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A B S T R A C T   

Wind energy is a clean and renewable source that reduces greenhouse gas emissions. To smooth 
the impact of wind energy fluctuations on the power grid and power supply, much research has 
predicted the wind speed of wind farms to estimate power generation. However, most studies 
overlook the nonlinear relationship between wind speed and power generation, and data sources 
are usually limited to one or two wind farms. This study constructs a wind power density pre-
diction model based on the LightGBM and artificial neural network to solve the above problems. 
Its data collection process does not require meteorological measurement equipment and has good 
universality, stability, and robustness. LightGBM is used to extract feature information and then 
train it using an artificial neural network, which has a high tolerance for data loss. The model 
performance was validated using data from six terrains from 2020 to 2022. While results showed 
that the average prediction error was 71.68 % less than 2 % and 82.188 % less than 6 %, with an 
average R2 of 0.9755 and an average correlation coefficient of 0.9875, proving the practical 
significance of the model that can be used to guide electricity trade.   

1. Introduction 

1.1. Background 

As the population and economy grow, the energy demand follows. Simultaneously, the problems of environmental pollution and 
resource depletion have become increasingly severe, and the conventional energy crisis has become increasingly prominent. Within 
the LCA of a power station, coal-fired power plants emit the highest amount of greenhouse gases, followed by oil-fired and gas-fired. 
Instead, the intensity of greenhouse gas emissions from renewable energy power generation is generally low, with solar energy, 
biomass, hydropower, and wind energy ranking from high to low, indicating the development, utilization, and popularization of new 
energy have become inevitable. Wind energy is obtained from the wind by converting the kinetic energy into electrical energy through 
electromagnetic induction. For unit power generation, the greenhouse gas emissions from wind power are only about one-seventieth of 
that from coal power [1]. From the perspective of LCA, wind power has the lowest carbon and best environmental protection compared 
to other energy types. Its advantages include renewable, a small footprint for power generation equipment, a short energy payback 
period [2], less carbon dioxide emissions [3], and more. 

Power generation is directly related to wind, but the wind will change with time. If the grid connects large-scale wind power and 
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then encounters wind speed fluctuation violently, that will be harmful. Adding electricity storage to smooth out fluctuations is a choice 
but will incur additional operating costs, which lead to higher terminal electricity prices [4]. One solution to overcome this problem is 
wind forecasting, which sells or buys electricity to the market by knowing the peaks and valleys of electricity production ahead. Many 
deregulated markets liquidate every 5 min and settle every 30 min [5] so that wind forecasts over 30 min help to develop appropriate 
hedging and coordination measures. Therefore, this study attempts to predict the change in wind energy data in the next 1 h. 

1.2. Related works 

Numerous researchers have done a lot of research on forecasting in the field of wind energy. The main forecasting methods in such 
research in the past five years majority are four types: physics, statistics, AI, and hybrid. 

Physical models such as NWP and its improved methods [6–9] could use meteorological data to predict the probability density of 
wind speed or wind energy change in the extensive range in the medium and long term (similar to weather forecast) with less per-
formance fluctuation. They do not need to use historical data for training so that no cold start problem. However, physical models 
usually have a mass demand for computing resources and do not accurate for predicting small-scale and short-term wind 
energy-related information. 

Both statistical and AI models use historical data to make predictions. Among them, statistical methods such as SARIMA [10] have 
already been used to predict the wind speed of the next hour. However, this type of linear model is tough to perform a good enough 
prediction (Max R2 only 0.6619 [10]) for the wind speed information with randomness and nonlinearity [11]. 

Single AI models have been developed for short-term prediction yet, including the use of ELM [12], DBNGA [13], ANN [14,15], and 
Functional Networks [16], among others. Some scholars believe that a single model has weaknesses that not easy to extract complex 
relationships in sequences [17]. However, in the prediction records of WPD, M. Hossain et al. [18] and F. Rodríguez et al. [19] 
constructed a single prediction model using ANFIS and RNN algorithms, proving that a single model could perform well. Insufficiently, 
the two teams only divided the training and test set in the neural network algorithm cause the test set was used for validation many 
times during the training process. Simultaneously, the comparative analysis of pseudo-regression was also lacking. 

