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ABSTRACT
Using biomarkers as prediction tools or therapeutic targets can be a valuable strategy in 
transplantation. Recent studies identified biomarkers of acute rejection (AR) and operational 
tolerance (TOL) through the application of meta-analysis. In this study, we comparatively 
analyzed the signature genes in acute rejection and operational tolerance seen in human 
allogeneic transplantations using massive bioinformatical meta-analysis. To identify the 
signature genes in opposite immunological conditions, AR and TOL, we first collected 
the 1,252 gene expression data specifically intended for those circumstances. Then we 
excluded based on biological cut-values, Principal Component Analysis (PCA) as well as 
Multi-Dimensional Scaling (MDS). Using differentially expressed genes (DEGs) from meta-
analysis, we then applied a ranked scoring system to identify the signature genes of AR and 
TOL. We identified 53 up-regulated and 32 down-regulated signature genes in acute rejection 
condition. Among them, ISG20, CXCL9, CXCL10, CCL19, FCER1G, PMSE1, UBD are highly 
expressed in AR condition. In operational tolerance, we identified 110 up-regulated and 48 
down-regulated signature genes. TCL1A, BLNK, MS4A1, EBF1, IGHM are up-regulated in TOL 
condition. These genes are highly representative of AR or TOL across the different organs 
such as liver, kidney and heart. Since immune response is the sum of complex biological 
and molecular dynamics, these signature genes as well as pathway analysis using a systems 
biology approach could be used to catch the insights of the certain pathways that would be 
overlooked with the conventional gene-level comparative analysis.

Keywords: Signature genes; Systems biology; Graft rejection; Transplantation tolerance

INTRODUCTION

Solid organ transplantation is the best therapeutic option for end-stage organ failure. Due 
to antigenic differences, allogeneic organ transplantation induces immune responses 
against the graft, necessitating the application of immunosuppressants to prevent graft 
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rejection. However, some grafts are rejected by physiological immune responses of 
the recipients even under the use of immunosuppressants (1). On the contrary, a few 
recipients acquire operational tolerance against the allogeneic graft and can terminate the 
immunosuppressants (2). To elucidate how to acquire immunological tolerance and avoid 
rejection against the graft is the fundamental goal for solid organ transplantation. Using 
biomarkers as prediction tools or therapeutic indicators not only in rejection situation but 
also in immunological tolerance can be a valuable strategy in transplantation. If we detect 
biomarkers of acute rejection (AR), we may try to prevent the ongoing rejection with timely 
interventions. In addition, the biomarker molecule can possibly be a target for developing 
more specific immunosuppressant (3). If we identify biomarkers of transplantation tolerance 
(TOL), we may terminate immunosuppressant administration and avoid side effects such 
as opportunistic infections. In addition, a method for enhancing the physiological function 
of the biomarker molecules can be a promising tolerance induction strategy (4). In these 
ways, identifying transplantation biomarkers may contribute to personalized medicine and 
development of novel therapeutics.

Recently, Khatri et al. (5) reported 11 genes that were significantly overexpressed in AR in 
human allogeneic transplantations across four solid organs. They utilized and evaluated 8 
independent gene expression studies of organ biopsy specimens from liver, kidney, lung, and 
heart transplant patients. Using meta-analysis approaches, they were able to identify genes 
specifically overexpressed in AR. On the other hand, Baron et al. (6) sought to distinguish 
biomarkers for tolerance following human allogeneic kidney transplantation. At first, they 
could not identify overlapping gene signatures among 5 independent microarray data studied 
on blood of tolerant groups (7-11). At that point, they adopted meta-analysis strategy used 
by Khatri et al. (5). Through the meta-analysis by integration of 5 datasets, they successfully 
identified a common gene signature consisting of the top-20 tolerance biomarkers.

Medical phenomena or body reaction after therapeutic intervention like solid organ 
transplantation are not induced by a single cause but rather the sum of complex biological 
and molecular dynamics (12). To shed light on the pathological reason and genetic 
susceptibility of certain condition, it is important to investigate and comprehend the network 
of each molecules as well as the meaning of integral cellular behaviors instead of traditional 
methods using a single gene perturbation analysis (13-15). To identify the signature gene 
sets which can drive the molecular cascade as well as pathway analyses with systems biology 
approach are the recent bioinformatics tools for this specific purpose, leading to a hidden 
insight into specific biological phenomena (16,17). Especially, due to the production of high-
throughput data, it is highly critical for traditional biologists to analyze these massive data 
as well as to lead the meaningful experimental hypothesis. By identifying specific signature 
genes enriched in 2 opposite immunologic results, we could find implications for preventing 
acute rejection and inducing transplantation tolerance.

