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Abstract

Background: Metastatic prostate cancer (CaP) treatments are evolving rapidly but
without evidence-based biomarkers to predict responses, and to maximize remis-
sions and survival.
Objective: To determine the activity of androgen receptor (AR), the target for
default first-line systemic treatment, in localized treatment-naïve CaP and its
association with clinical risk factors, molecular markers, CaP subtypes, and pre-
dictors of treatment response.
Design, setting, and participants: We examined 452 bona fide AR target genes in
clinical-grade expression profiles from 6532 such CaPs collected between 2013 and
2017 by US physicians ordering the Decipher RP test. Results were validated in
three independent smaller cohorts (n = 73, 90, and 127) and clinical CaP AR ChIP-
Seq data. Association with CaP differentiation and progression was analyzed in
independent datasets.
Outcome measurements and statistical analysis: Unsupervised clustering of CaPs
based on AR target gene expression was aligned with clinical variables, differenti-
ation scores, molecular subtypes, and predictors of response to hormonal therapy,
radiotherapy, and chemotherapy. AR target gene sets were analyzed via Gene Set
Enrichment Analysis for differentiation and treatment resistance, Ingenuity Path-
way Analysis for associated biology, and Cistrome for genomic AR binding site
.
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Results and limitations: Expression of eight AR target gene subsignatures gave
rise to five CaP clusters, which were preferentially associated with CaP molecu-
lar subtypes, differentiation, and predictors of treatment response rather than
with clinical variables. Subsignatures differed in contribution to CaP progres-
sion, luminal/basal differentiation, CaP biology, and ARBS composition. Valida-
tion in prospective trials and optimized quantitation are needed for clinical
implementation.
Conclusions: Measurement of AR activity patterns in treatment-naïve CaP may
serve as a first branch of an evidence-based decision tree to optimize personal-
ized treatment plans.
Patient summary: Treatment options for metastatic prostate cancer are in-
creasing without information needed to choose the right treatment for the right
patient. We found variation in the behavior of the target for the default first-line
therapy before treatment, which may help optimize treatment plans.
© 2020 The Author(s). Published by Elsevier B.V. on behalf of European Association of

Urology. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The treatment landscape for metastatic prostate cancer
(CaP) is evolving rapidly. Androgen deprivation therapy
(ADT), the default first-line treatment, alone or in combi-
nation with radiation therapy (RT), induces a remission, but
time to prostate-specific antigen (PSA) or clinical progres-
sion varies from several months to years [1–3]. Treatments
for castration-resistant CaP (CRPC) include second-genera-
tion ADT or chemo-, immuno-, or radiotherapeutics [1],
which provide short-lived remissions of variable duration
[4–7]. Recent trials of ADT combined with chemotherapy or
second-generation ADT as first-line systemic therapy
showed a survival advantage and delayed treatment
resistance compared with ADT alone [2,3,8,9], adding
treatment options and questioning ADT monotherapy as
the standard of care. Despite this expansion in therapies,
each of which benefits patient subsets, the field lacks
predictive biomarkers to facilitate treatment choices,
design treatment plans that maximize remission for each
consecutive therapy, and prolong survival of individual
patients [10,11].

Evidence-based decision-making tools that start with
the distinct biological features of each unique patient’s CaP
are needed if we are to optimize personalized treatment
plans. The aim of this study was to determine whether the
activity of a target for a specific CaP treatment prior to
administration of this treatment predicts therapeutic
response. We examined the spectrum of activity of the
androgen receptor (AR), the target for ADT that is impacted
also by RT [12,13], in treatment-naïve localized CaP.
Analyzing 6532 cases, we found that AR action varies
widely and associates preferentially with the predictions of
response to ADT, RT, or chemotherapy, and a CaP’s basal-
luminal differentiation status and/or molecular subtype
rather than with clinical variables. Distinct patterns of AR
activity affected CaP biology and were reflected in AR
binding site (ARBS) composition. Our studies indicate that a
primary CaP’s pattern of AR activity may predict individual
patients’ response to first-line therapy for metastatic
disease and that this information can be developed into a
first branch of a decision tree to optimize treatment plans.

