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Abstract: Aramid fibre-reinforced epoxy composites (AF/EP) are promising materials in the aerospace,
transportation, and civil fields owing to their high strength, high modulus, and light weight. Thick
composite laminates are gradually being applied to large composite structures such as wind turbine
blades. During curing, temperature overheating is a common problem in thick composites, which
leads to matrix degradation, thermal residual stresses, and uneven curing. This paper proposes a
signal-to-noise ratio (SNR) method to optimise the curing cycle of thick AF/EP laminates and reduce
the overheating temperature. During curing, the temperature and strain evolution in a thick AF/EP
laminate were monitored using fibre Bragg grating sensors. The effects of the curing factors on the
overheating temperature of the thick AF/EP laminate were evaluated using the Taguchi method
and predicted via the SNR method and analysis of variance. The results indicate that the dwelling
temperature is the main factor affecting the overheating temperature. The optimal curing cycle
involves an overheating temperature of 192.72 ◦C, which constitutes an error of 2.58% compared to
the SNR method predictions. Additionally, in comparison to the initial curing cycle, the overshoot
temperature in the optimised curing cycle was reduced by 58.48 ◦C, representing a reduction ratio
of 23.28%.

Keywords: composite materials; aramid fibre/epoxy; thick laminate; overheating temperature; optimisation

1. Introduction

Owing to its high strength, high modulus, low density, impact resistance, high-
temperature resistance, wear resistance, chemical corrosion resistance, fatigue resistance,
and dimensional stability [1–8], fibre-reinforced plastic (FRP) has occupied a prominent
position in the aerospace, aviation, and national defence industry. Aramid fibre-reinforced
epoxy (AF/EP) is a high-performance composite material with aramid fibres as the re-
inforcement. With the increasing maturity of the AF/EP composite process technology,
its application has gradually expanded from the initial aerospace and military fields to
civil fields, such as in sporting goods [9,10]. The autoclave process is a common method
for producing high-performance thermosetting resin matrix composites [11–15]. In the
autoclave process, AF/EP prepregs are stacked according to specific layers and cured. The
process conditions, stability of the resin content, and uniformity of the material properties
directly affect the mechanical properties of AF/EP composites. To maximise the excellent
properties of AF/EP composites, it is essential to determine the optimal curing cycle.

Thick composite laminates (≥6 mm) [16] are gradually being applied to large com-
posite structures such as wind turbine blades. The conventional autoclave curing cycle
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recommended by the prepreg manufacturer is only used for the manufacturing of thin
laminates; when thick laminates are cured under the same cycle, the low thermal con-
ductivity of the EP matrix hinders heat release, causing the temperature at the centre
of the thick laminate to increase instantaneously during the exothermic reaction [17,18].
This overheating temperature phenomenon leads to matrix degradation, thermal residual
stresses, and uneven curing [19], therefore affecting the final mechanical properties of the
composites [20]. Some scholars have studied the curing of thick composites. Cassano [21]
proposed a methodical approach coupled with an analytical cure kinetics model in the
commercial software Abaqus by user subroutines was to aid the design of cure cycles for
thick glass fibre/EP laminates. Loos and Springer [22] conducted an experimental study
on 64-ply thick graphite/EP laminates and developed a computer code to predict the tem-
perature distribution in the laminates. They showed that the thick laminates can achieve
a uniform temperature if the heating rate is sufficiently low. Hjellming and Walker [23]
studied the curing cycle of 150 mm- and 300 mm-thick-wall graphite/EP composite cylin-
drical structures and showed that with an increase in the wall thickness, the curing cycle is
prolonged, although the curing cycle duration and thickness do not follow a simple scaling
law. Yang [24] developed a simulation method that can effectively reduce the temperature
and curing degree gradients along the thickness of glass fibre/EP composite product.
Guan [25] optimised the curing cycle for T800/X850 carbon fibre-reinforced plastic while
ensuring mechanical properties. Muc [26] proposed a two-dimensional simulation method
to discuss the influence of the resin curing process on residual stresses in thick thermoset-
ting composites and concluded that by choosing an optimised curing cycle, the residual
stresses could be reduced substantially. Lee [27] measured the temperature distribution in
a 20 mm-thick unidirectional glass/EP laminate in the autoclave process and compared it
with numerical results. They showed that for thin laminates, the curing temperature ex-
hibits an insignificant gradient over the entire thickness range, whereas in thick laminates,
a strong temperature gradient is observed. This gradient is related to the change in the
curing cycle with thickness and it is more evident in thicker laminates. The temperature
gradient is caused by the exothermic reaction of the curing process and thermal diffusion,
depending on the composite laminate thickness and thermal conductivity. Thus, in existing
literature, the overheating temperature in thick AF/EP laminates has not been reported.