In this study, we comparatively analyzed the published transplantation studies of 2 opposite 
consequences, rejection and tolerance, using the ranked scoring system. Instead of simple 
comparison of gene lists, we conducted the comprehensive integrated meta-analysis using 
1,252 public available gene expression data as well as gene-set enrichment pathway analysis 
of signature genes obtained from the current study. In this context, the primary objective of 
our study is to identify and to suggest the signature gene groups indicative of tolerance and 
acute rejection.
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MATERIALS AND METHODS

Principal Component Analysis (PCA) and bioinformatical tools
Acute rejection (AR) and operational tolerance (TOL) information were taken from public 
available database, Gene Expression Omnibus (GEO) microarray datasets. In AR condition, 
heart (GSE4470, GSE2596, GSE9377), kidney (GDS724, GSE9493), liver (GSE13440), and lung 
(GSE6095) datasets were used to analyze the expression pattern of AR. In TOL condition, 
kidney (GSE14655, GSE22229, GSE22707K, GSE47755) and liver (GSE22707L) were used to 
examine the gene expression pattern compared with stable condition after transplantation. 
We filtered GEO information to select the stable (STA), AR, and TOL groups. Next, we 
modified the datasets by our previously reported paper (18). Briefly, quantile normalization, 
PCA, MDS, and heat-map visualization were conducted by the R 3.4 program (R Project, 
Vienna, Austria). The visualization form of PCA and heat-map referenced the previously 
reported paper (18). Adobe Illustrator CS6 (Adobe Systems Inc., San Jose, CA, USA) was used 
to draw a summary figure.

Scoring system development for identification of the signature genes
To identify the signature genes across the different organs, we developed the scoring system. 
In principle, number of overlap genes that were involved in up-regulated genes or down-
regulated genes in AR or TOL were marked score. Each gene has different maximum score 
following the microarray platform of GEO series (GSE) information because each GSE dataset 
used the different microarray chip. Then, the maximum score each gene can get is considered 
as the base score. “Score divided by base score (score/base score)” was used to validate the 
score rank. In this study, genes in condition of score ≥2, score/base score >0.5 were selected 
to be the signature genes. In AR group, 53 up-regulated signature genes were selected from 
1,049 total differentially expressed genes (DEGs) list and 32 down-regulated signature genes 
were selected from 1,107 DEGs list. In TOL group, 110 up-regulated signature genes were 
selected from 920 DEGs and 48 down-regulated signature genes were selected from 1,004 
DEGs list, respectively.

Pathway analysis with gene-set enrichment analysis
We applied several gene-set association analysis tools. Well-known database libraries such 
as ChIP Enrichment Analysis (ChEA) (19), Encyclopedia of DNA Elements (ENCODE) 
Transcription Factor ChIP-seq, ENCODE and ChEA consensus Transcription Factors, 
TargetScan microRNA, Kyoto Encyclopedia of Genes and Genomes (KEGG) 2016, Reactome 
2016, BioCarta 2016, Wiki Pathways 2016, Protein-Protein Interaction (PPI) hub proteins, 
Human gene atlas, National Cancer Institute (NCI)-Nature 2016, and Gene Ontology (GO) 
tools were used initially for the pilot screening analysis. Application of these methods 
led us to find integrative insights into molecular pathways as well as gene ontologies and 
transcription factors. Gene-set enrichment analyses of 2 different gene lists (AR and TOL) 
were performed independently.

Statistical analysis of gene-set enrichment analysis
For enrichment analysis in this study, we applied the standard method of the Fisher exact 
test used in other common bioinformatics analysis studies (20). In general, the Fisher exact 
test is a proportion test that compares every possible event and expected linked events. The 
proportions of the query input list of overexpressed genes involved in the specific lists in 
the gene set libraries were calculated. This proportion is considered as a key factor in the 
bioinformatics computation. If a query input list has higher proportion with a list of specific 
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gene set library compared to random query input lists, more likely statistical p-value in the 
list of specific gene library is projected to be lower, leading to a meaningful inference. The 
enriched pathway or term was considered as a significant pathway by calculated p-value under 
0.05. We visualized GO molecular function and PPI hub proteins using Network2Canvas 
tools (Icahn School of Medicine at Mount Sinai, New York, NY, USA) (20).