In recent years, research hotspots have focused on hybrid models, but the performance of the filter merge statistical method [20], 
the filter merge AI method [21–25], the statistical method merge the AI method [26], and the multiple AI stacking methods [27–29] 
does not have obvious advantages compared with the single AI model. The best performing and most popular is to use the EMD-like 
[30–42] or SSA-like [43–45] or a combination of both data decomposition methods [46] merge AI methods to constitute a hybrid 
model. In these time-series decomposition models, researchers first decompose all data to obtain multiple components and then train a 
prediction model for each separately. Finally, the predictions of the original data are obtained by somehow stacking the results of all 
the sub-models. This method first decomposes the entire data and then divides the data set. When decomposing the original sequence, 
the decomposed values need to be calculated by adding future data that will cause data leakage even if one divides the dataset first. 

1.3. Contributions 

Based on the review and analysis of the above literature, the time-series decomposition type model lacks the potential for practical 
application due to the risk of data leakage. The single-AI and multi-AI model stacking are well-behaved and easy to use, so they deserve 
further study. Most previous studies have focused on wind speed or power generation in wind farms, but computing Equation (1) for 
wind turbine power generation shows a nonlinear relationship between wind speed and power generation, which means wind speed is 
less suitable as an indicator to represent power generation potential. 

P = D ·Aω
D= 1/T·

∫

0.5ρv3dt (1)  

Where D is the average WPD in the period in W/m2, ρ is the average air density in the period (unit is kg/m3), and v is the wind speed in T 
at time m/s. Further, A and ω are the swept area, and the efficiency, respectively. 

In Equation (1), the efficiency of the generator ω and the swept area A are both constant, so the WPD (D) can linearly reflect the 
power generation capacity. It is more practical to predict such an indicator that is linearly related to power generation and not affected 
by random factors. However, there is little research on predicting objects by WPD [18,19], and past forecasts have not adequately 
addressed the model’s performance in different regions. Therefore, this study will explore a suitable prediction model and attempt to 
improve its stability, universality, and robustness. 

This study proposes a combined AI model named LG-ANN that exhibits high accuracy in predicting WPD, which combines 
LightGBM and ANN. This model utilizes the noise and multi-dimensional data handling ability of LightGBM, along with the learning 
ability of neural networks for complex nonlinear data. The specific steps of the study are to first collect historical meteorological data of 
any location in the public database as input, then use preprocessing methods that do not pose a risk of data leakage, and finally, use the 
data extracted by LightGBM to train the ANN model. Six metrics evaluated the performance showed it was superior to other single-AI 
models. 

To summarize the contributions of this study.  

(1) Improved the process and content of data preprocessing, avoiding data leakage issues caused by decomposition-related methods 
in previous studies. 
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(2) A novel method of utilizing historical data has been proposed, which significantly improves the performance of the predictive 
model.  

(3) Improved feature extraction method, utilizing the ability of LightGBM to extract non-noise information from high dimensional 
data.  

(4) The proposed LG-ANN combined model has robustness and universality in the practical application under the high accuracy 
premise. 

2. Methodology 

This section describes step-by-step the construction process of the predictive model, including the description and analysis of the 
data set used, the processing of the data, the introduction of algorithms used, and the method for performance measurement. The 
methodology of the entire model is built on the Python 3.9. 

2.1. Data collection and analysis 

Past research is often based on datasets in one or two regions and lacks concern about the scope of application of predictive models 
since this study collected data sets from six places for model training and validation to demonstrate that the model can be applied 
widely. The data were free collected from the NASA LaRC POWER Project, funded through the NASA Earth Science/Applied Science 
Program [47]. The six datasets come from regions with various terrain (Fig. 1), namely Demyansk (Hills), Flinders Island (Offshore), 
Baird (Plain), Caracas (Hilly), Zhegu Town (Plateau), and Hader Hudson (Basin). The WPD map is from the GWA 3.0 [48], a free, 
web-based application developed, owned, and operated by the DTU. The GWA 3.0 is released online in partnership with the World 
Bank Group. It utilizes data provided by Vortex and uses funding provided by the ESMAP. 

All datasets contain hourly weather information such as wind speed, wind direction, and temperature in the region, from June 1, 
2012 to June 1, 2022, with 6 × 87,672 pieces for each set (Table 1 displays their feature descriptions and statistics). The wind speed of 
all datasets did not exceed 30 m/s (cut-off speed) with no sudden changes, so no items were judged as outliers or noise. The crucial 
WPD information required is not contained in the metadata derivation is required. 

