cluster 
Size  3 3 9 14 

Number of Genes in Enriched 
Clusters 8643 8950 6965 7501 

 
 
Mucocyst biogenesis genes are recovered in untargeted bioinformatic analysis 
With the gene co-expression being normalized and computed in the same way for the two 
datasets, we were able to test the degree of their agreement. We focused on mucocyst 
biogenesis, a cellular process that we have previously studied, including with the use of 
inferences from gene co-expression (16, 18, 20). For our current analysis, we determined which 
clusters in both the microarray and RNA-seq datasets were enriched for 33 genes that have 
been previously experimentally verified to be involved in mucocyst biogenesis or secretion 
(Supplementary File 1). Using the min-max normalized data, we found clusters that are enriched 
for these experimentally verified genes: six in the microarray co-expression dataset (m002, 
m003, m004, m005, m006, m378, totaling 182 genes, Figure 2A) and four in the RNA-seq co-
expression dataset (m040, m194, m219, and m294, totaling 104 genes, Figure 2B). Using the z-
score normalized data, we found clusters four such clusters in the microarray co-expression 
dataset (m169, m171, m172, m424, totaling 172 genes, Supplementary Figure 9A) and four in 
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the RNA-seq co-expression dataset (m632, m634, m636, m679, totaling 144 genes, 
Supplementary Figure 9B). 
 
To determine whether this agreement between the two datasets has biological significance, we 
experimentally assessed which genes are upregulated after we stimulated massive mucocyst 
secretion, when the cells are induced to synthesize a large cohort of these organelles. For this 
analysis, we compared a wildtype strain (CU428) to a mutant (MN173) that produces mucocysts 
but is incapable of releasing them, and which therefore does not induce new mucocyst 
synthesis upon stimulation (61). This was a microarray assay that we processed in the same 
way as described above (Supplementary Figure 8). Focusing on min-max normalized data, of 
the 3220 genes that were differentially upregulated in this experiment (Figure 2E), 112 are 
shared with the co-expressed clusters in the microarray dataset alone and five are shared with 
the ones in the RNA-seq dataset alone (Figure 2F-H). 33 genes are shared across the 
differential upregulation and the two co-expression datasets (Figure 2F).  
 
In Figure 2F, the 33 gene intersection of the three datasets includes 13 experimentally verified 
genes (Supplementary File 1, “min-max triple agreement” tab), which is a statistically significant 
enrichment of experimentally verified genes relative to the background of all genes in Figure 2F 
(p < 1 x 10-6 by a two-tailed Fisher’s Exact test). The five gene intersection of the RNA-seq co-
expression and differential upregulation alone contains no experimentally verified genes 
(Supplementary File 1, “min-max upreg & RNA-seq” tab; p = 1). The 112 gene intersection of 
the microarray co-expression and differential upregulation alone contains 8 experimentally 
verified genes (Supplementary File 1, “mix-max upreg & microarray” tab; p < 1 x 10-6). The eight 
gene intersection of the microarray and RNA-seq co-expression alone contains seven 
experimentally verified genes (Supplementary File 1, “min-max microarray & RNA-seq” tab; p < 
1 x 10-6). Thus, 28 of the 33 genes (84%) that were experimentally verified to be involved in 
mucocyst biogenesis prior to this analysis were recovered, all of which are found in the 
microarray co-expression dataset and shared agreed upon by at least one of the two other 
datasets. We obtained analogous results when starting with z-score normalized data 
(Supplementary Figure 9 and Supplementary File 1, “z-score” tabs). 
 
Figure 2G-H shows the expression profiles of the 8 genes at the intersection of the microarray 
and RNA-seq co-expression datasets. This list includes GRL1,3,4,5,7, and 8 and GRT1, which 
are all known to be mucocyst cargo proteins (58, 62–64). The other gene is 
TTHERM_00537380, which is unnamed, unannotated, and lacks any orthologs or protein 
domains that were identified by eggNOG or InterProScan (Supplementary File 1). 
 
For 10 of the genes that are co-expressed with the 33 previously verified genes, we performed 
new knockout experiments confirming their role in mucocyst biogenesis (Figure 3). Six of these 
genes have been previously implicated to be part of the Mucocyst Docking and Discharge 
complex by co-immunoprecipitation but have not been genetically assayed (Figure 3A) (5). The 
remaining four had not been previously studied, but we selected them based on their co-
expression clusters and for their putative annotations as proton-pumping pyrophosphotases, 
which have been implicated in mucocyst and trichocyst biogenesis (Figure 3B) (65–67). In our 
knockout experiments, the loss of each of these ten genes resulted in a mucocyst secretion 
defect, as evidenced by the loss of the mucosal layer over the cell pellets after dibucaine 
treatment. 
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The topology of the T. thermophila gene network reveals other functionally enriched modules 
The previous two studies of the T. thermophila gene co-expression landscape identified 
relatively large modules with significantly enriched functional terms: the RNA-seq study 
identified 3032 genes as cell cycle-regulated that were divided into 10 clusters, only four of 
which had significantly enriched functional terms (26). The microarray study reported 55 co-
expression clusters for the full genome, but did not report a statistical analysis of functional 
enrichment (13). However, both studies found functionally associated genes clustering 
together––most prominently histone-, proteasome-, and ribosome-associated genes. We set out 
to assess whether our new analysis reproduces or expands on these findings (Figure 4). 
 