The Taguchi method is an economical and efficient experimental design method. It em-
phasises optimisation through design and not through many experiments and introduces
the influence of uncontrollable factors into the experimental design [28–33]. The Taguchi
method combines orthogonal experiments and analysis of variance (ANOVA) [34–39] to de-
termine the best combination of controllable factors to reduce the impact of uncontrollable
factors on system quality fluctuations. Furthermore, the signal-to-noise ratio (SNR) method
is an interdisciplinary evaluation and prediction approach [40,41]. To our knowledge,
this is the first study to apply the SNR method to evaluate and predict the temperature
overshoot phenomenon in thick composites.

This study aims to optimise the curing cycle of thick AF/EP laminates. First, to un-
derstand the curing process of thick AF/EP laminates, temperature and strain monitoring
was performed using fibre Bragg grating (FBG) sensors, which, owing to their durability,
reliability, and small size, do not weaken the structure [42–44]. Second, using the Taguchi
method’s orthogonal experiment design during the temperature monitoring experiment,
the influence of process factors on the overheating temperature was determined, and the
SNR method was applied to evaluate the temperature. ANOVA was applied to determine
the optimal curing cycle, and the SNR method was used to anticipate the overheating
temperature under the optimal curing cycle. Finally, the accuracy of the SNR method
was evaluated through experiments. This work provides a new method for reducing and
predicting the overheating temperature.
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2. Theoretical Approaches
2.1. Signal-to-Noise Ratio Method

The SNR was originally defined as the ratio of a normal sound signal to a signal-to-
noise signal; it serves as a method to evaluate the quality of audio products. This research
introduces the use of the SNR to evaluate and predict the overheating temperature of thick
AF/EP laminates. The SNR conversion equation can be expressed as follows [41]:

SNR (η) = −10 log10

[
1
n

n

∑
i=1

1
y2

i

]
, (1)

In Equation (1), η denotes the SNR (dB); yi denotes the overheating temperature value;
and n denotes the number of experiments.

The SNR equation used for prediction is as follows:

ηp = ηm +
j

∑
i=1

(
η f − ηm

)
, (2)

where ηp is the predicted SNR, ηm is the mean SNR based on all experiments, η f is the SNR
at the optimal level of a factor, and j is the number of factors.

First, the SNR value was calculated from the overheating temperature using Equation (1).
Secondly, the optimal curing cycle was obtained by the ANOVA of the SNR. Equation (2)
can calculate the predicted SNR under the optimal curing cycle. Finally, the predicted
overheating temperature was calculated from the predicted SNR using Equation (1). The
predicted overheating temperature was experimentally verified.

2.2. Fibre Bragg Grating Sensing Principle

When light is transmitted through an FBG, the refractive index of the FBG is peri-
odically disturbed, owing to the action of the temperature and force, to reflect light of a
specific wavelength, which is termed as the Bragg wavelength (Figure 1).
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Figure 1. Working principle of fibre Bragg grating.

The Bragg equation is as follows [45]:

λB = 2neff Λ, (3)

where λB is the reflected light wavelength, neff is the refractive index of the fibre core, and
Λ is the Bragg period of the grating.

The sensor also exhibits a linear response to both strain and temperature, making it
suitable for structure monitoring applications [46]. A change in temperature and strain
will result in a change in the FBG wavelength, and the spectrum centre wavelength ∆λB is
determined by

∆λB = Kεε + KT ∆T, (4)

where Kε is the strain sensitivity constant, KT is the temperature sensitivity constant, ε
is the strain, and ∆T is the temperature increment. Both the constants are calibrated in
this work.
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3. Experimental
3.1. Calibration Experiment of Kε

The diameter of the FBG sensors (procured from Yuguang Inc., Hangzhou, China) was
125 µm. One resistance strain gauge was welded to the centre of the tensile specimen along
the tensile direction. Two FBG sensors were pasted on the specimen parallel to the strain
gauge, as shown in Figure 2. The drawing speed during tensile testing was 2 mm/min.
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Figure 2. Resistance strain gauge and FBG sensors.