2. Patients and methods

2.1. Study population

Deidentified transcriptome data from 6532 CaP patients were obtained
from clinical use of the Decipher RP test between 2013 and 2017 ordered
by US physicians. Patients treated with radical prostatectomy who had
one or more adverse pathology features (ie, positive margins, extrapro-
static extension, or seminal vesicle invasion) were eligible for the
Decipher test.

2.2. Gene expression profiling, bioinformatics, and statistical

analyses

Evaluation of AR activity in primary CaPs has mostly involved
quantifying expression of small AR target gene signatures and/or
smaller patient cohorts without considering its association with CaP
progression. To assess AR activity more comprehensively, we examined
gene expression profiles from 6532 localized treatment-naive specimens
captured in the CLIA-certified Decipher GRID microarray platform [14]
for the expression patterns of 452 bona fide AR target genes. We
validated these genes both to be androgen-responsive and to contain
ARBS(s) to which AR binds in an androgen-induced manner [15]. Demo-
graphic, pathological, and clinical patient information is shown in
Supplementary Table 1. Clinical variables used to predict the risk of CaP
progression (Gleason grade group, tumor-node-metastasis stage, and
presurgical PSA) [1] were available for most patients. A total of
5000 cases had available molecular markers and gene signatures that
were derived from gene expression data and were relevant to CaP
therapy response. Molecular markers that were assessed included ERG
and ETS fusion status (ERG+, ETS+), SPINK1 expression status (SPINK+),
or the absence of these three markers (triple negative cases, triple–)
[14]. Scores for gene signatures that reflect basal or luminal cell lineages
such as the breast cancer–derived but CaP-validated PAM50 classifier
(basal, luminal A, and luminal B subtypes [16]), or a signature that
characterizes benign basal and luminal prostate epithelial cells (basal-
like and luminal-like subtypes [17]) were considered. Furthermore, we
incorporated gene signatures that classify prostate adenocarcinoma
versus small-cell carcinoma, reflect genomic instability, or predict
response to ADT (ADT response signature [ARS aka ADT-RS]) [18], RT
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(postoperative radiation therapy outcomes score [PORTOS]) [19],
docetaxel, or dasatinib. Behavior of the 452 AR target genes was
compared with the AR activity score from a smaller signature of nine AR
target genes [20]. The incidence of molecular features was consistent
with literature: 40.9% of cases were ERG+, 10.1% were ETS+, and 2.5%
showed small-cell carcinoma features (Table 1).

CaP subtypes, molecular markers, and gene signatures were analyzed
using Gene Set Enrichment Analysis (GSEA), Ingenuity Pathway Analysis
(IPA), and Cistrome tools in GRID data and multiple independent clinical
CaP gene expression and AR-ChIP-Seq datasets, as detailed in the
Supplementary material.

3. Results

3.1. AR action partitions based on molecular markers and

predicted treatment response

Of the 452 AR target genes, 450 mapped to the Decipher
GRID data (Supplementary Table 2). Unsupervised cluster-
ing based on the expression patterns of these 450 genes
yielded five similarly sized clusters (clusters 1–5; Fig.1). CaP
clustering showed modest associations with some clinical
variables used for risk stratification, for example, slightly
more GGG5 cases in cluster 5 (Table 2). For other clinical
Table 1 – Distribution of molecular features studied among CaP cluste