In the case of histone-associated genes, the min-max microarray co-expression analysis 
identified one cluster of 18 genes (module m179), and the min-max RNA-seq co-expression 
analysis identified one cluster of 15 genes (module m721) (Figure 4A-B). The intersection of 
these two gene sets comprises six genes, five of which were previously annotated as histone 
components: TTHERM_00790792 (HTA1), TTHERM_00633360 (HTB1), TTHERM_00498190 
(HHF1), TTHERM_00316500 (HTA2), TTHERM_00283180 (HTB2), and TTHERM_00143660 
(HTA3) (Supplementary File 2, “AB overlap”). Additionally, the microarray co-expression cluster 
identifies five members of the MCM helicase and a chromatin-associated protein: 
TTHERM_00554270 (MCM2), TTHERM_00092850 (MCM3), TTHERM_00277550 (MCM4), and 
TTHERM_00448570 (MCM6), TTHERM_00011750 (putative MCM7), and TTHERM_00729230 
(IBD1) (Supplementary File 2, “Fig4A”). The RNA-seq co-expression cluster also includes more 
histone- and chromatin-associated genes, such as: TTHERM_00823720 (HHO1), 
TTHERM_00660180 (HMG1), TTHERM_00257230 (HMGB2), TTHERM_00189170 (HHF2), 
and TTHERM_00571055 (HHT1) (Supplementary File 2 “Fig4B”). 
 
For the ribosome-associated genes, the microarray co-expression analysis identified two 
clusters with functional enrichment, modules m601 and m602, comprising 105 genes (Figure 
4C). The RNA-seq analysis also identified two clusters, modules m458 and m460, comprising 
82 genes (Figure 4D). The overlap between the two consists of 49 genes, each one of which is 
annotated as a ribosomal gene (Supplementary File 2, “CD overlap”). Similarly, the proteasome-
associated genes separate into three co-expression profiles in both the microarray analysis 
(modules m374, m375, and m453; 102 genes total) and the RNA-seq analysis (m467, m470, 
m473; 87 genes total) (Figure 4E-F). The intersection between these gene sets contains 22 
genes, 21 of which are annotated as proteasomal components (Supplementary File 2, “EF 
overlap”). The exception is TTHERM_00600110 (TTN1), which is a nuclease (68). Curiously, 
the ribosomal co-expression profiles do not follow the periodicity of the mitotic cell cycle (Figure 
4D), unlike the histone (Figure 4B) and proteasome (Figure 4F) co-expression profiles. 
 
 
 
The Interactive Tetrahymena Gene Network Explorer (TGNE) 
Given that our analysis appears to be broadly informative for T. thermophila cell biology, we 
developed an interactive tool for reproducing our investigations for any gene or pathway of 
interest (Figure 5). The TGNE is a standalone HTML file that contains all the data, making it 
portable and requiring no maintenance. The microarray version is 292.1 MB, and the RNA-seq 
version is 106.2 MB. The TGNE works in any web browser that supports webGL 2.0 (e.g., 
Chrome 56+, Firefox 51+, Safari 15+, and Opera 43+), and every plot in the tool is interactive. 
The annotation table with the selected genes, as well as the functional term enrichment data for 
the corresponding modules, can be downloaded using the buttons at the upper right corner 
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(Figure 5H). The functional term enrichment data for each module in each variant of the TGNE 
is available in Supplementary File 3. The interactive dashboards for the microarray and RNA-
seq variants of the TGNE are available as Supplementary File 4 (microarray version) and 
Supplementary File 5 (RNA-seq version). 
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Discussion 
Our results show that, at least in the four cases we explored, there is significant agreement 
between co-expression patterns in two disparate experiments: one measuring gene expression 
using microarrays across growth, starvation, and conjugation and one measuring gene 
expression using RNA-seq in cell cycle-synchronized cells, which were generated fifteen years 
apart in different laboratories (12, 26). The fact that we were able to bring the data into a shared 
framework that bridges these experimental and temporal differences is an indication that old 
data do not need to lie fallow. Crucially, our approach relies on careful quality filtering, 
normalization, systematic parameter optimization, and computational negative controls. The 
basis for our reanalysis was to align the probes/reads against the newest model of the genome 
and then normalize the expression data such that the resulting co-expression clusters would be 
translatable between datasets. Each dataset was filtered to remove batch effects, unreplicated 
gene expression, and noise (Supplementary Figures 1 and 2). We normalized each dataset in 
two ways to satisfy two different perspectives on the data. Min-max normalization linearly scales 
the data between zero and one, emphasizing only the shape of the given expression profile. In 
contrast, z-score normalization incorporates both the shape and the magnitude of expression 
within each profile. We hope that our work can be a roadmap for using co-expression data to 
identify functionally associated genes in other systems. 
 
Our comparison of metrics for difference (or similarity) between gene expression profiles 
showed that the Manhattan distance (also termed the L1 Norm) performs as well or better than 
the other metrics, which is in line with prior literature on overcoming the “curse of 
dimensionality” (Supplementary Figures 3-7) (69, 70). For all distance metrics except Context 
Likelihood of Relatedness (CLR), three nearest neighbors was the best parametrization for 
Leiden clustering (Supplementary Figures 3-7) (24). Notably, the CLR distance metric worked 
significantly differently for the microarray and RNA-seq expression datasets, unlike any of the 
other metrics (Supplementary Figure 5A-B), which indicates that it would be inappropriate for 
bridging the two datasets. The previous Tetrahymena gene network landscape employed CLR 
to detect co-expression clusters, so our analysis is fundamentally distinct (13). The other four 
distance metrics appear to be largely equivalent in terms of the resulting modularity, fraction of 
clusters with enriched functional terms, and interquartile range for cluster size (Supplementary 
Figures 3, 4, 6, and 7). We chose the Manhattan distance for our subsequent analyses because 
it gave the most similar clustering statistics between the microarray and RNA-seq datasets, but 
it is possible that the other distance metrics could reveal subtle differences in the detected co-
expression patterns. 
 