2.2. Data preparation 

2.2.1. Wind power density generation 
Although the WPD feature is non in the meta-dataset, this information can be derived from wind speed and air density by Equation 

(1). This study uses the value of the “WS10 M″ feature as v, which is the predicted WPD at 10 m above the ground. Nevertheless, the 
dataset only contains surface pressure and 2-m-height temperature data, which should be converted using the vertical temperature 
lapse rate. However, the lapse rates vary widely by geography, season, day-night, and altitude [49]. Based on the consideration of not 
expanding the error, this study ignores the vertical temperature error and directly uses the surface pressure and 2-m-height tem-
perature data to participate in the calculation. 

Air density ρ could refer to Equation (2) to calculate. 

Fig. 1. Average annual wind power density potential.  
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ρ= 1 + d
Vh

(2)  

Where d represents the moisture content in the air (how many grams of water vapor per kilogram of moist air) in kg and Vh represents 
the moisture-specific volume (i.e., the space occupied by 1 kg of dry gas together with the moisture it carries) in m3. They could be 
calculated by Equation (3) and Equation (4). 

d =
Pv

P − Pv
(3)  

Vh =
RT̂
P

(
1

Mg
·

d
Mv

)

(4)  

Where Pv is the partial pressure of water vapor (Equation (5)), P is the air pressure (“PS” feature in the dataset), both in KPa. R stands 
for the Molar gas constant, which is 8.314 J/(mol ·K) in this study. T̂ is the Kelvin temperature in K (“T2M″ feature in the dataset). Mg 
represents the relative molecular mass of dry air, and Mv is the relative molecular mass of water vapor, which is 29 and 18 without 
units, respectively. 

Pv =Pws ·φ (5)  

Where Pws is water vapor saturation pressure and φ represents the relative humidity of moist air (“RH2M″ feature in the dataset). Pws 
was calculated in this study using the Hyland-Wexler formula [50], which includes the sub-zero (273.15 K) part of Equation (6) and the 
above-zero part of Equation (7). 

ln Pws =C1
/

T + C2 + C3T + C4T2 + C5T3 + C6T4 + C7 ln T (6)  

ln Pws =C8
/

T + C9 + C10T + C11T2 + C12T3 + C13 ln T (7) 

Table 2lists the specific values of C1 − C13. 
Fig. 2 shows the distribution of WPD in the six datasets. The ideal cut-in speed for wind turbines is generally 3 m/ s [51], and if 

estimated with an air density of 1.15 kg/m3, the corresponding WPD is about 15 W/m2. All datasets contain varying degrees of WPD 
below 15 W/m2, but the main objective is to explore the predictive power. Hence all datasets still retain the data below this value. The 
Kruskal-Wallis H test [52] is suitable to determine whether there is a statistical difference between the data sets. The Null Hypothesis 
(H0) of the Kruskal-Wallis H test indicates no differences between datasets, while the Alternative Hypothesis (H1) indicates statistical 

Table 1 
Feature description and statistics of six datasets.   

Feature 
Name 

DESC Demyansk Flinders 
Island 

Baird Caracas Zhegu Town Hader Hudson 

Scope Scope Scope Scope Scope Scope 

YEAR – 2012–2022 
MO Month 1–12 
DAY – 1–31 
HR Hour 1–24 
PS Surface Pressure (kPa) 94.68–103.13 98.2–103.7 93.59–98.4 94.1–95.34 54.76–57.2 61.79–64.72 
WS10 M Wind Speed at 10 Meters (m/s) 0–8.07 0.01–24.47 0.02–15.18 0.02–5.59 0.01–16.64 0.01–19.8 
WD10 M Wind Direction at 10 Meters (◦) 0–359.88 0–359.96 0–359.96 0–359.8 0–359.91 0–359.92 
WS50 M Wind Speed at 50 Meters (m/s) 0.02–13.7 0.04–28.75 0.02–19.1 0.02–8.81 0.02–19.22 0.02–23.83 
WD50 M Wind Direction at 50 Meters (◦) 0–359.93 0–359.95 0–359.96 0–369.74 0–359.94 0–359.94 
QV2M Specific Humidity at 2 Meters (g/ 