Molecular feature All clusters(%) Cluster 1 (%) Clu

Molecular subtype
ERG+ 40.9 31.63 

ETS+ 10.12 13.6 

SPINK+ 10.96 10.43 

Triple– 38.02 44.33 

Basal/luminal like
Basal like 29.46 85.71 

Luminal like 70.54 14.28 

Pam50 classifier
Basal 42 74.94 

Luminal A 27.1 22.78 

Luminal B 30.9 2.26 

Small cell classifier
Adenocarcinoma 97.5 94.67 

Small cell carcinoma 2.5 5.33 

ADT response (ARS)
Lower 19.06 29.36 

Average 49.6 50.91 

Higher 31.34 19.72 

AR-A (AROS)
Lower 11.92 42.85 

Average 87.88 57.14 

Higher 0.2 0 

RT response (PORTOS)
Average 81.46 63.38 

Higher 18.54 36.62 

Docetaxel sensitivity
Lower 2.08 5.22 

Average 90.28 94.44 

Higher 7.64 0.34 

Dasatinib sensitivity
Lower 0.84 0 

Average 95.18 89.12 

Higher 3.98 10.88 

ADT = androgen deprivation therapy; AR = androgen receptor; AR-A = AR activity
cancer; PORTOS = postoperative radiation therapy outcomes score; RT = radiation
a Data for each molecular feature are expressed as the percentage of total CaP c
variables, no or moderate associations were seen, for
example, slightly younger patients and more extraprostatic
extension in cluster 4. More pronounced associations were
found between clusters and scores for predicted drug
sensitivities, cellular differentiation, and molecular CaP
subtype. For each cluster, one or more molecular features
showed a considerable shift from the average obtained from
all CaPs (Table 1). Cluster 1 cases differed most from average
with regard to cell differentiation, with a higher percentage
of basal-like, PAM50 basal, and small-cell carcinoma CaPs
(doubled to 5.33% from 2.5%) and the lowest PAM50 luminal
B scores, and lowest predicted response to ADT and
docetaxel, yet the highest response to RT. A small subset
from clusters 1 and 2 also showed the highest sensitivity to
dasatinib. Although more luminal like, cluster 2 cases still
had a high percentage of PAM50 basal CaPs, albeit with a
higher fraction of luminal B subtypes and the lowest
percentage of small-cell carcinoma. Cluster 3 showed the
highest percentage of triple cases (71.6%), with very few ERG
+ (1.8%) and ETS+ (4.16%) CaPs, yet the lowest basal-like
score. Cluster 4 contained a high percentage (88%) of ERG+
cases, very few SPINK+ cases, the highest percentage of
luminal B subtypes, highest ADT responses, and lowest RT
rsa

ster 2 (%) Cluster 3 (%) Cluster 4 (%) Cluster 5 (%)

44.11 1.85 88.19 39.56
7.93 4.16 9.92 13.63
16.04 22.43 0.12 10.98
37.43 71.56 1.77 35.51

27.01 2.89 4.01 27.65
72.99 97.1 95.98 72.35

70.14 14.45 10.86 33.88
9.09 29.83 33.29 39.88
20.76 55.72 55.84 26.24

99.2 98.27 98.7 96.65
0.8 1.73 1.3 3.35

13.72 19.65 12.51 20.64
51.6 46.7 44.04 52.57
34.67 33.64 43.44 26.79

9.27 1.27 0.59 8.02
90.73 98.38 99.4 91.98
0 0.35 0 0

84.58 89.83 94.33 77.02
15.42 10.17 5.67 22.98

3.21 0.46 0 1.4
95.98 86.47 79.1 92.36
0.8 13.06 20.9 6.23

0 1.73 2.72 0.31
91.26 98.15 97.28 99.38
8.73 0.12 0 0.31

; AROS = AR output signature; ARS = ADT response signature; CaP = prostate
 therapy.
ases showing that feature’s score or activity.



Fig. 1 – AR action partitions based on molecular markers and predicted treatment response. Deidentified Decipher GRID transcriptome data obtained
from clinical use of the Decipher RP test for 6532 individual CaP cases were subjected to hierarchical clustering for 452 AR target genes, of which
450 mapped to GRID gene expression data. Heatmap shows clustering of CaP cases based on AR target gene expression. Five major CaP clusters are
marked by colored boxes on the dendrogram at the top of the heatmap: cluster 1 in red, cluster 2 in blue, cluster 3 in black, cluster 4 in yellow, and
cluster 5 in orange. Clusters 1–5 are labeled also at the bottom of the heatmap, where the annotations a, b, and c denote subclusters within each
major cluster. Eight AR target gene sets the expression of which contributes to clustering are marked at the right of the heatmap. Panels at the top of
the heatmap show annotation tracks for the molecular subtypes and gene expression signatures, and presurgical clinical variables. Legends at the
bottom of the heatmap indicate scores and activity levels of gene signatures, subtyping, and parameters that were assessed. Color key on the left top
corner indicates row z scores. ADT = androgen deprivation therapy; AR = androgen receptor; AR-A = AR activity score derived from nine AR target genes;
ARS = ADT response signature; CaP = prostate cancer; GG = grade group; GGG = Gleason grade group; Lum = luminal; PORTOS = postoperative radiation
therapy outcomes score; PSA = presurgical serum prostate-specific antigen levels (in ng/mL); pStage = pathological stage; RP = radical prostatectomy;
RT = radiation therapy.
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Table 2 – Distribution of clinical variables studied among CaP clusters