The Leiden algorithm generates flat clusters, as opposed to hierarchical ones. Consequently, 
we do not report the relative pairwise relatedness of genes, unlike the previous Tetrahymena 
gene network analysis (13). This approach allowed us to calculate statistically significantly 
enriched terms for ~40% of clusters (Table 2). However, the interactive TGNE dashboard can 
be used to glean inter-cluster relatedness based on the heatmap, which is hierarchically sorted 
based on each cluster’s centroid in geometrical space, as well as the UMAP embeddings and 
shared annotation enrichment terms (Figure 5C-E).  
 
We specifically chose to incorporate modularity and the fraction of enriched clusters in the 
three-dimensional Pareto optimization to optimize for both mathematical and biological 
significance, respectively. A higher relative modularity indicates that there are more intra-cluster 
paths (i.e., more relatedness between gene expression profiles in the same cluster) and fewer 
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inter-cluster paths (i.e., less relatedness between genes in different clusters) (60). The fraction 
of enriched clusters corresponds to the proportion of clusters that have statistically significantly 
enriched functional annotations relative to the distribution of annotation terms in the genome. 
Modularity and functional enrichment fraction are not sufficient to avoid partitions where there 
are either several large clusters containing all genes or where the majority of clusters are tiny, 
neither of which would be biologically informative. Optimizing the interquartile range for cluster 
size allowed us to avoid parameter settings that resulted in either of these situations. From the 
Pareto optimal set of partitions, the first optimal partition with an interquartile range of cluster 
sizes greater than ten was chosen, as this was the point where cluster sizes were still small 
enough to be manually verified.  
 
Our approach enabled us to perform computational negative controls to assess whether our 
clustering performs better than the null hypothesis––that there is no co-expression network in 
the data (Figure 1). This methodology allowed us to analyze all the datasets in the same way 
and ensure the validity of our chosen partitions. Interestingly, the two variants of the negative 
control distributions for each dataset were never completely superimposed. The min-max 
normalized datasets illustrated scrambled negative control distributions which had a higher 
average modularity than the simulated distributions. The opposite was true for the z-score 
normalized datasets. While the use of computational negative controls in co-expression studies 
has previously been employed qualitatively or propounded on theoretical grounds (1, 29–31), 
our treatment of these T. thermophila datasets is the most systematic that we are aware of. 
Furthermore, the consistent modularity scores of our Pareto-optimized partitions and the 
performance of the negative controls gave us confidence to draw comparisons between the co-
expression patterns in the microarray and RNA-seq datasets. 
 
Our primary goal for the TGNE was to develop a tool for generating testable hypotheses about 
T. thermophila cell biology. To evaluate its effectiveness, we used it to revisit the biogenesis of 
an organelle in Tetrahymena that we have previously studied: the mucocyst (Figure 2). Using 
the TGNE, we found clusters which were enriched for the 33 genes that are experimentally 
known to be associated with mucocysts (i.e., genes that either are required for mucocyst 
biogenesis/secretion, localize to mucocysts, or both) in both the RNA-seq and microarray 
datasets (Figure 2A-B). We compared these genes against our differential upregulation 
experiment, which assessed gene expression in wildtype or secretion-null mutant cultures after 
stimulating mucocyst release. The degree of agreement between co-expression and differential 
upregulation patterns, as displayed in the intersections of the Venn diagrams in Figure 2F and 
Supplementary Figure 9F, gave us confidence that our co-expression clusters contain novel 
genes that are important for mucocyst biogenesis. We generated new knockouts for 10 genes 
(Figure 3): six were previously co-immunoprecipitated with the Mucocyst Docking and 
Discharge complex (Figure 3A) (5); four were unstudied but had putative annotations as proton-
pumping pyrophosphotases, which have been implicated in ciliate membrane trafficking (Figure 
3B) (65–67). Each knockout had a mucocyst secretion defect, and after this initial confirmation, 
these genes will be the subject of detailed future studies. 
 
Importantly, each intersection in the Venn diagram in Figure 2F and Supplementary Figure 9F 
indicates other clear candidates for genes involved in mucocyst biogenesis that have not been 
previously studied (Supplementary File 1). These intersections include four orthologs to the 
Paramecium tetraurelia trichocyst cargo proteins (TTHERM_00321725, TTHERM_00773710, 
TTHERM_00697290, and TTHERM_00773700) and eight members of an expanded gene 
family that shares a beta/gamma crystallin domain with known mucocyst cargo genes 
(TTHERM_00585170, TTHERM_00471040, TTHERM_00038880, TTHERM_00558350, 
TTHERM_00570550, TTHERM_01002860, TTHERM_01002870, and TTHERM_00989430) 
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(71–73). There are also two genes that are known to be essential for trichocyst secretion: ND6 
(TTHERM_00410160) and ND9 (TTHERM_00938850) (74, 75).  
 