kg) 
0.12–19.41 3.6–15.69 0.67–21.36 9.34–19.9 0.24–11.29 0.06–10.86 

RH2M Relative Humidity at 2 Meters (%) 34.31–100 37.5–100 4.19–100 30.88–100 3.75–100 1.31–100 
T2M Temperature at 2 Meters (◦C) − 35.1–34.15 5.8–28.9 − 16.81–43.87 17.58–33.76 − 23.52–21.46 − 24.89–27.18 
T2MDEW Dew/Frost Point at 2 Meters (◦C) − 35.44–24.15 − 0.35–21.18 − 20.33–25.34 11.96–23.78 − 33.71–7.2 − 43.77–8.5 
T2MWET Wet Bulb Temperature at 2 Meters 

(◦C) 
− 35.24–27.83 3.3–23.07 − 18.57–29.73 16.9–26.27 − 27.19–10.62 − 32.44–13.63  

Table 2 
Hyland-Wexler formula parameters.  

C1 C2 C3 C4 C5 C6 C7 

− 5.675E+03 6.392E+00 − 9.678E-03 6.222E-07 2.075E-09 − 9.484E-13 4.164E+00 
C8 C9 C10 C11 C12 C13  

− 5.800E+03 1.392E+00 − 4.864E-02 4.177E-05 − 1.445E-08 6.546E+00   
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differences between datasets. The highest test P-value after comparing in pairs is 0, thus rejecting the H0. 

2.2.2. Target feature 
The purpose of this study is to forecast the next hour of WPD. Table 3 shows an example of target feature generation. The dataset 

will remove the last row After the feature offset (the last row has no future WPD). 

2.2.3. Historical data 
The prediction for a time point may rely on the information before the time point to improve the model performance, so the dataset 

needs the past WPD information as new features. Table 4 shows an example after adding the WPD of the first 3 h as a memory. This 
study will explore the appropriate memory time for each model in the 0–6 h range by cross-validation (CV = 5), and algorithm pa-
rameters will be combined to perform a Grid Search. After adding, the dataset needs to remove the first H rows since they do have no 

Fig. 2. Distribution of WPD in six points.  

Table 3 
Example of target feature generation.  

Original 

Feature Name MONTH DAY HOUR ENERGY (W/m2) 

Value 6 1 1 100 
6 1 2 110 
6 1 3 105 

After one step shift 
Feature Name MONTH DAY HOUR ENERGY (W/m2) TARGET (W/m2) 

Value 6 1 1 100 110 

6 1 2 110 105 
6 1 3 105 –  
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enough previous WPD. 

2.2.4. Feature analysis 
Each dataset contains fourteen features (Table 1) that the Pearson coefficient is suited to judge the correlation with WPD, and the 

air density ρ generated before also joins the judgment process. The resulting range of the correlation coefficient is [− 1,1], and the 
farther its value is from 0, the higher the correlation between the two features. Fig. 3 shows the analysis results of the six datasets. 

The analysis results show that the importance of all features in different datasets is not consistent, but almost all have correlations 
greater than 0.01. All methods would use all attributes to retain as much information as possible without being discarded. Due to the 
target feature being a WPD at a height of 10 m, the WS50 M and WD50 M in the dataset will not be included even if they are highly 
correlated. 

2.2.5. Model validation 
The model will use the first 72 % of the data as a training set, the middle 8 % as a validation set, and the last 20 % (2020–2022) as 

the test set. The validation set aims to find suitable memory hours and splice parameters, while the test set has been used once only in 
the performance measurement process. 

2.3. Forecasting methods 

Simple algorithms may sometimes achieve adequate results [14,16]. This study uses the RFR to construct a single AI predictor, and 
the LSTM algorithm commonly used in previous studies has been added to the experiment process for comparative analysis. One 
combined model called LG-ANN is proposed as original content. 

2.3.1. Random forest regression 
RFR belongs to the Bagging algorithm of ensemble learning in AI. It uses the Bootstrap [53] strategy (that is, with replacement 

sampling) to divide the training set into multiple sub-datasets of the same size for training separately. And the average of all the results 
is the final prediction output. Each sub-dataset uses a CART regression tree to partition nodes and derive predictions. For example, 

Table 4 
Example of adding 3 h of historical data.  