RESULTS

Global data overview of total gene sets in AR and TOL groups
To check an overall expression of GEO information related with AR and TOL condition, we 
conducted PCA and heat-map visualization. First, we separated AR and TOL database into 
specific conditions sorted by official gene symbol ID. Since the platform of each transcriptome 
database uses different gene sets, for the precise comparison, we needed to make the 
composite dataset for each condition. We used the overlapped gene sets shared by every 
database set of each condition for the global comparison. After filtering, we obtained total 
2,269 AR common genes across platforms and 4,335 TOL genes across platforms for the later 
comparison. Intriguingly, PCA results indicated that dataset of both AR and TOL groups are 
significantly biased based on their technical conditions. (Fig. 1A, 1B, 1D, and 1E). We could find 
that the hypothetical intention of our experiment, the gap between STA and disease groups, are 
much smaller than the gap between each experimental condition, called the batch effect, based 
on PCA. To further investigation, we used heatmap to display the expression pattern in the AR 
and TOL specific genes. Heat-map results show that the inconsistent pattern in each disease 
condition that should have been highlighted. (Fig. 1C and 1F). This global overview leads us 
to make a different strategy to analyze AR and TOL information, meaning that DEGs were 
examined in each dataset comparison reducing batch effect. (Fig. 1G).

Meta-analysis of transcriptome expression of AR group compared with stable group
To identify the signature genes in the condition of AR, we compared the gene expression 
patterns of the different organs such as liver, kidney and heart defined as AR condition 
compared with stable condition after transplantation. PCA results show that the distinct 
clusters of STA and AR groups in every organ (Fig. 2A). It concluded that global gene expression 
data of AR condition are significantly different from the stable condition. The difference 
between expression pattern of AR and STA groups are more distinct than each individual 
difference. Heat-map visualization of DEGs displayed the noticeable expressional pattern of AR 
datasets compared with stable sets (Fig. 2B). We utilized these DEGs of each experimental set 
for later signature gene identification in condition of AR (Supplementary Table 1).

Meta-analysis of transcriptome expression of TOL group compared with stable group
As we analyzed AR group, we compared the transcriptome data of TOL group with expression 
pattern of STA group. In this analysis, we used liver and kidney datasets while we utilized 
liver, kidney and heart datasets in AR transcriptome. PCA results show that STA and TOL 
groups were clearly distinguished (Fig. 3A). Intriguingly, kidney profiles containing the large 
dataset like GSE47755, the expression patterns of TOL group are centrally located compared 
with those of STA group. In heat-map visualization of 200 up-regulated genes and 200 down-
regulated genes, we identified prominent expression pattern of TOL DEGs (Fig. 3B). We 
used the 200 DEGs of each direction (up-regulated 200 and down-regulated 200) from each 
AR and TOL datasets (p<0.05) for identifying the signature genes using the scoring system 
(Supplementary Table 1).
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Scoring system for identifying the global signature genes in AR and TOL
To identify specific signature genes in AR and TOL conditions, we developed the ranked 
system using overall DEGs in those conditions. Because of different microarray platforms 
used in meta-analysis, we cannot get consistent scoring system due to the absence of specific 
genes in a certain microarray platform. To overcome this, we used “base score” which is an 
identical score that each gene can get maximally. Then we divided the score of each gene by 
“base score” of each gene (Fig. 4A and 4B). “Score/base score” was used to validate the score 
rank (Supplementary Table 2). The signature genes were selected by condition of score ≥2 and 
score/base ≥0.5. In AR, 53 up-signature genes were selected by the scoring system and ISG20, 
CXCL9, CCL19, CXCL10, and FCER1G were marked as top 5 genes. Total 32 down-signature genes 
were filtered by scoring system and SORD, MAOA, CRYL1, IL13RA2, and Desmoplakin (DSP) were 
marked as top 5 genes. In TOL group, 110 up-signature genes were selected and TCL1A, BLNK, 
MS4A1, EBF1, and FCRL2 were marked as top 5 genes. In case of down-signature genes, 48 genes 
were selected and PFKFB3, F2RL1, SLC2A14, ANXA3, and SLC26A8 were marked as top 5 genes.