Furthermore, eight genes which were co-expressed in both the microarray and RNA-seq 
datasets but were not induced upon regranulation (Figure 2F) include GRL1 
(TTHERM_00527180), GRL3 (TTHERM_00624730), GRL4 (TTHERM_00624720), GRL5 
(TTHERM_00378890), GRL7 (TTHERM_00522600), GRL8 (TTHERM_01055600), GRT1 
(TTHERM_00221120), and TTHERM_00537380 (which has no annotation or clear orthologs 
outside the ciliates available) (Supplementary File 1). Of these, the GRLs and GRT1 are known 
mucocyst cargo genes (51, 58, 62, 63, 71, 72). Every gene in this set has an average log2 
intensity >15.5 on the microarray, apart from the unnamed gene, which is >14.9. Given the 16-
bit detection camera of the system that was used for the microarray-based experiments, there 
was not enough dynamic range to detect further upregulation of these genes (Supplementary 
File 6). However, we have previously detected upregulation of GRL1, GRL3, and GRL4 during 
regranulation by qPCR and Northern blot in the same experimental framework (76). Thus, we 
expect that if the differential upregulation experiment were performed using RNA-seq instead of 
microarrays, the majority of these genes would also be in the triple-intersection of the Venn 
diagram. Of note, the completely unannotated TTHERM_00537380 was over-represented in the 
constitutive secretome of the T. thermophila SB281 mutant, which is also the case for mucocyst 
cargo proteins (Supplementary File 1) (51, 77, 78). The fact that it shares a strong co-
expression profile with verified cargo genes and is in this secretome makes 
TTHERM_00537380 a prime candidate for future study.  
 
A consequence of our clustering approach is that it highlights statistically significant, but 
qualitatively subtle, differences in expression patterns among well-characterized complexes or 
functionally related genes. One intriguing example of this phenomenon is found within the nine-
member gene family called GRL, for Granule Lattice. All GRL products are structurally related 
secretory proteins that are co-packaged within mucocysts, and early analyses of transcriptomic 
data revealed that the GRL genes are highly co-regulated. However, while most GRL proteins 
are likely to be required to form the physical core of the mucocyst, GRL6 appears to play a 
distinct regulatory role, as yet poorly understood (62). Remarkably, in our current analysis GRL6 
partitions into a different cluster from the other GRL genes, potentially reflecting this functional 
divergence (Supplementary Figure 10). We posit that, even in the absence of any other data, 
the separate clustering of closely related genes may provide hints of functional diversification. 
More broadly, in cases where specialized cell biological structures or pathways in T. 
thermophila were co-inherited by other ciliates or the relatively closely related dinoflagellates 
and apicomplexans, the transcriptional clusters detected in the TGNE may help to uncover 
novel features within this deep lineage.  
 
The efficacy of bioinformatic approaches like ours is necessarily limited by the input datasets. 
Even though we were able to “modernize” the microarray data by aligning it to the newest 
genome model and applying more quality control, microarray datasets are inherently limited by 
both maximum and minimum signal intensities. This results in a plateau effect in gene 
expression profiles in which high expression levels reach a signal ceiling and low expression 
levels fall below detection thresholds. These limitations reduce the resolution and detail in 
affected expression profiles and, consequently, restrict the amount of variance available for 
clustering genes algorithmically. RNA-seq datasets do not suffer from the plateau effect, but the 
RNA-seq dataset analyzed in this study was limited in that it was only performed in duplicate 
and only during the growth phase of the Tetrahymena life cycle. Additionally, despite the 
samples being synchronized, many gene expression observations were not repeated in the 
duplicated G1 and S phases, such as in Figure 4D. This was likely due to cell cycle 
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synchronization diminishing over time. Overall, the tool would benefit from a new RNA-seq 
dataset that covers both the growth and conjugation phases with highly replicated samples 
collected at smaller time intervals. This would enhance both the precision and accuracy of the 
expression profiles and clustering algorithm’s ability to accurately partition genes. Naturally, 
more replicates in all conditions would further help to reduce the noise and improve clustering. 
 
We highlighted only four biological functions in this report (mucocyst biogenesis and histone, 
ribosome, or proteasome processes), each with up to six associated co-expression clusters. 
However, our analysis produced hundreds of co-expression clusters that are enriched for 
biological functions (Table 2). These include metabolism, membrane trafficking, cytoskeletal 
organization, DNA replication, and many others (Supplementary File 3). A detailed analysis of 
all these gene modules is outside the scope of the present work, but it suggests the opportunity 
to target the study of many genes of interest in Tetrahymena thermophila. 
 
One exciting extension of approaches like the TGNE will lie in their ability to elucidate cell 
biological pathways that evolved in specific lineages. As an example, we have previously found 
that co-expression analysis in T. thermophila could be leveraged to identify genes involved in a 
secretory protein complex that appears unique to the Alveolata lineage, which includes 
Tetrahymena and the apicomplexan Toxoplasma gondii (20). This indicates that signatures of 
functional association, as evidenced by co-expression patterns, persist and can therefore be 
informative through evolutionary time and speciation. In future work, tools like the TGNE for 
organisms that are chosen for their phylogenetic diversity, rather than for their experimental 
accessibility, could provide opportunities for translating experimental results between 
evolutionarily distant model systems, as well as for identifying lineage-specific cellular 
innovations.  
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Figure Captions 
 
Figure 1 Optimal parameterization significance testing for each dataset/normalization scheme 
and illustrations of optimal experimental partitions. Histograms illustrating modularity 
distributions for computational negative control (NC) partitions compared to the experimental 
partition created from the optimal parameterization. The computational negative controls based 
on scrambled data are in black, the computational negative controls based on a simulated 
hypercube with uniform data distribution are in purple, and the modularity value for the 
optimized partitions are indicated by the dashed green line. (A) The computational negative 
control comparison for the min-max normalized microarray dataset. (B) The computational 
negative control comparison for the min-max normalized RNA-seq dataset. (C) The 
computational negative control comparison for the z-score normalized microarray dataset. (D) 
The computational negative control comparison for the z-score normalized RNA-seq dataset. In 
each case, the modularity for the optimized clustering of the real data was statistically 
significantly greater than in either negative control (p < 0.005). Heatmaps illustrating the optimal 
partitions generated from (E) the min-max normalized microarray dataset, (F) the min-max 
normalized RNA-seq, (G), the z-score normalized microarray, and (H) the z-score normalized 
RNA-seq datasets. Modules of gene expression profiles are ordered by hierarchical clustering of 
the module centroids using average linkage. Each row of a given heat map corresponds to one 
gene’s expression. In (E) and (G), the x-axis denotes the different phases of the T. thermophila 
life cycle: low density logarithmic growth (Ll), medium density logarithmic growth (Lm), high 
density logarithmic growth (Lh), 0-24 hours of starvation (S0-S24), and 0-18 hours of 
conjugation (C0-C18) (12). In (F) and (H), the x-axis denotes the stages of the mitotic cell cycle 
and corresponding timepoints for sampling. 
 