Clinical variable All clusters (%) Cluster 1 (%) Cluster 2 (%) Cluster 3 (%) Cluster 4 (%) Cluster 5 (%)

Gleason grade group
1 7.65 9.31 9.45 5.90 7.09 6.47
2 43.15 42.79 47.86 37.23 47.28 40.56
3 27.84 24.29 24.51 31.68 30.97 28.55
4 8.93 8.74 6.95 13.53 7.92 8.35
5 12.43 14.87 11.23 11.68 6.74 16.07

PSA (ng/ml)
<10 76.04 73.96 79.74 70.33 78.63 76.63
10–20 17.77 19.13 13.34 21.97 17.45 17.75
>20 6.18 6.90 6.92 7.71 3.92 5.62

p stage
pT2 44.86 43.81 50.00 50.54 37.97 41.87
pT3a 34.50 29.85 33.50 34.93 41.35 33.74
pT3b 17.77 22.94 13.20 12.12 18.42 21.54
pT4 2.86 3.40 3.30 2.40 2.26 2.85

Age
1st quartile 60.7 61.1 60.5 62.3 59.7 60.6
Median 65.8 65.7 65.9 66.6 65.4 65.7
3rd quartile 69.4 69.6 69.6 69.8 68.8 69.2

Extraprostatic extension
Yes 51.42 50.89 47.97 46.50 58.86 53.17
No 48.58 49.11 52.03 53.50 41.14 46.83

Seminal vesicle involvement
Yes 18.30 23.30 13.75 12.40 18.67 22.58
No 81.70 76.70 86.25 87.60 81.33 77.42

Lymph node involvement
Yes 4.80 5.48 4.12 4.13 4.08 5.84
No 95.20 94.52 95.88 95.87 95.92 94.16

Bladder neck invasion
Yes 11.80 12.84 14.41 8.93 10.00 12.24
No 88.20 87.16 85.59 91.07 90.00 87.76

Surgical margins
Yes 50.85 46.35 50.50 52.44 53.93 51.11
No 49.15 53.65 49.50 47.56 46.07 48.89

CaP = prostate cancer; GGG = Gleason grade group; PSA = prostate-specific antigen.
Except for age, data for each clinical variable are expressed as the percentage of total CaP cases showing that feature’s score or activity. GGG, PSA, and p stage
data were derived from 4996, 2926, and 4715 cases, respectively. Information on age is expressed in years and derived for 4853 patients. Information on
extraprostatic extension, seminal vesicle involvement, lymph node involvement, bladder neck invasion, and surgical margins was derived from 4809, 4787,
4329, 1144, and 4909 patients, respectively.
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responses, but highest docetaxel sensitivity. Cluster 5 was
closest to average, although it contained the highest
percentage of luminal A CaPs and somewhat lower
sensitivity to dasatinib. These CaPs represent early-stage
disease; no significant genomic instability was observed.
The AROS-1 score, which summarizes the expression of nine
target genes [20], differed markedly between clusters, with
the lowest score in cluster 1 and highest in cluster 4.

3.2. Patterns of AR action, and not global AR activity, underlie

CaP clustering

CaP clustering was not caused by differences, up or down, in
the expression of the entire 450-gene signature. Analysis of
Pearson correlations underlying the hierarchical clustering
revealed that dissimilarities in the expression levels of eight
AR target gene subsignatures (range: 32–90 genes, color
coded in Fig. 1; Supplementary Table 2) produced the
clusters. For instance, the expression of the black-coded
signature was high in cluster 1 (which has a higher
percentage of basal/basal-like carcinoma), lower in clusters
2–4, and intermediate in cluster 5, whereas the purple-
coded gene set showed the highest expression in ERG+
cluster 4, but lower expression in clusters 1 and 2, and
intermediate expression in clusters 3 and 5. Expression for
the green-coded subsignature was lowest in cluster 4 and
more enriched in others, particularly cluster 3. The gray-
coded gene set showed higher expression in parts of
clusters 1 and 2, and much lower expression in parts of
cluster 4 and 5. Other subsets showed neither extremely
high nor low expression among clusters (Fig. 1).