3.2. Curing Monitoring Experiment

The temperature sensitivity constant was estimated through the experiment. The
material used in this work was the plain-woven AF/EP prepreg (procured from AVIC
Composite Corporation LTD, Beijing, China). The size of the [0]300 thick AF/EP laminate
was 175 mm × 80 mm, and it had a thickness of 51 mm (before curing). The thick AF/EP
laminate was manufactured using the autoclave process. The autoclave curing cycle
recommended by the prepreg manufacturer is as follows: the temperature is raised from
25 ◦C to 130 ◦C at a heating rate of 0.5 ◦C/min and then held constant for 120 min. After
holding, the temperature is reduced from 130 ◦C to room temperature (25 ◦C) at a rate of
0.3 ◦C/min. During the entire autoclave process, the pressure was maintained at 6 bar. Five
monitoring points (A, B, C, D, and E) in the AF/EP laminate, located along the thickness,
were chosen, as shown in Figure 3.
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Two types of FBGs were used in this study (Figure 4): FBGs affected by the combined
action of temperature and strain (denoted as FBG-S) and FBGs affected by temperature
alone (denoted as FBG-T). FBG-T was protected by a steel capillary tube from epoxy resin
curing. One FBG temperature sensor and two FBG strain sensors were assigned to each
monitoring point. Owing to the limitation of the outlet hole of the autoclave, only three
thermocouples (produced in Shanghai E-B Automation Instrument CO., Ltd., Shanghai,
China) were used, and these were embedded into points A, C, and E. Figure 5 shows the
distributions of the FBG sensors and the thermocouple. The curing monitoring experiment
process is shown in Figure 6.
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3.3. Orthogonal Experimental Design

In this work, the overheating temperature phenomenon was monitoredTo reduce the
overshoot temperature, a process whereby a new curing cycle is proposed. Temperature
dwelling was added before the curing temperature (130 ◦C), as shown in Figure 7. The
design principle of the new curing cycle is that the curing temperature, holding time, and
cooling rate provided by the prepreg supplier remain unchanged; in other words, the
curing temperature (130 ◦C) holding 120 min (stage 4) is unchanged, and the stage 5 that
temperature is reduced from 130 ◦C to room temperature (25 ◦C) at a rate of 0.3 ◦C/min is
also unchanged. Stage 2 involves the temperature dwelling added to the new curing cycle,
and the temperature and holding time during this dwelling are referred to as the dwelling
temperature and the dwelling time, respectively. The heating rates of stages 1 and 3 are the
same; however, the durations of these two stages change with the heating rate and dwelling
temperature. Thus, this work proposes three factors (heating rate, dwelling temperature,
and dwelling time) affecting the process. Taguchi’s orthogonal array was used to design
experiments to evaluate the influence of these three factors on the overheating temperature.
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Taguchi’s method has many mature orthogonal arrays to operate experiments for
investigating the influence of various factors. This is advantageous because it is an eco-
nomical and efficient experimental design method. For the curing process of thick AF/EP
laminates, three factors (heating rate, dwelling temperature, and dwelling time) set at four
levels were studied to determine their effects on the overheating temperature. A three
factor and four level orthogonal array was selected (L16), as presented in Table 1. Factor
A was the heating rate, which was set to 0.25, 0.5, 0.75, and 1.0 ◦C/min; Factor B was
the dwelling temperature, which was set to 80, 90, 100, and 110 ◦C; and Factor C was the
dwelling time, which was set to 30, 60, 90, and 120 min. These details are listed in Table 2.
The level combinations of factors and the obtained experimental results of the overheating
temperature and SNR are shown in Table 3.

Table 1. L16 orthogonal array.

No. Factor A Factor B Factor C

1 1 1 1
2 1 2 2
3 1 3 3
4 1 4 4
5 2 1 2
6 2 2 1
7 2 3 4
8 2 4 3
9 3 1 3
10 3 2 4
11 3 3 1
12 3 4 2
13 4 1 4
14 4 2 3
15 4 3 2
16 4 4 1

Table 2. Heating rate, dwelling temperature, and dwelling time of the factors.

Factors
Levels

1 2 3 4

Heating rate/◦C/min 0.25 0.5 0.75 1
Dwelling temperature/◦C 80 90 100 110

Dwelling time/min 30 60 90 120
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Table 3. Level combinations and experimental values.