Figure 2 Enrichment, differential expression, and overlap of experimentally validated mucocyst-
associated and differentially expressed, upregulated genes. Min-max normalized expression 
profiles for genes in (A) the six microarray and (B) the four RNA-seq clusters significantly 
enriched for experimentally validated mucocyst-associated genes as well as the 33 genes 
overlapping between the upregulated, enriched microarray clusters, and enriched RNA-seq 
clusters in (C) the microarray and (D) the RNA-seq datasets. (E) Volcano plot illustrating 
differential expression of each gene represented in the microarray dataset over one hour in the 
MN173 mutant relative to the wild type T. thermophila. Thresholds are represented by blue 
dashed lines (q < 0.01 and fold-change > 1.5). All genes that passed the thresholds have a 
Bayesian posterior probability of differential expression greater than 80%. (F) Venn diagram 
describing the overlapping genes in the enriched microarray clusters, enriched RNA-seq 
clusters, and the set of upregulated genes with min-max normalization. Min-max normalized 
expression profiles for genes that are co-expressed in the microarray and RNA-seq datasets, 
but not detected in the upregulated dataset: (G) gene expression in the microarray profiles and 
(H) gene expression in the RNA-seq profiles. 
 
Figure 3. Experimental validation of ten genes that are suggested to be mucocyst-associated 
by our co-expression analysis. (A) Genes that co-immunoprecipitated as members of the 
Mucocyst Docking and Discharge protein complex (TTHERM_00141040, TTHERM_00193465, 
TTHERM_01213910, TTHERM_00047330, TTHERM_00317390, and TTHERM_00227750) (5). 
(B) Four genes that were knocked out solely on the basis of our co-expression inference 
(TTHERM_00283800, TTHERM_00241790, TTHERM_01332070, and TTHERM_00059370). 
For each gene, the left tube shows the wildtype response to dibucaine as evidenced by a 
flocculent layer of mucus overlying the cell pellet after centrifugation. The boundary of the cell 
pellet is denoted by the solid line, and the boundary of the mucus layer is denoted by the dotted 
line. The right tube in each panel displays the phenotype of strains with the respective genes 
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genetically knocked out. Each has a defect in mucocyst release in response to the dibucaine 
treatment. 
 
Figure 4 Min-max normalized expression profiles of clusters significantly enriched for (A-B) 
histone, (C-D) ribosome, and (E-F) proteasome functional annotation terms in the microarray 
(left column) and RNA-seq (right column) analyses. In each case, the same number of clusters 
come up in the two datasets: one for histone-associated profiles, two for ribosome-associated 
profiles, and three for proteasome-associated profiles. The histone-associated profiles are 
characterized by low expression during starvation and high expression during growth and 
conjugation (A) and high expression during the S-phase of the cell cycle (B). Ribosome-
associated profiles are characterized by high expression during growth or starvation and low 
expression during conjugation (C). In the RNA-seq expression dataset, the ribosome-associated 
profiles appear to be at a minimum during the first G1 phase and at a maximum at the second 
G1 phase, indicating that in this experiment they are not following the cyclicity of the mitotic cell 
cycle (D). The main characteristics of the proteasome-associated co-expression pattern are a 
sharp loss of expression at the beginning of conjugation (E) and a peak of expression during 
mitotic division (F). 
 
Figure 5. A labeled diagram of the TGNE dashboard showing the min-max normalized data for 
the gene module enriched for histone-associated genes. (A) The “Conditions Selection Tabs” 
are exclusive to the microarray dashboard and allow the user to specify which life cycle phases 
are included within the input data to the clustering pipeline: the entire profile, just the vegetative 
conditions, or just the conjugative conditions. The “Normalization Selection Tabs” allow the user 
to select which normalization technique should be used on the input data: z-score or min-max. 
(B) The search bars are text fields that can be used to select genes based on their annotations. 
The left search bar allows searches for TTHERM_ID, common names, descriptions, and module 
number. The right search bar allows searches for functional annotation terms or codes, 
specifically: PFAM names or GO/KEGG/InterPro/E.C. alphanumeric codes. Here, “m179” was 
used as the search term to select the entire module that is enriched for histone-associated 
functional terms. (C) The heatmap representation of the normalized expression of all genes 
across all conditions, as in Figure 2E. The selected module is highlighted, and the unselected 
genes are grayed out. (D) This plot shows all modules with significantly enriched functional 
terms, which are the same terms as those that can be searched using the right-hand search 
bar. As with the heatmap, when a certain module is selected, the others are grayed out. Moving 
the cursor over any of the circles in the plot displays the enriched term, its fold-change relative 
to the genome background, and the Bonferroni-corrected p-value. Here, the indicated circle 
represents the InterPro term “IPR009072”, which corresponds to “Histone-fold”. This term is 386 
times over-represented in this cluster relative to the genome background, with a Bonferroni-
corrected p-value of ~4 x 10-11. (E) An interactive UMAP representation of the gene expression 
with one tab showing the UMAP embedding of each cluster and the other tab showing the 
UMAP embedding of each gene. Selected genes and modules are highlighted, while unselected 
ones are grayed out. Clicking on any circle or selecting them with one of the tools to the right of 
the plot selects those module(s) or gene(s) for display. (F) The graph for displaying the 
expression profiles of the selected genes. This is an equivalent representation of the data in the 
heatmap. (G) The annotation table. When genes are selected, their annotation information 
based on the published T. thermophila genome, eggNOG, and InterProScan is populated into 
this table. Columns after the EC terms are not displayed in this figure. (H) The download 
buttons. The annotation table and functional enrichment information for the selected 
genes/modules can be downloaded as tab-separated files using these two buttons. 
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Supplementary Figure Captions 
 