Differential CaP behavior of the eight gene sets was
confirmed via GSEA. Similar to the 452 AR target gene
signature [15], two gene sets (green and blue) were
depleted in metastatic CRPC compared with localized
treatment-naïve CaP [21], whereas the black-, purple-,
orange-, and coral-coded subsignatures showed no differ-
ence, and the pink and gray ones were enriched in CRPC,
suggesting the latter to be more relevant to CRPC
progression. Comparing data sets derived from luminal
and basal cells, luminal enrichment was seen for blue-,
green-, coral-, orange-, and purple-coded gene sets, but no



Fig. 2 – AR target gene sets differentially involved in CaP progression and differentiation. (A) GSEA analyses of eight AR target gene sets between
localized treatment-naïve CaP and metastatic CRPC (GSE32269; top panel) and beween benign basal epithelial cells compared with benign luminal
epithelial prostate cells (GSE67070; bottom panel). The dashed red line indicates FDR < 0.25, which is considered significant. Red bars indicate
significant positive enrichment, blue bars indicate significant negative enrichment, and gray bars indicate no significant enrichment. GSEA plots are
shown in Supplementary Figure 1. (B) Eight AR target gene sets were subjected to GSEA analysis as above to compare their behavior in ERG+ versus
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differences were found for black, pink, and gray signatures,
indicating more basal features combined with luminal
features in the latter (Fig. 2A and Supplementary Fig. 1).

We then used GSEA to validate AR target gene set
expression patterns in three independent treatment-naïve
localized CaP cohorts that were analyzed using diverse
profiling platforms [22–24]. The considerably smaller
number of cases (n = 73, 90, and 127) [22–24] permitted
more stringent analyses of key features such as ERG+ status,
a readily evaluated marker present in a considerable portion
of CaPs [25]. For the three datasets, the purple-coded gene
set (high expression in ERG+ cluster 4) was enriched,
whereas the green-coded set (depleted in cluster 4) was
depleted in ERG+ cases. The second and third study also
revealed gray gene set depletion in ERG+ cases, reminiscent
of its lower expression in part of cluster 4 cases (Fig. 2B and
Supplementary Fig. 2). GSEA for the basal and luminal
signatures in ERG+ and ERG– cases verified enrichment of
luminal phenotype in ERG+ cases in all three studies, again
validating the GRID association between ERG positivity and
luminal features (cluster 4; Fig. 2C and Supplementary Fig.
3). To further characterize CaP’s heterogeneity in AR action,
we verified cluster-specific expression and activity of genes,
such as SPOP, PTEN, TP53, CHD1, and MYC, whose somatic
alterations are used to subtype CaP and impact AR action
[25]. We noted differences in their expression or activity
among clusters, such as lower CHD1 expression in cluster
2 or near absence of mutant p53 activity in cluster 1,
potentially contributing to differential AR output in these
cases [26,27]. Similarly, mutual exclusivity of SPOP muta-
tions in ERG+ cases [25] was linked to cluster 4–specific AR
action (Supplementary Fig. 4 and Supplementary Table 3).