No. Factors Experimental Results

Factor A
(Heating

Rate/◦C/min)

Factor B
(Dwelling

Temperature/◦C)

Factor C
(Dwelling
Time/min)

Overheating
Temperature

(◦C)

SNR Value
(dB)

1 1 (0.25) 1 (80) 1 (30) 206.49 46.30
2 1 (0.25) 2 (90) 2 (60) 217.95 46.77
3 1 (0.25) 3 (100) 3 (90) 222.36 46.94
4 1 (0.25) 4 (110) 4 (120) 222.36 46.94

5 2 (0.5) 1 (80) 2 (60) 218.45 46.79
6 2 (0.5) 2 (90) 1 (30) 224.75 47.03
7 2 (0.5) 3 (100) 4 (120) 244.18 47.75
8 2 (0.5) 4 (110) 3 (90) 249.10 47.93

9 3 (0.75) 1 (80) 3 (90) 206.47 46.30
10 3 (0.75) 2 (90) 4 (120) 232.37 47.32
11 3 (0.75) 3 (100) 1 (30) 239.51 47.59
12 3 (0.75) 4 (110) 2 (60) 239.53 47.59

13 4 (1) 1 (80) 4 (120) 202.93 46.15
14 4 (1) 2 (90) 3 (90) 215.63 46.67
15 4 (1) 3 (100) 2 (60) 247.21 47.86
16 4 (1) 4 (110) 1 (30) 232.56 47.33

ηm 47.08

4. Results and Discussion
4.1. Strain and Temperature Sensitivity Constants

Figure 8 presents a strong linear relationship between the reflected wavelength from
the FBG sensor and the strain from the strain gauge. The strain sensitivity constant (Kε) of
the FBGs was 1.263 pm/µε.
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Figure 9 shows the different reflected wavelengths from the FBG corresponding to the
temperatures of the thermocouples at points A, C, and E. Three temperature sensitivity
constants were acquired: KTA = 10.9 pm/◦C, KTC = 11.4 pm/◦C, and KTE = 10.9 pm/◦C.
Compared with the curves for points A and E, the linearity of the curve from point C was
poor, especially near the overshoot temperature; further, the drastic exothermal reaction
caused the temperature to increase sharply (as shown in Figure 10). Thus, the overheating
temperature had a significant influence on the wavelength and temperature linearity.
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4.2. Curing Process of Thick AF/EP Laminates

The temperature histories of the five monitoring points are shown in Figure 10. During
the heating process, points A and E were heated faster than the inner points. On approach-
ing the curing temperature, the temperatures at points B, C, D, and E increased rapidly
owing to the severe curing reaction. The highest temperature of point C was 281.16 ◦C,
which was also the highest temperature in the thick laminate because the highest tem-
perature occurred at the middle point [17,18]. However, the temperature measured by
the thermocouple was 251.2 ◦C (Figure 11). This error is related to the sharp increase in
temperature. The maximum temperatures at points B and D were 235.73 ◦C and 240.12 ◦C,
respectively, exhibiting little difference. Point A displayed a maximum temperature of
134.18 ◦C, which was only 4 ◦C higher than the curing temperature. Point E exhibited a
maximum temperature of 161.35 ◦C. The temperature difference of 27 ◦C between points A
and E was mainly because the heat dissipation performance of the metal mould was con-
siderably better than that of the vacuum bag. The temperature distribution was evidently
different in the curing process of the thick AF/EP composites.
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Figure 11 shows the time–temperature curve at point C, as monitored by the ther-
mocouple and FBG. The overshoot temperature monitored by the FBG was 281.16 ◦C,
whereas the temperature monitored by the thermocouple was 251.2 ◦C. Thus, a temper-
ature difference of 29.96 ◦C was noted between these readings. As shown in Figure 11,
the measurement error of the FBG is less than 5% before the occurrence of the overshoot
temperature and 21.16% immediately after the occurrence of the overshoot temperature;
the maximum error in the cooling stage is 11.18%. Therefore, the overheating tempera-
ture has a significant impact on the accuracy of FBGs. Consequently, it is necessary to
control and reduce the overheating temperature. Importantly, this is the first study to
show that the overheating temperature during the curing process of composites affects
FBG sensor measurements.