After one step shift 

Feature Name MONTH DAY HOUR ENERGY (W/m2) TARGET (W/m2) 

Value 6 1 1 100 110 
6 1 2 110 105 
6 1 3 105 130 

After one step shift with 3 h memory 
Feature Name MONTH DAY HOUR ENERGY (W/m2) ENERGY-1 

(W/m2) 
ENERGY-2 
(W/m2) 

ENERGY-3 
(W/m2) 

TARGET (W/m2) 

Value 6 1 1 100 – – – 110 

6 1 2 110 – – – 105 
6 1 3 105 – – – 130 
6 1 4 130 105 110 100 200  

Fig. 3. Pearson correlation between non-temporal features.  
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when each sub-data set has M attributes, randomly select m attributes from the M attributes, satisfying the condition m « M. Then 
calculate all MSE (Equation (8)) values obtained by taking each feature as the dividing point, select the feature with the lowest MSE as 
the splitting feature of the node, and repeat this process until the entire sub-data set can no longer be a meaningful split [54]. The mean 
of all final nodes (leaf nodes) is the predicted value of the regression tree. 

MSE=
1
m

∑m

i=1
|h(xi) − yi|

2 (8)  

Where h(xi) and yi represent a single predicted and actual value, respectively. 
This model adopts a two-step prediction strategy. The first step takes the WPD of the training set as the target feature, and the 

second step takes the residual of the WPD as the target. Both procedures take the same input, and then Equation (9) sums the results of 
each step as the final output. 

result= first step + second step (9) 

This study only adjusted the number of regression trees for the RFR, which were searched along with memory hours through a Grid 
(CV = 5). The remaining parts use the default settings of scikit learn 1.3.0. 

2.3.2. Long short-term memory neural network 
The data used in this study are of the time series-related type, with significant contextual relationships between each record. RNN 

[55] is a feasible choice to take full advantage of this relationship, in which the mathematical expression of the traditional neural 
network is improved tiny from Equation (10) to Equation (11). However, RNN has a long-term dependency problem [56]. 

hT = σ(xT ×wxT + b) (10)  

hT = σ(xT ×wxT + hT − 1 ×whT + b) (11) 

LSTM is an improved version of RNN, first proposed by Hochreiter & Schmidhuber [57], which introduces a gate mechanism to 
control the circulation and loss of features. The motivation is to solve the long-term dependency problem. 

LSTM is free to have any number of hidden layers and neurons. This study used the same neuronal structure and optimizer (Metric 
= MSE (Equation (8)) as in LG-ANN, with layers and memory hours searched for in Grid (CV = 5). Formula (9) is used to stack the first 
and second training results. 

2.3.3. LightGBM-artificial neural network 
The feature analysis section has determined that all features can be used to train the model, but the information importance in 

different datasets varies. Furthermore, the attributes used for model training may contain significant noise information, which may 
cause fewer benefits than the confusion provided. As a solution, this study uses nonlinear LightGBM to extract information and then 
ANN to train the model. 

LightGBM recursively filters the best features of the dataset (CV = 5) and then flows the filtered features into ANN. The number of 
neurons in the input layer is feature number +1 (to reduce the influence of bias), and the output layer is 1. Neurons in the hidden layer 
are twice that of the input layer [58] (considering the small number of neurons in the input layer). MSE (Equation (8)) and Adam are 
combined as the optimizer, and all activation functions use ReLu. The Grid will be used to search the number of hidden layers and 
memory hours (CV = 5). 

2.4. Performance metrics 

For judging the fitting degree of the prediction model, this study uses MAE, NMAE, RMSE, NRMSE, R2, and Correlation coefficient 
as performance indicators. RMSE (Equation (14)) can measure the deviation between predicted values and actual, especially sensitive 
to outliers in predicted values. The NRMSE (Equation (15)) could meter the errors between observed and predicted values, repre-
senting the normalized sample standard deviation of the difference between them. MAE (Equation (12)) can reflect the factual error 
between the forecasted value and the actual value and is a more natural mean error measure than the RMSE [59] indicator commonly 
used in climate and environmental literature. As an improvement, NMAE (Equation (13)) can avoid the situation of index soar growth 
caused by little errors caused by small individual target values. The smaller the value of the above, the better the model performance 
(minimum is 0). However, there is no upper limit for these indicators, and due to different scales, it is hard to use them for horizontal 
comparison between other research. R2 (Equation (16)) and correlation coefficient (Equation (17)) reduce the regression performance 
evaluation results to [0,1], which provides conditions for researchers to compare the prediction results of different models to a certain 
extent. 