3.3. AR target gene expression patterns impact CaP biology and

reflect ARBS composition

We asked whether variable expression of the eight AR target
gene sets affects CaP biology. First, we conducted IPA on
individual AR gene sets, which revealed preferential
enrichment in upstream regulators, canonical pathways,
and diseases and functions (Supplementary Tables 4–6 and
Supplementary Fig. 5–7) for each set. For instance, the pink
gene set was enriched in catecholamine biosynthesis,
whereas the black and grey signatures overlapped with
the pluripotency of human embryonic stem cells. We
performed similar IPA on reconstituted AR target gene set
expression patterns among clusters (Fig. 3A). To account for
the above-mentioned subtle variations in intracluster
behavior of some gene sets, each cluster was subdivided
into two or three subclusters (Fig. 1). IPA returned different
numbers of entries per (sub)cluster as enriched or depleted,
which ranged from 34 to 96 for upstream regulators, 219 to
292 for canonical pathways, and 9 to 105 for diseases and
ERG– CaPs. Top panel: gene expression study (GSE84042) in which ERG status w
gene expression study (GSE120741 and GSE21032) in which 30% of CaP cases w
CaP cases with the lowest ERG expression were considered ERG–. GSEA enrichm
gene signatures from Decipher GRID were subjected to GSEA analysis as in Figu
enrichment plots are shown in Supplementary Figure 3. AR = androgen recepto
discovery rate; GSEA = Gene Set Enrichment Analysis.
functions (Supplementary Tables 7–10). Subclusters within
a cluster behaved more similarly; more pronounced
differences were seen among the five principal clusters.
Overall, differential combinations for the expression levels
of the eight AR target gene sets observed in the (sub)
clustering sufficed to induce shifts in CaP biology (Fig. 3B–D
and Supplementary Tables 11–13). For instance, specific AR
target gene set expression levels in basal cluster 1 enriched
for cell functions related to neuronal development and
cancer drug resistance by drug efflux. In contrast, more
luminal clusters such as cluster 4 preferentially returned
other cell biology, for example, lipid synthesis. IPA also
suggested similarities between basal cluster 1 and more
luminal cluster 5. Both were, for example, specifically
enriched in cytokine (eg, CCL2) and growth factor signaling
(eg, BMPs). IPA prediction of decreased SRC action in cluster
5 recalled its low dasatinib sensitivity in those CaPs. IPA
reported different activities for transcription factors (TFs)
such as p53, which is linked to context-dependent AR action
[15], among clusters: it was predicted to be down in cluster
4, which showed the lowest percentage of cases with
response signature for wild-type p53 action. In addition,
differential involvement of AR and related nuclear receptors
that can partially substitute for AR function was seen
between clusters. Canonical pathway analyses confirmed
variable androgen signaling, estrogen receptor action, and
steroid metabolism among (sub)clusters. The Analysis
Match feature, which considers results for the three IPA
analyses, confirmed that subclusters within the same
cluster were most similar and clusters differed considerably,
with clusters 1 and 5 appearing most similar (Fig. 3E). IPA
results verified that variable expression patterns of AR
target gene subsets alter CaP cell biology.

To verify that ARBS composition contributes to inter-
cluster AR target gene expression heterogeneity, we
performed Cistrome analysis of genomic regions encom-
passing ARBSs in the eight target gene sets. Five to
93 consensus transcription factor binding sites (TFBSs)
were identified per gene set, with no correlation with gene
set size and little overlap (Fig. 4A and 4B, and Supplemen-
tary Table 14). Gene set–specific TFBSs are bound by
functionally diverse TFs that are relevant to the CaP clusters
in which the TFBSs are over-represented. For instance, the
black-coded gene set ARBSs showed preferential enrich-
ment for TFBSs bound by factors that regulate embryogen-
esis and development, such as SOX8 and ATF4, consistent
with more basal and stem cell qualities of cluster
1. However, ARBSs in the purple-coded gene set, highly
expressed in ERG+ cluster 4, were enriched for TFBSs for
ERG and related factors such as FLI1. These results indicate
that differential composition of ARBSs underlies variable AR
target gene expression among clusters and revealed CaP
roles for TFs not yet studied extensively, such as Nkx1-1 and
as verified via whole-exome sequencing. Middle and bottom panels:
ith the highest ERG gene expression were considered ERG+ and 30% of
ent plots are shown in Supplementary Figure 2. (C) Luminal and basal
re 1B to compare their behavior in ERG + versus ERG– CaPs. GSEA
r; CaP = prostate cancer; CRPC = castration-resistant CaP; FDR = false