Figure 12 illustrates the strain history of the five points throughout the curing process.
This is a complex process influenced by the temperature, curing shrinkage, and mould
interaction. Before the gelation of the resin, the strain changes caused by thermal deforma-
tion and the resin flow of the prepreg were measured using the FBG sensors. In the initial
stage, the trend of the strain at point A was different from those of the strains at the other
points; this was likely due to the thermal expansion of the mould. At around 200 min, the
strains at all the five points increased rapidly within a very short period. Before the gelation
of the resin, thermal expansion and solidification do not result in strains [43]. However, the
strain curves increased primarily due to the excessively large thermal expansion caused
by the heat from the drastic exothermal reaction and the frictional effect transferred to the
FBGs as the viscosity increased. In the thermal insulation platform stage, the resin reacted
until it was completely solidified. The curing shrinkage can only be clearly observed in the
strain curve for point E. Therefore, the heat of the drastic exothermal reaction was the most
important factor affecting the strain of the thick AF/EP composites. In the cooling stage,
the strain curves decreased manly due to the reduction in temperature and the transfer of
the frictional effect to the FBGs. The minimum curing residual strain at point A, which was
affected by the mould, was 537.66 µε. The residual strain at point E was 669.10 µε due to
the direct effect of the atmospheric pressure of 6 bar acting on the outer layer, which limited
the strain development during the forming process. The residual strain values at points
B, C, and D were 1180.63 µε, 925.66 µε, and 1114.12 µε, respectively. The strain gradient
distribution was notably different in the curing process of thick AF/EP composites.
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4.3. Evaluation of Process Parameters

During the curing of the thick AG/EP laminate, the overheating temperature leads
to matrix degradation, thermal residual stress, and uneven curing [19]. Hence, a lower
overheating temperature was pursued during curing. Table 4 shows the ANOVA of the
SNR; the dwelling temperature was found to be the primary factor with a contribution
of 75.78%. The contributions of the heating rate and dwelling time were 20.16% and
4.06%, respectively.

Table 4. ANOVA of SNR value.

Variables Level-1 Level-2 Level-3 Level-4 Sum of
Squares

Degrees of
Freedom

Mean
Variance F-Test Contribution

Heating rate 46.74 47.38 47.20 47.00 0.9 3 0.3 4.115 20.16%
Dwelling

temperature 46.38 46.95 47.54 47.45 3.383 3 1.128 15.464 75.78%

Dwelling time 47.06 47.25 46.96 47.04 0.181 3 0.06 0.828 4.06%
Total 4.464 100%

The mean SNR values under four levels of the three factors are shown in Figure 13.
The heating rate, dwelling temperature, and dwelling time simultaneously determine the
overheating temperature caused by the curing reaction. The combination of the best levels
of the curing factors was A1B1C3; in other words, a lower overheating temperature was
obtained at a heating rate of 0.25 ◦C/min, dwelling temperature of 80 ◦C, and dwelling
time of 90 min. The overheating temperature of the thick AF/EP laminate under the best
curing cycle was 197.70 ◦C, calculated by Equations (1) and (2). The optimal curing cycle
was predicted, but it is not in Table 3. Therefore, further experiments should be carried out
to validate the predicted curing cycle.
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The time–temperature relationship of the thick AF/EP laminate under the original and
optimal curing cycle is shown in Figure 14. In the experiment, the overheating temperature
of the thick AF/EP laminate was 192.72 ◦C; it involved an error of 2.58%, as compared
with the overheating temperature (197.70 ◦C) predicted using the SNR method. Moreover,
compared with the curing cycle provided by the prepreg manufacturer, the overheating
temperature was reduced by 58.48 ◦C, representing a reduction ratio of 23.28%.
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5. Conclusions

This paper proposed an optimisation method for the overheating temperature phe-
nomenon in [0]300 thick AF/EP laminates, and the effects of the curing factors were dis-
cussed. The conclusions drawn are as follows:

1. FBG sensors can be used to monitor the temperature and strain produced during
the curing process of thick AF/EP laminates. FBG sensors were used to monitor the
temperature overshoot phenomenon and the temperature distribution in the thick
AF/EP laminate. The highest temperature was noted at the centre of the laminate.
Temperature overheating leads to an error of 21.16% in the FBG measurements, as
compared with the thermocouple measurements.

2. It was determined that among the three curing factors (heating rate, dwelling temper-
ature, and dwelling time) affecting the curing of the thick AF/EP laminate, dwelling
temperature was the primary parameter affecting the overshoot temperature, with a
contribution of 75.78% based on the Taguchi method and ANOVA. The contributions
of the heating rate and dwelling time were 20.16% and 4.06%, respectively.

3. The relationship between the overheating temperature and curing factors was estab-
lished using SNR method to predict the overheating temperature. Among the four
level combinations of three factors, the optimal curing factors were a heating rate of
0.25 ◦C/min, dwelling temperature of 80 ◦C, and dwelling time of 90 min. Compared
with the experimental results, the predicted overheating temperature has an error
of 2.58%.

4. Compared with the original curing cycle, the overshoot temperature of the optimised
curing cycle was reduced by 58.48 ◦C, representing a reduction ratio of 23.28%.
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