MAE=
1
m

∑m

i=1
|h(xi) − yi| (12)  
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NMAE=

∑m

i=1
|h(xi) − yi|

∑m

i=1
|yi|

(13)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑N

i=1
(h(xi) − yi)

2

√

(14)  

NRMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N

∑N
i=1(h(xi) − yi)

2
√

ymax − ymin
(15)  

R2= 1−
Σm

i=1(yi − h(xi))
2

Σm
i=1(yi − y)2 (16)  

Fig. 4. Parameter search results of three algorithms on MAE  
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R=
Cov(h(x), y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var[h(x)]Var[y]

√ (17)  

In the above equations, h(x) and y represent the prediction set and actual value set, Cov() and Var() means covariance and variance. 

3. Result analysis and discussion 

Cross-validation and Grid search were executed to find the optimal memory hours, the number of regression trees in RFR, and the 
hidden layers number in LSTM and LG-ANN. Fig. 4 shows the search results on MAE loss, indicating that LSTM performance is unstable 
and the number of hidden layers or regression trees has no significant impact on performance. The crucial parameter is the number of 
memory hours since RFR and LG-ANN show remarkable performance improvement when greater than 1. However, the ascending is no 
longer significant when the memory hours are further increased. 

Table 5 shows the best results obtained by three methods, while Table 6 details the performance of LG-ANN running ten times 
(Hidden layers = 1, Memory hours = 1). Overall, LG-ANN has the best performance and stability. 

Pseudo-regression refers to omitting the prediction process of WPD, directly setting a time as the predicted value of the next hour. In 
this way, various indicators will perform well (Table 5 also shows the indicator data of Pseudo-regression), but the model is mean-
ingless. Pseudo-regression can be distinguished well by visualizing the predicted-true curve. Fig. 5 illustrates the comparison between 
LG-ANN prediction and pseudo regression from May 25th to 31st (the last week of the dataset). 

This study visualized the actual and predicted WPD values of LG-ANN from May 25 to 31 (the last week in the dataset) (Fig. 6). It 
shows that the forecast results have more errors at the trend change point of WPD, which one reason is the historical data may not 
reflect the trend change signal. However, the prediction performance is excellent in the stage where the WPD trend is unchanged, and 
the curve of the predicted value fits the actual curve well. In most cases, the prediction error is not significant, which also corresponds 
to the situation in Fig. 7, i.e., most deviations are at the point where the trend changes. In theory, the later date of the data in the test 
set, the higher the corresponding prediction errors should be. The predicted-true curves of Flinders Island in the first and last week of 
the test set in Figs. 5 and 6 confirm this conjecture. 

The MAE values shown in Table 5 can reflect the average error between predicted and actual values but have the limitations of 
reference significance caused by different WPD ranges in various datasets. Fig. 7 further divided the error level (average error rate) into 
six hierarchies for statistical purposes, indicating that most of the errors in all data sets are within 2 % (an average of 71.68 % of the 
prediction errors are less than 2 %), and the predictions with an error of less than 6 % account for an average of 82.188 % of the total. 

WPD data contains a considerable degree of random information, i.e., noise, which is almost unpredictable. Noise is also hard to 
extract from the data, but it can be well distinguished whether the data belongs to noise through some characteristics. The residual 
series could be fine-obtained by subtracting the model prediction from the actual WPD, and the residual series statistics for each 

Table 5 
Comparison of predictive performance.  