Expression pattern and validation of signature genes across organs
To validate the signature genes in AR or TOL group, we analyzed expression pattern of top 5 
genes in heart and kidney datasets. In AR group, top 5 signature genes such as ISG20, CXCL9, 

243https://doi.org/10.4110/in.2017.17.4.237

Signature genes in Acute Rejection and Tolerance

https://immunenetwork.org

B

A

1.00

0.50

2 3 4 5 60 1

Up
-s

co
re

/b
as

e 
sc

or
e

Score

n=198
n=209
n=116

n=126

n=38
n=216

n=57 n=10

n=31

n=14

n=5

n=2
n=11

n=3

n=1
n=14n=44

n=10
n=40

n=160
n=134
n=130

n=34

n=17n=183

n=7

n=16

n=2
n=2

n=2
n=1n=6

n=9
n=137

n=3

n=20
n=34

n=108

n=209 n=11

n=145

n=5
n=33

n=1
n=1

n=1
n=9

n=12

n=26
n=53

n=228
n=156
n=147

n=275

n=8
n=38

n=11

n=207
n=215

n=2
n=1

n=6
n=92

0.75

0.25

AR AR

1.0
0.8
0.6
0.4
0.2

1.0
0.8
0.6
0.4
0.2

1.00

0.50

2 3 4 5 60 1

Do
w

n-
sc

or
e/

ba
se

 s
co

re

Score

0.75

0.25

1.00

0.50

2 3 4 5 60 1

Up
-s

co
re

/b
as

e 
sc

or
e

Score

0.75

0.25

TOL TOL

1.0
0.8
0.6
0.4
0.2

1.0
0.8
0.6
0.4
0.2

1.00

0.50

2 3 4 5 60 1

Do
w

n-
sc

or
e/

ba
se

 s
co

re

Score

0.75

0.25

Figure 4. Scoring visualization of AR signature genes and TOL signature genes. (A) Scoring visualization of up-regulated 
and down-regulated signature genes in AR condition. (B) Scoring visualization of up-regulated and down-regulated 
signature genes in TOL condition. Using DEGs of each datasets in AR and TOL, we identified the signature genes. Note 
X axis is a score, while Y is a ratio of up- and down-score/base score. Base score is determined by the total number of 
array sets containing a specific gene. Dashed circles are the boundary of the signature genes in each panel.

https://immunenetwork.org


244https://doi.org/10.4110/in.2017.17.4.237

Signature genes in Acute Rejection and Tolerance

https://immunenetwork.org

A

B

GSE4470 GSE9377 GSE9493 GDS724

FC
ER
1G

CX
CL
10

CC
L1
9

Si
gn

at
ur

e 
ge

ne
s 

in
 u

p-
re

gu
la

te
d 

AR
 D

EG
s

CX
CL
9

IS
G
20

KidneyHeart

Not available

Not available

GSE22707 GSE22229 GSE14655-INT GSE14655-IOT

Kidney

FC
RL
2

EB
F1

M
S4
A1

Si
gn

at
ur

e 
ge

ne
s 

in
 u

p-
re

gu
la

te
d 

TO
L 

DE
G

s
BL
N
K

TC
L1
A

AR up 
signature

Score Expression increase
(GSE4470, GSE9377, GSE9493, GDS724)

ISG20 4 3.4 1.5 4.1 2.3
CXCL9 4 10.0 2.1 3.1 7.9
CCL19 4 2.3 2.1 3.4 2.7
CXCL10 3 3.5 1.5 3.2 -
FCER1G 3 2.1 - 3.6 4.1
CD3D 3 - 1.6 3.2 3.6
PSME1 3 2.0 - - 2.2
UBD 3 4.8 2.3 - 5.8
CORO1A 3 3.9 - 3.6 2.3
TAP1 3 3.2 1.4 - 3.1
TIMP1 3 - 1.3 3.9 4.3
C1QB 3 - 1.4 4.8 8.2
IGSF6 3 3.0 1.3 - 2.7
PTPRC 3 2.8 1.5 - 6.1
UBE2L6 3 2.8 - - 3.3
TNFSF10 3 - - - 2.3
CD48 3 2.1 1.8 - 2.6
TNFAIP2 3 2.0 1.3 - 3.2
HLA-DMA 3 2.6 1.2 - 3.8
HLA-DRA 3 2.4 - 3.4 5.5
CD14 3 2.4 1.4 3.7 -
PLEK 3 2.3 1.4 - 2.7
CASP4 3 2.3 1.4 - 6.9