Supplementary Figure 1. Quality control of the microarray co-expression dataset. (A) Effect of 
RMA normalization on expression intensity distributions of all the microarray chips. Top: 
probability density of raw log2 expression intensities for each chip. Bottom: probability density of 
RMA normalized log2 expression intensities for each chip. (B) Box-and-whisker plots for the 
normalized unscaled standard error (NUSE) score of each chip. If NUSE = 1 is below the 25th 
percentile, the chip may be faulty. (C) A pseudo-image of a representative faulty chip that was 
identified by a high NUSE score, confirmed visually, and subsequently removed from the 
analysis. This chip, one of the replicates for the 12th hour starvation shows evidence of physical 
warping. Each probe is colored according to its rank of intensity with blue being lowest and red 
being highest. There should be no autocorrelation in the chip. (D) A hierarchical clustering of all 
chips that passed the quality control from (B) and (C). Two pairs of chips 
S0_GSM647651/S0_GSM647652 and S9_GSM647653/S9_GSM647654 are more similar to 
each other than to the other replicates for their respective experimental conditions. This is 
evidence of a batch effect, and this is supported by the fact that these chips were the only ones 
collected by a specific individual (Xiong et al., 2011). These four chips were removed from 
subsequent analysis. (E) The coefficient of variation versus the geometric mean of log2 
expression for each gene in the final microarray dataset. Top: the unfiltered genes. Bottom: the 
genes that passed the expression filters. These filtered genes are the ones that were used for 
all subsequent analysis. 
 
Supplementary Figure 2. Quality control of the RNA-seq co-expression dataset. (A) The 
relationship between the average Jaccard similarity of replicates and the CPM filtering 
threshold. This filter removes any gene that does not have a maximum CPM value above the 
threshold. The maximum Jaccard similarity is indicated by the red line, corresponding to a 
threshold of 0.802. (B) The effect of the threshold filter on the CPM distributions for every gene 
in every replicate condition. Genes that are retained are in blue, and genes that are filtered out 
are in red. The rightmost column displays the maximum CPM values for each gene across all 
replicates. (C) The average TPM values for each gene relative to its coefficient of variation 
before Jaccard filtering. (D) The average TPM values for each gene relative to its coefficient of 
variation after Jaccard filtering. Effectively, genes with a very low expression and a very high 
coefficient of variation are removed. 
 
Supplementary Figure 3. 3D clustering parameter optimization plots for the Manhattan 
distance metric. (A) Min-max normalized microarray dataset. (B) Z-score normalized microarray 
dataset. (C) Min-max normalized RNA-seq dataset. (D) Z-score normalized RNA-seq dataset. 
We optimized for maximal modularity, maximal fraction of clusters with enriched functional 
terms, and minimal interquartile range for cluster size. Each curve corresponds to a different 
number of nearest neighbors, and each x along the curve scans across the Leiden clustering 
resolution parameter. Here, we are showing only the clustering based on Manhattan distance. 
The optimized partitions are circled in green, each corresponding to using three nearest 
neighbors and a resolution parameter of r = 0.005.  
 
Supplementary Figure 4. 3D clustering parameter optimization plots for the Euclidean distance 
metric. (A) Min-max normalized microarray dataset. (B) Z-score normalized microarray dataset. 
(C) Min-max normalized RNA-seq dataset. (D) Z-score normalized RNA-seq dataset. We 
optimized for maximal modularity, maximal fraction of clusters with enriched functional terms, 
and minimal interquartile range for cluster size. Each curve corresponds to a different number of 
nearest neighbors, and each x along the curve scans across the Leiden clustering resolution 
parameter. Here, we are showing only the clustering based on Manhattan distance. The 
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optimized partitions are circled in green, each corresponding to using three nearest neighbors 
and a resolution parameter of r = 0.005.  
 
Supplementary Figure 5. 3D clustering parameter optimization plots for the CLR distance 
metric. (A) Min-max normalized microarray dataset. (B) Z-score normalized microarray dataset. 
(C) Min-max normalized RNA-seq dataset. (D) Z-score normalized RNA-seq dataset. We 
optimized for maximal modularity, maximal fraction of clusters with enriched functional terms, 
and minimal interquartile range for cluster size. Each curve corresponds to a different number of 
nearest neighbors, and each x along the curve scans across the Leiden clustering resolution 
parameter. Here, we are showing only the clustering based on Manhattan distance. The 
optimized partitions are circled in green, each corresponding to using four nearest neighbors 
and a resolution parameter of r = 0.005.  
 