Dataset Model Metrics 

R2 MAE NMAE NRMSE RMSE R 

Demyansk RFR 0.9524 1.3763 0.1167 0.0013 3.3544 0.976 
Flinders Island 0.9792 35.96 0.083 0.00087 83.6888 0.9897 
Baird 0.9259 17.366 0.1538 0.00166 42.24 0.9625 
Caracas 0.976 0.955 0.0665 0.0006 1.474 0.9883 
Zhegu Town 0.9714 5.76 0.1282 0.00112 13.96 0.9859 
Hader Hudson 0.8847 11.8355 0.18777 0.00228 41.823 0.9414 
AVERAGE  0.9483 12.2088 0.12266 0.0013 31.09 0.974 
Demyansk LSTM 0.9629 1.6636 0.14438 0.001186 3.1286 0.9813 
Flinders Island 0.98 39.867 0.08588 0.00087 92.716 0.9887 
Baird 0.954 17.335 0.1534 0.0013 33.255 0.9605 
Caracas 0.973 1.1185 0.0843 0.00075 1.66595 0.9866 
Zhegu Town 0.9745 6.9894 0.1517 0.00107 14.389 0.9876 
Hader Hudson 0.923 17.633 0.2615 0.00187 37.394 0.9608 
AVERAGE  0.9612 14.101 0.14686 0.00117 30.425 0.9776 
Demyansk LG-ANN 0.9786 1.2254 0.1039 0.00088 2.24848 0.9894 
Flinders Island 0.9863 30.709 0.0709 0.0007 68.1137 0.9927 
Baird 0.9547 15.83 0.14 0.0013 33.02 0.9776 
Caracas 0.9844 0.838 0.058 0.0005 1.2 0.9915 
Zhegu Town 0.9878 4.753 0.1058 0.0007 9.14 0.9935 
Hader Hudson 0.961 9.977 0.158 0.0013 24.4341 0.9802 
AVERAGE  0.9755 10.555 0.1061 0.000897 23.0267 0.9875 
Demyansk Pseudo 0.964 1.62 0.13734 0.00113 2.9075 0.11 
Flinders Island 0.971 51/686 0.11935 0.00103 98.92 − 0.0072 
Baird 0.9089 23.204 0.2053 0.00184 46.813 0.1358 
Caracas 0.937 1.674 0.1166 0.00105 2.415 0.2484 
Zhegu Town 0.888 12.873 0.2864 0.00222 27.6 0.0077 
Hader Hudson 0.8958 18.89 0.2997 0.00217 39.752 0.0384  
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dataset are shown in Fig. 8. The closer the residual sequence is to a normal distribution, the closer the mean is to 0, which indicates the 
more random the residual is, i.e., the better the model performance (the model could extract non-noise information well). According to 
Fig. 8, the mean of the absolute value of the errors calculated for all the data sets is 0.323, with no region having an average residual 

Table 6 
LG-ANN results from ten runs on each dataset.  

Times Metrics Dataset 

Demyansk Flinders Island Baird Caracas Zhegu Town Hader Hudson 

1 RMSE 
R2 

MAE 
R 

2.25 70.85 33.32 1.26 9.757 25.675 
0.9786 0.985 0.9539 0.9829 0.985 0.9565 
1.2477 35.2 16.67 0.887 5.358 10.882 
0.9895 0.993 0.9768 0.9915 0.993 0.9787 

2 2.2956 70.45 34.04 1.24 9.6714 24.4341 
0.9778 0.985 0.9519 0.9834 0.986 0.961 
1.2285 33.5 16.87 0.88 5.247 10.77 
0.9892 0.993 0.9756 0.9918 0.9932 0.9802 

3 2.245 70.8 33.811 1.2578 9.55 26.21 
0.9787 0.985 0.9525 0.983 0.9866 0.955 
1.2558 34.88 16.798 0.879 5.189 10.789 
0.9893 0.993 0.9765 0.9915 0.9935 0.978 

4 2.2357 70.19 34.587 1.27 9.604 26.034 
0.9765 0.985 0.95 0.98266 0.9865 − .9553 
1.377 33.46 16.858 0.9034 5.1063 11.1277 
0.9889 0.993 0.9749 0.9913 0.9934 0.9784 

5 2.2456 69.87 33.56 1.257 0.976 25.8269 
0.9787 0.985 0.9532 0.983 0.986 0.956 
1.287 34.03 16.35 0.88 5.18 10.73 
0.9893 0.993 0.9764 0.9913 0.993 0.9791 

6 2.279 70.73 32.72 1.28 9.5 24.828 
0.978 0.985 0.9555 0.9824 0.9868 0.9594 
1.283 34.92 16.016 0.9015 5.24 10.479 
0.9892 0.993 0.9776 0.9912 0.9934 0.9795 

7 2.266 70.73 33.722 1.27 9.624 26.33 
0.9783 0.985 0.95275 0.9827 0.9864 0.9543 
1.29 34.92 16.348 0.8954 5.147 10.876 
0.9891 0.993 0.9763 0.9913 0.9932 0.978 