Fig. 3 – AR target gene expression patterns impact CaP biology. (A) Overview of Ingenuity Pathway Analysis (IPA) strategy. Based on the gene
expression patterns observed in the Decipher GRID heatmap shown in Figure 1, for each CaP subcluster, the expression level of each AR target gene set
was assigned a value ranging from –4 to +4. The combined expression patterns for the eight AR target gene sets (resulting in the 450 gene signature)
per subcluster were subjected to IPA. Each column in Figure 3A represents a subcluster. (B) IPA upstream regulator analysis of gene expression pattern
for each column/subcluster from Figure 3A. Each column represents a subcluster, and each row represents one upstream regulator returned as
significantly inhibited (blue) or activated (red) in IPA analysis. The legend below Figure 3B specifies classes of upstream regulators returned.
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Fig. 4 – AR target gene expression patterns reflect ARBS composition. (A) Overview of Cistrome analysis strategy. For each AR gene set shown in
Figure 1, AR binding peaks were extended by 1 kb 50 and 1 kb 30 , and subjected to Cistrome analysis. (B) Heatmap summarizing clustering of over-
represented transcription factor binding sites in ARBSs in the AR target gene sets. Rows represent AR target gene sets; columns represent binding sites
returned as significantly enriched in Cistrome analysis (blue). Supplementary Table 14 provides a more detailed view of the heatmap shown in
Figure 4B, with each column annotated. (C) Heatmap showing distribution of AR-ChIP-Seq peaks that overlap with ARBSs in the eight AR target gene
sets in 88 clinical CaPs. Red implies that ARBS peak is present; blue indicates that ARBS peak is absent. Rows represent ARBSs; columns represent CaPs
with AR-ChIP-Seq data available. (D) Heatmap for gene expression for the eight gene sets in CaP samples for which AR-ChIP data are available in
Figure 4C. Rows represent AR target gene expression; columns represent CaPs with RNA-Seq data available. AR = androgen receptor; ARBS = AR binding
site; CaP = prostate cancer; TFBS = transcription factor binding site.
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MYOG, which we confirmed to be expressed in GRID data
(Supplementary Fig. 8).

Finally, we verified whether heterogeneous AR target
gene expression is reflected in ARBS patterns using AR-
ChIP-Seq data from 88 treatment-naïve CaPs [23]. While a
majority of 452 AR target genes (>50%) overlapped with the
AR ChIP-Seq peaks in a majority (>50%) of CaPs (Supple-
mentary Fig. 9A and 9B), distribution of AR ChIP-Seq peaks
from the 88 CaPs was heterogeneous across the eight gene
sets (Fig. 4C). Furthermore, RNA-Seq data from the same
CaPs on which AR-ChIP-Seq was done (Fig. 4D) showed
heterogeneity in AR target gene expression over the eight
gene sets. Together, these data validate the heterogeneity of
AR cistrome in clinical CaP.

4. Discussion

Novel CaP drugs along with innovative trial designs and
genomic profiling are rapidly transforming the metastatic
CaP treatment landscape. However, we lack unbiased
methods to decide on the right treatment for the right
Supplementary Table 11 provides a more detailed view of the heatmap shown 

specifics on IPA results used to generate the heatmap in Figure 3B. (C) IPA can
differentially enriched entries are shown. Each column represents a subcluster
significantly enriched in IPA analysis. Supplementary Table 12 provides a more
Supplementary Table 9 provides details of IPA results used to generate the hea
performed as described for Figure 3B. Each column represents a subcluster, an
significantly inhibited (blue) or activated (red) in IPA analysis. Only differentia
detailed view of the Figure 3D heatmap, with each row annotated. Supplemen
heatmap. (E) Heatmap representing results for IPA analysis match studies. Leg
CaP = prostate cancer.
patient at the right time so that each consecutive therapy
induces maximal remission and prolongs overall survival
with optimal quality of life.

