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Item response theory (IRT) observed score kernel equating was evaluated and
compared with equipercentile equating, IRT observed score equating, and kernel
equating methods by varying the sample size and test length. Considering that IRT
data simulation might unequally favor IRT equating methods, pseudo tests and pseudo
groups were also constructed to make equating results comparable with those from
the IRT data simulation. Identity equating and the large sample single group rule were
both set as criterion equating (or true equating) on which local and global indices were
based. Results show that in random equivalent groups design, IRT observed score
kernel equating is more accurate and stable than others. In non-equivalent groups with
anchor test design, IRT observed score equating shows lowest systematic and random
errors among equating methods. Those errors decrease as a shorter test and a larger
sample are used in equating; nevertheless, effect of the latter one is ignorable. No clear
preference for data simulation method is found, though still affecting equating results.
Preferences for true equating are spotted in random Equivalent Groups design. Finally,
recommendations and further improvements are discussed.

Keywords: item response theory observed score kernel equating, classical test theory, item response theory,
data simulation, criterion equating

INTRODUCTION

Test Equating and Kernel Equating Method
Test equating is a statistical process that is used to adjust scores on test forms so that scores on the
forms can be used interchangeably (Kolen and Brennan, 2014). In general, two types of equating
methods exist. Those based on the classical test theory (CTT) including mean equating (ME), linear
equating (LE), and equipercentile equating (EE). ME assumes that scores in two paralleled test
forms with the same distance to respective mean scores are equivalent. In reality, test forms not
only differ on mean scores but also can have distinct standard deviations. In order to improve
it, LE further hypothesizes that scores with the same distance to the mean in the corresponding
standard deviation unit in two test forms are equivalent. However, two paralleled test forms may
differ from each other not only on the mean and standard deviation but also on the other higher
central moments. When score distribution statistics (for example, M, SD, Sk., Ku., etc.) of two
test forms are similar, scores in paralleled test forms with the same percentile rank are equivalent
according to the philosophy of EE. It can be easily deduced that ME and LE are special cases of EE.
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Looking back, the classical test theory, on which the CTT
equating methods are based, has been generally acknowledged
that both ability parameter (i.e., observed score) and item
parameters (i.e., difficulty and discrimination) are dependent
on each other, limiting its utility in practical test development
(Hambleton and Jones, 1993). As Lord (1977) and Cook and
Eignor (1991) stated, traditional observed score equating is not
possible except when test forms are of exactly equal difficulty.

Then the item response theory (IRT) solves the CTT
interdependency problem by combining ability and item
parameters in one model. One of the widely used IRT
models is the three-parameter logistic model (3PLM), which
includes location (b), discrimination (a), and pseudo-guessing (c)
parameters for items, and ability (θ) parameter for participants.
In IRT equating, estimated parameters in two forms are first
transformed onto the same scale (Marco, 1977; Haebara, 1980;
Loyd and Hoover, 1980; Stocking and Lord, 1983). The sense
behind scale transformation is that if an IRT model fits data
satisfactorily; then, it still does when any linear transformation
of the ability or location scale has been done (Kolen and
Brennan, 2014). After that, the IRT true score equating (IRTTSE)
and observed score equating (IRTOSE) methods are used to
transform scaled parameters in two test forms to interpretable
and understandable score relationships. In IRTTSE, true scores
with the same θi in two test forms are equated. In IRTOSE,
estimated distributions of sum scores in two forms are deduced
by the IRT model, which then is equated by the EE philosophy.
The IRT equating methods are proven to be more accurate
and stable than the CTT methods (Hambleton and Jones, 1993;
Han et al., 1997; De Ayala, 2013; Kolen and Brennan, 2014)
and lays foundation for modern large-scale computer-based
tests, such as adaptive test, cognitive diagnosis test, and so on
(Educational Testing Service, 2010; Kastberg et al., 2013; OECD,
2017). However, there are still situations where IRT equating
does not suit satisfactorily. One of these circumstances is that
sometimes, only a small sample (for example, less than 500
cases) is available, which is very common in practice because
of participant sampling. Here, the IRT parameter estimation
often confronts convergence problems (Whitely, 1977; Wright,
1977; Hambleton and Jones, 1993; de la Torre and Hong, 2010).
For example, in the 3PLM, suppose one test contains j items,
then, 3j item parameters must be estimated. As parameters
increase, the minimum number of cases needed to achieve
acceptable convergence results and satisfying fitness indices
dramatically climb, keeping other affecting parameters (person
distribution, data characteristics, etc.) fixed (De Ayala, 2013).
Over the past decades, some Bayesian methods, such as the
MCMC estimation (Liu et al., 2008; Sheng, 2008; Yao, 2011;
Mun et al., 2019), have been developed to reduce uncertainty in
the IRT models by incorporating posterior information of the
parameters. However, parameter estimation under a small sample
condition is still not satisfactory enough due to its unavoidable
uncertainty and instability (Swaminathan and Gifford, 1985,
1986). Thus, with biased parameter estimates at the calibration
stage, more errors accumulate in the IRT equating when a
sample size is small. Besides, many lumps and gaps occur in
a small sample score distribution, also introducing equating