8 2.313 70.624 33.281 1.269 9.45 25.429 
0.9774 0.985 0.95398 0.9827 0.9869 0.95737 
1.296 33.066 16.3451 0.88996 4.9688 10.7589 
0.9893 0.993 0.9772 0.9915 0.9934 0.9786  

Times Metrics Dataset 

Demyansk Flinders Island Baird Caracas Zhegu Town Hader Hudson 

9 RMSE 
R2 

MAE 
R 

2.265 69.48 33.784 1.2878 9.599 25.34 
0.9783 0.986 0.95258 0.9822 0.986 0.958 
1.28 32.428 17.22 0.905 5.146 10.6599 
0.9894 0.993 0.9761 0.9913 0.9933 0.9791 

10 2.286 70.33 33.43 1.288 9.68 24.6 
0.978 0.9853 0.953576 0.9822 0.986 0.96 
1.334 33.257 16.217 0.905 5.2 10.3 
0.989 0.993 0.9767 0.9913 0.9932 0.98  

Fig. 5. Comparison of true prediction (left) and pseudo-regression (right).  
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value greater than 1 W/m2. Furthermore, all the residual series in the figure are in a normal distribution state, which indicates that the 
residual series is close to the noise state and the model has splendidly extracted meaningful data. 

Compared with similar studies of the short-term type WPD prediction, the fitting degree of the curve in Fig. 6 is significantly better 
than that of F. Rodríguez et al. [19], and it also shows fewer pseudo-regression features. In their study, the prediction error bigger than 
10 % (8 %) is smaller than in this study (12.35 %), but the errors less than 2 % (40 %→71.68 %) and 6 % (81 %→82.188 %) in this study 
have improved by 79.2 % and 1.47 %, respectively. A reduction in medium error indicates a remarkable improvement in low error 
prediction. 

The model used in this study has more errors at trend change points and is best applicable to climate trends. Furthermore, the model 
usage requires retraining in different locations, and methods such as transfer training cannot be used to save time. The algorithm relies 
heavily on historical data, making it difficult to ensure accuracy without it. 

4. Robust and external validation 

Theoretically, the model is not sensitive to missing data as it does not require time series data. Randomly deleting a portion of the 
training set (Hidden layers = 1, Memory hours = 1 of LG-ANN) can verify this assumption. Fig. 9 shows the R2 change of three datasets 
after random loss of training data, with 75 % representing the removal of the number of items in the training set to be equal to the test 
set. The experimental results show that when the number of training sets is three times larger than the test set, the lack of data has 
almost no effect on performance (i.e., deleting less than 25 % of the training set), and a ratio smaller than this may lead to a decrease in 
performance. 

External validation is the utilization of not-used data to evaluate performance. Generally, it is divided into temporal validation 
(using data from the same source as the model development but different periods for validation) and Geographic validation (verifying 
the model’s performance in other data sources), focusing on transportability and generalizability. This study used data on the location 

Fig. 6. Visualization of predicted and actual values for the last week of May 2020.  
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of meteorological towers from Flatirons Campus for geometric validation. The instrument is on 39◦ 54′ 38.34″ N and 105◦ 14′ 5.28″ W 
[59]. The performance shown in Fig. 10 indicates that the model performs equally well on different datasets. 

5. Conclusion 

This study aims to discover and establish a model for predicting the average WPD at a height of 10 m in the next hour using 
meteorological data such as wind speed, pressure, and temperature. The proposed model constructed using the LighGBM and ANN 
algorithms achieved the research objectives, which can successfully predict any magnitude of WPD. This model will shrink accuracy in 
the case of sudden changes in WPD, which is the most common reason for error. However, the performance is excellent when WPD is in 
a trend state, with errors mostly less than 2 % at this time. The model does not need to be trained on the immediately preceding data, 
but the closer the training set is to the predicted time, the better its performance will be. Experiments in six regions, including 
Demyansk (Hills), Flinders Island (Offshore), Baird (Plain), Caracas (Hills), Zhegu Town (Plateau), and Hader Hudson (Basin), have 
shown that the model has a wide range of applications and can pass stability verification. Simultaneous, it exhibits robustness when the 
training set data is more than three times larger than the test set. Overall, the model found in this study extends the field of WPD 
prediction and helps power companies gain a better position in power dispatch and the electricity market. 
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