We reasoned that assessing treatment target activity
before treatment could guide such decisions. Our first-in-
field comprehensive analysis of the activity of AR, the target
for the default first-line systemic treatment for non–organ-
confined CaP [1], in thousands of treatment-naïve localized
CaPs from four independent cohorts supports this possibil-
ity. Previously unrecognized heterogeneity in AR transcrip-
tional output was reflected in the expression patterns of
eight distinct AR target gene sets, but did not correlate with
overall down- or upregulation of the overarching AR target
gene signature. Mechanistically, this argues against simple
correlation of AR target gene expression with AR level, but is
consistent with molecular diversity in AR transactivation
mediated by interaction with transcriptional regulators and
ARBS sequence composition [15], which was supported by
our IPA and Cistrome analyses. Plasticity in AR transcrip-
tional action is well recognized during CaP progression,
being caused by AR signaling axis adaptations to overcome
in Figure 3B, with each row annotated. Supplementary Table 8 provides
onical pathway analysis performed as detailed for Figure 3B. Only
, and each row represents one canonical pathway returned as
 detailed view of Figure 3C heatmap, with each row annotated.
tmap. (D) Results for IPA diseases and functions analysis, which was
d each row represents one disease and function entry returned as
lly enriched entries are shown. Supplementary Table 13 provides a more
tary Table 10 provides details on IPA results used to generate the
end on the right specifies the overall z scores. AR = androgen receptor;
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selective pressure by ADT. Our findings here are the first to
uncover the spectrum of baseline heterogeneity in AR action
in CaP before systemic treatment, which is not fully captured
by smaller AR target signatures, by simple quantification of
AR target gene expression levels into an AR activity score, or
by assessing a single AR target gene such as PSA or PSMA
(Table 1 and Supplementary Fig. 10). Up- or downregulation
of specific AR gene sets was mostly associated with treatment
response predictions, but less so with clinical risk stratifica-
tion. Treatment response findings likely reflect that AR
differentially controls CaP biological processes. An AR target
gene subset regulates DNA damage repair [12,13], providing a
rationale for differential association with RT response.
Similarly, preferential silencing of specific AR target genes
occurs after docetaxel treatment [28]. Dasatinib inhibits SRC,
which induces context-dependent AR cistrome composition
[29], and was tested for CaP treatment [30]; our data suggest
that specific AR activity patterns may identify patients who
will benefit most. That over/underexpression of select gene
sets, rather than whole AR action, relates more strongly with
the response to ADT was somewhat unexpected, although
reminiscent of the association of molecular markers studied
here with fractions of AR action and CaP treatment
responses: ERG affects specific subsets of AR target genes
[31] and CaP progression after ADT [32], as reflected in ERG
+ cluster 4, which shows the highest response to ADT.
Luminal B CaPs are more likely to respond to ADT [16],
consistent with congruent luminal B and ADT response
scores (compare clusters 1 and 4).

Our findings suggest that information on intra-CaP
action of CaP treatment targets can be exploited to
rationally design evidenced-based treatment plans that
are tailored to individual patients’ CaP biology and
maximize response. One obvious limitation is the unknown
accuracy of treatment response prediction signatures; with
the exception of the PORTOS, these still require validation in
prospective clinical trials. Another important consideration
is the comprehensiveness of the target readout, which
should determine full activity of all current or future targets.
AR regulates not only mRNA, but also lncRNA and circular
RNA levels, and its cistrome is impacted by somatic
alterations [26,27], all of which may not be captured by
standard RNA-based readouts. Potential influences of CaP
heterogeneity, clonality, or multifocality cannot be
neglected, nor the real possibility of a shift in target activity
during disease progression (Supplementary Fig. 11). The
latter is an important consideration for building second and
subsequent branches, and leaves, once prior treatments fail.
In addition, procurement of metastatic CaP tissues and cells
may be more challenging than obtaining a diagnostic biopsy
or radical prostatectomy sample.

5. Conclusions

Our findings provide important novel insights into AR
action in treatment-naive CaP, may explain variability in
ADT and RT responses, and may provide a first branch of an
evidence-based decision tree to optimize personalized
treatment plans earlier in CaP progression. Next steps
involve validating and refining AR target gene signatures to
be used, alone or in combination with somatic alterations, in
correlative studies of relevant clinical trials [2,8,9] and
archival tissues from exceptional (non)responders in
studies on preclinical monotherapeutics or combination
therapeutics using models that allow modulation of AR
activity and molecular markers.
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