TOL up 
signature

Score Expression increase
(GSE22707, GSE22229, GSE14655-INT, GSE14655-IOT)

TCL1A 5 3.7 6.5 4.0 2.7
BLNK 5 2.1 2.9  2.4 2.1
MS4A1 5 2.1 2.3 1.7 2.1
EBF1 4 1.6 1.4 2.7 1.9
FCRL2 4 1.6 1.4 2.6 2.8
IGHM 4 2.1 2.1 2.6 1.5
PLEKHG1 4 1.4 1.5 2.1 1.7
CD200 4 2.0 2.0 2.1 1.8
BTLA 4 2.1 1.9 2.1 1.9
FCRLA 4 2.0 1.9 1.7 1.5
SH2D1B 4 - 1.8 1.7 2.4
PNOC 4 1.8 1.6 1.7 1.7
MGC24103 4 3.0 1.5 1.6 2.4
CLIC3 4 - 1.7 1.5 1.6
PCDH9 4 - 1.4 2.7 3.8
CD22 4 1.6 1.5 2.4 1.8
AKR1C3 4 - 2.6 1.6 2.0
CLC 4 3.0 1.4 1.5 2.3
CD79A 4 1.9 2.1 1.5 -
EBI2 3 - - 1.4 1.5
E2F5 3 1.6 1.6 - -
BANK1 3 1.7 1.7 - -
IGKC 3 1.6 1.7 2.5 6.9
NR3C2 3 - 1.6 1.7 1.7
QRSL1 3 1.5 1.5 1.7 -
PYHIN1 3 - 1.4 - 1.7
OCIAD2 3 - 1.4 1.5 1.6
PLEKHA1 3 - 1.5 1.5 1.5
CD247 3 - 1.5 1.5 -

Figure 5. Expression pattern and validation of signature genes across organs. (A) Expression patterns of top 5 genes in the signature genes of AR condition. 
Table shows the global average expression level of the signature genes in AR sorted by score. (B) Expression patterns of top 5 genes in the signature genes of TOL 
condition. Table shows the global average expression level of the signature genes in TOL sorted by score.

https://immunenetwork.org


CCL19, CXCL10, and FCER1G are up-regulated in heart (GSE4470 and GSE9377) datasets. Also, 
Top 5 signature genes displayed up-regulated expression pattern in overall kidney (GSE9493 
and GDS724) datasets condition as well. We summarized the AR up-regulated signature gene 
list (score ≥3) with expression increase in each dataset (Fig. 5A).

In TOL group, top 5 signature genes (TCL1A, BLNK, MS4A1, EBF1, and FCRL2) were up-
regulated in kidney (GSE22707, GSE22229, GSE14655-INT, GSE14655-IOT) datasets. We 
displayed the TOL up-signature gene list (score ≥3) and show the value of expression increase 
in each dataset (Fig. 5B).

DISCUSSION

In this study, we identified the signature genes in AR and TOL groups compared with 
normal STA group using 1,252 public available microarray databases (AR: 357 sets, TOL: 
895 sets). Meta-analysis of these transplantation related gene sets leads us to specify the 
unique gene expression patterns in specific disease outcome. For the precise selection of 
signature genes, we adopted the ranked scoring systems and validate them in other public 
accessible experimental settings. These signature genes can be utilized as the biomarkers of a 
transplantation condition which can predict a potential therapeutic intervention.

Making composite datasets of different experimental settings failed to identify a strong 
association of signature genes because of large gap between each experimental setting. The 
fact that the gap between experimental hypothesis groups is significantly smaller than the gap 
between each individual experimental trial is comprehensively known by several other groups 
(5,6). It seems to be mainly because of that the experimental methods isolating transcriptome 
data are quite different from facility to facility as well as of that the collection of sampling 
varies not only how many hours after transplantation which can influence in the decay of 
transcriptome molecules, but also the health conditions or reaction tolerance of individual 
recipient patients (4-6,21). It is important to note that in meta-analysis, the comprehension of 
the consistent experimental setting and reducing non-hypothesis related specific factors, so 
called batch effects, are the important parameters to make integration sets.