Supplementary Figure 6. 3D clustering parameter optimization plots for the angular distance 
metric. (A) Min-max normalized microarray dataset. (B) Z-score normalized microarray dataset. 
(C) Min-max normalized RNA-seq dataset. (D) Z-score normalized RNA-seq dataset. We 
optimized for maximal modularity, maximal fraction of clusters with enriched functional terms, 
and minimal interquartile range for cluster size. Each curve corresponds to a different number of 
nearest neighbors, and each x along the curve scans across the Leiden clustering resolution 
parameter. Here, we are showing only the clustering based on Manhattan distance. The 
optimized partitions are circled in green, each corresponding to using three nearest neighbors 
and a resolution parameter of r = 0.005.  
 
Supplementary Figure 7. 3D clustering parameter optimization plots for the linear correlation 
distance metric. (A) Min-max normalized microarray dataset. (B) Z-score normalized microarray 
dataset. (C) Min-max normalized RNA-seq dataset. (D) Z-score normalized RNA-seq dataset. 
We optimized for maximal modularity, maximal fraction of clusters with enriched functional 
terms, and minimal interquartile range for cluster size. Each curve corresponds to a different 
number of nearest neighbors, and each x along the curve scans across the Leiden clustering 
resolution parameter. Here, we are showing only the clustering based on Manhattan distance. 
The optimized partitions are circled in green, each corresponding to using three nearest 
neighbors and a resolution parameter of r = 0.005.  
 
Supplementary Figure 8. Quality control of mucocyst replacement experiment. (A) Pseudo-
images of the microarray chips, colored by rank of probe intensity (red is high, blue is low). (B) 
Box-and-whisker plots of the normalized unscaled standard error (NUSE) for each chip. The 
seventh chip was removed from the subsequent analysis because its 25% percentile for the 
NUSE score was significantly above 1. 
 
Supplementary Figure 9. Enrichment, differential expression, and overlap of experimentally 
validated mucocyst-associated and differentially expressed, upregulated genes. Z-score 
normalized expression profiles for genes in (A) the four microarray and (B) the four RNA-seq 
clusters significantly enriched for experimentally validated mucocyst-associated genes as well 
as the 33 genes overlapping between the upregulated, enriched microarray clusters, and 
enriched RNA-seq clusters in (C) the microarray and (D) the RNA-seq datasets. (E) Volcano 
plot illustrating differential expression of each gene represented in the microarray dataset over 
one hour in the MN173 mutant relative to the wild type T. thermophila. This is the same plot as 
panel Figure 2E. Thresholds are represented by blue dashed lines (q < 0.01 and fold-change > 
1.5). All genes that passed the thresholds have a Bayesian posterior probability of differential 
expression greater than 80%. (F) Venn diagram describing the overlapping genes in the 
enriched microarray clusters, enriched RNA-seq clusters, and the set of upregulated genes with 
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min-max normalization. Min-max normalized expression profiles for genes that are co-
expressed in the microarray and RNA-seq datasets, but not detected in the upregulated dataset: 
(G) gene expression in the microarray profiles and (H) gene expression in the RNA-seq profiles. 
 