In case of identifying signature genes that represent the certain disease condition, it is 
significant that whether those signature genes are globally represent of all circumstantial 
disease condition or only represent under specific condition. The meaningfulness of the 
signature genes of medical conditions such as kidney transplantation is also important in 
terms of organ specific molecular reaction (8-10). In our study, however, we are trying to 
configure the global signature genes in heart, liver and kidney. To overcome the difference 
between individual batch effects of each experiments, we adopted the scoring system of 
making composite results in both AR and TOL conditions. The advantage of the ranked 
scoring system is that it can reduce batch effects efficiently as well as it gives us the global 
landscape of signature genes (21). Our scoring system is based mainly on the gene sets of 
each microarray, leading certain genes to be skipped inevitably. To overcome this artefact, we 
normalized the scores of every signature genes by applying “base score.” This normalization 
gives not only the insight of global AR and TOL signature gene patterns but the consideration 
of specific organ condition as well.

245https://doi.org/10.4110/in.2017.17.4.237

Signature genes in Acute Rejection and Tolerance

https://immunenetwork.org

https://immunenetwork.org


After identifying the signature genes, researchers can investigate these genes more using 
the enrichment analysis (22). The enrichment analysis can decipher the hidden pathways 
which are strongly related with a query signature gene-set in term of an interaction network 
(Supplementary Figs. 1 and 2). Accompanying with the proper functional interpretation 
of gene-set, it is possible to deduce novel insight for the experimental purpose. However, 
the enrichment analysis is the computational and arithmetic tool, occasionally leading 
deviated, unconventionally enriched pathways. At the same time, certain pathway groups 
can be highlighted due to the small number of input driver genes, entailing careful and 
meticulous supervision. For example, only single gene can make the pathway significant 
in a specific enriched pathway, resulting in p-value under 0.05 because of unsupervised 
computational calculation. In this case, careful speculation after analysis is necessary to 
avoid misinterpretation.

When we apply the network analysis of opposite pathological conditions, we encounter 
the commonly involved genes or pathways such as B-cell receptor (BCR) pathways in 
Supplementary Fig. 1. The main meaning of the commonly involved genes or pathways 
in opposite conditions can be explained by 2 fundamental arguments. First, the enriched 
pathways do not have the specific direction (positively regulated or negatively regulated 
for later cascade). This infers that even though certain pathways are highlighted in both 
conditions, it may have a different outcome in downstream. In common network analysis, 
it is difficult to decide which direction the enriched pathway is, unless that is specifically 
notified as positive or negative. Second, there may have the common immunologic system 
which may be activated by every immune situation like acute rejection or operational 
tolerance, so called general immune reaction. Though common immunologic system seems 
to be enhanced by opposite triggering factors, opposite outcome like acute rejection or 
operational tolerance can happen if down-signaling cascades are finely tuned. In terms of 
immunological signaling pathway, within certain pathway, there can be several fine-tuned 
signaling possibilities, may result in totally opposite outcome.

If a certain gene is up-regulated in TOL condition, while the gene is also down-regulated in 
AR, that gene may have a critical role in driving tolerance condition. The opposite direction 
of our hypothesis also may give the insight to define an important gene in acute rejection. 
Applying that strategy in our current signature genes, we cannot find overlap genes up-
regulated in AR as well as down-regulated in TOL. We found a gene called DSP is down-
regulated in AR as well as up-regulated in TOL, which perfectly suits to our hypothesis. DSP 
(23,24) is a critical protein in the desmosome structures in cardiac muscle and epidermal 
cells. Though desmosome has a key role in intercellular junction to link adjacent cells tightly, 
it needs further investigation why DSP is highly up-regulated in TOL circumstances.

Though the high expression of certain genes does not mean the genes are functionally 
critical in mechanism, to identify the signature genes have several advantages for finding 
alternative options of transplantation circumstance such as early prediction of rejection, 
early intervention of immune tolerant drugs, early cessation of them as well as prognostic 
prediction (25,26). We believe that our current study, focused on the signature genes in 
different immunological circumstance, acute rejection and operational tolerance, will have 
a certain role in shedding light not only on the mechanistic insight but on the detection of 
biological markers regardless of their functional involvement.
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Here, we identified specific signature gene sets concerned in 2 contrasting immunologic 
reaction using systems biology approach with bioinformatics tools. Further experimental 
investigation can elucidate important key players to reveal their exact integrative role in 
regulation of immune responses.
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