Supplementary Figure 10. Comparison of GRL expression profiles and clustering. (A) Z-score 
normalized GRL expression profiles in the microarray dataset. There are two major clusters––
GRL3,5,7,8 and GRL1,2,4––and GRL6 and GRL9 do not conform to either one. The distinction 
between the two major clusters indicates that the cluster containing GRL3,5,7,8 begins to lose 
expression one time point later during the starvation and conjugation conditions than does the 
one containing GRL1,2,4. (B) Z-score normalized GRL expression profiles in the RNA-seq 
dataset. During the mitotic cell cycle, GRL1,3,4,5,7,8 cluster together and GRL2,9 cluster 
together. GRL6 presents a very different expression profile from the other GRLs.  
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Figure 1 Op$mal parameteriza$on significance tes$ng for each dataset/normaliza$on scheme and illustra$ons of op$mal experimental 
par$$ons. Histograms illustra$ng modularity distribu$ons for computa$onal nega$ve control (NC) par$$ons compared to the experimental 
par$$on created from the op$mal parameteriza$on. The computa$onal nega$ve controls based on scrambled data are in black, the 
computa$onal nega$ve controls based on a simulated hypercube with uniform data distribu$on are in purple, and the modularity value for the 
op$mized par$$ons are indicated by the dashed green line. (A) The computa$onal nega$ve control comparison for the min-max normalized 
microarray dataset. (B) The computa$onal nega$ve control comparison for the min-max normalized RNA-seq dataset. (C) The computa$onal 
nega$ve control comparison for the z-score normalized microarray dataset. (D) The computa$onal nega$ve control comparison for the z-score 
normalized RNA-seq dataset. In each case, the modularity for the op$mized clustering of the real data was sta$s$cally significantly greater than 
in either nega$ve control (p < 0.005). Heatmaps illustra$ng the op$mal par$$ons generated from (E) the min-max normalized microarray 
dataset, (F) the min-max normalized RNA-seq, (G), the z-score normalized microarray, and (H) the z-score normalized RNA-seq datasets. 
Modules of gene expression profiles are ordered by hierarchical clustering of the module centroids using average linkage. Each row of a given 
heat map corresponds to one gene’s expression. In (E) and (G), the x-axis denotes the different phases of the T. thermophila life cycle: low 
density logarithmic growth (Ll), medium density logarithmic growth (Lm), high density logarithmic growth (Lh), 0-24 hours of starva$on (S0-
S24), and 0-18 hours of conjuga$on (C0-C18) (12). In (F) and (H), the x-axis denotes the stages of the mito$c cell cycle and corresponding 
$mepoints for sampling. 
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Figure 2 Enrichment, differen.al expression, and overlap of experimentally validated mucocyst-associated and differen.ally expressed, 
upregulated genes. Min-max normalized expression profiles for genes in (A) the six microarray and (B) the four RNA-seq clusters significantly 
enriched for experimentally validated mucocyst-associated genes as well as the 33 genes overlapping between the upregulated, enriched 
microarray clusters, and enriched RNA-seq clusters in (C) the microarray and (D) the RNA-seq datasets. (E) Volcano plot illustra.ng differen.al 
expression of each gene represented in the microarray dataset over one hour in the MN173 mutant rela.ve to the wild type T. thermophila. 
Thresholds are represented by blue dashed lines (q < 0.01 and fold-change > 1.5). All genes that passed the thresholds have a Bayesian posterior 
probability of differen.al expression greater than 80%. (F) Venn diagram describing the overlapping genes in the enriched microarray clusters, 
enriched RNA-seq clusters, and the set of upregulated genes with min-max normaliza.on. Min-max normalized expression profiles for genes 
that are co-expressed in the microarray and RNA-seq datasets, but not detected in the upregulated dataset: (G) gene expression in the 
microarray profiles and (H) gene expression in the RNA-seq profiles. 
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Figure 3. Experimental valida/on of ten genes that are suggested to be mucocyst-associated by our co-expression analysis. (A) Genes that co-
immunoprecipitated as members of the Mucocyst Docking and Discharge protein complex (TTHERM_00141040, TTHERM_00193465, 
TTHERM_01213910, TTHERM_00047330, TTHERM_00317390, and TTHERM_00227750) (5). (B) Four genes that were knocked out solely on the 
basis of our co-expression inference (TTHERM_00283800, TTHERM_00241790, TTHERM_01332070, and TTHERM_00059370). For each gene, 
the leT tube shows the wildtype response to dibucaine as evidenced by a flocculent layer of mucus overlying the cell pellet aTer centrifuga/on. 
The boundary of the cell pellet is denoted by the solid line, and the boundary of the mucus layer is denoted by the doVed line. The right tube in 
each panel displays the phenotype of strains with the respec/ve genes gene/cally knocked out. Each has a defect in mucocyst release in 
response to the dibucaine treatment. 
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Figure 4 Min-max normalized expression profiles of clusters significantly enriched for (A-B) histone, (C-D) ribosome, and (E-F) proteasome 
funcConal annotaCon terms in the microarray (leD column) and RNA-seq (right column) analyses. In each case, the same number of clusters 
come up in the two datasets: one for histone-associated profiles, two for ribosome-associated profiles, and three for proteasome-associated 
profiles. The histone-associated profiles are characterized by low expression during starvaCon and high expression during growth and 
conjugaCon (A) and high expression during the S-phase of the cell cycle (B). Ribosome-associated profiles are characterized by high expression 
during growth or starvaCon and low expression during conjugaCon (C). In the RNA-seq expression dataset, the ribosome-associated profiles 
appear to be at a minimum during the first G1 phase and at a maximum at the second G1 phase, indicaCng that in this experiment they are not 
following the cyclicity of the mitoCc cell cycle (D). The main characterisCcs of the proteasome-associated co-expression paRern are a sharp loss 
of expression at the beginning of conjugaCon (E) and a peak of expression during mitoCc division (F). 
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Figure 5. A labeled diagram of the TGNE dashboard showing the min-max normalized data for the gene module enriched for histone-associated 
genes. (A) The “CondiAons SelecAon Tabs” are exclusive to the microarray dashboard and allow the user to specify which life cycle phases are 
included within the input data to the clustering pipeline: the enAre profile, just the vegetaAve condiAons, or just the conjugaAve condiAons. The 
“NormalizaAon SelecAon Tabs” allow the user to select which normalizaAon technique should be used on the input data: z-score or min-max. (B) 
The search bars are text fields that can be used to select genes based on their annotaAons. The leM search bar allows searches for TTHERM_ID, 
common names, descripAons, and module number. The right search bar allows searches for funcAonal annotaAon terms or codes, specifically: 
PFAM names or GO/KEGG/InterPro/E.C. alphanumeric codes. Here, “m179” was used as the search term to select the enAre module that is 
enriched for histone-associated funcAonal terms. (C) The heatmap representaAon of the normalized expression of all genes across all 
condiAons, as in Figure 2E. The selected module is highlighted, and the unselected genes are grayed out. (D) This plot shows all modules with 
significantly enriched funcAonal terms, which are the same terms as those that can be searched using the right-hand search bar. As with the 
heatmap, when a certain module is selected, the others are grayed out. Moving the cursor over any of the circles in the plot displays the 
enriched term, its fold-change relaAve to the genome background, and the Bonferroni-corrected p-value. Here, the indicated circle represents 
the InterPro term “IPR009072”, which corresponds to “Histone-fold”. This term is 386 Ames over-represented in this cluster relaAve to the 
genome background, with a Bonferroni-corrected p-value of ~4 x 10-11. (E) An interacAve UMAP representaAon of the gene expression with one 
tab showing the UMAP embedding of each cluster and the other tab showing the UMAP embedding of each gene. Selected genes and modules 
are highlighted, while unselected ones are grayed out. Clicking on any circle or selecAng them with one of the tools to the right of the plot 
selects those module(s) or gene(s) for display. (F) The graph for displaying the expression profiles of the selected genes. This is an equivalent 
representaAon of the data in the heatmap. (G) The annotaAon table. When genes are selected, their annotaAon informaAon based on the 
published T. thermophila genome, eggNOG, and InterProScan is populated into this table. Columns aMer the EC terms are not displayed in this 
figure. (H) The download bufons. The annotaAon table and funcAonal enrichment informaAon for the selected genes/modules can be 
downloaded as tab-separated files using these two bufons. 
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