errors (von Davier et al., 2004; Skaggs, 2005; Kim et al., 2006;
Puhan et al., 2008).

Kernel equating (KE) was proposed and aimed at solving
problems mentioned above from a different perspective. It is
a unified approach to test equating based on a flexible family
of equipercentile-like equating functions that contains LE as
a special case (von Davier et al., 2004). It first pre-smooths
univariate or bivariate score probabilities from a sample by
fitting appropriate statistical models, which are usually log-linear
ones, to raw data obtained in an equating design. The second
is to estimate score probabilities on target population by design
function (DF), which is an identity, linear, or other complex
forms according to the equating design. To understand this
critical component, the reader should know that in KE, raw
data and pre-smoothed ones by log-linear model are stored
in a matrix (or contingency table) with each column and row
representing a possible score in two test forms, respectively, for
Single Group design (SG), Counter-Balanced groups design (CB),
and Non-Equivalent groups with Anchor Test design (NEAT).
However, the input in the later procedure is a probability vector.
So, DF is a matrix to transform a joint score distribution of
two test forms into a marginal one. Especially, if data are
collected in the random Equivalent Groups design (EG) with a
univariate log-linear model, no further transformation is needed,
and DF is an identity matrix. However, if data are collected
in other designs, more sophisticated bivariate models are used.
Therefore, in order to get a probability vector, complex matrices
(DF) with elements including only 1 and 0 are necessary. The
third is a continuization, where discrete cumulative distribution
functions for test scores are transformed into continuous ones by
kernel smoothing techniques. This process is achieved through
a continuized random variable, which is a combination of
three parts, including the original discrete score variable, a
continuous random variable characterizing a smoothing kernel,
and a parameter controlling the degree of smoothness. The
fourth is to equate test forms by the general EE function defined
under the KE framework. Finally, the standard error of equating
(SEE) and standard error of equating difference (SEED) between
equating functions are calculated as criteria for evaluating KE
performance (von Davier et al., 2004). The same as in evaluating
other equating methods, the SEE is an indicator of a random
error caused by inferring population parameters by a sample
data. The SEED is a distinctive criterion in KE, and it depicts
the standard deviation of differences between two KE functions.
According to von Davier et al. (2004), KE differences between -
2SEED and 2SEED could be regarded as mainly coming from
sample uncertainty than functions themselves. Attributing to
its advantages of pre-smoothing and continuization of score
distributions, KE has been testified and shown equivalent to or
better than other equating methods, especially traditional ones,
in the aspect of equating accuracy and stability (Chen, 2012; von
Davier and Chen, 2013; Kim, 2014; Leôncio and Wiberg, 2017;
Wedman, 2017; Arıkan and Gelbal, 2018; De Ayala et al., 2018).

By integrating IRTOSE and KE, Andersson et al. (2013)
proposed the IRT observed score kernel equating (IRTKE)
in a package “kequate” in an R environment. In the IRTKE,
the IRT model is first fitted to a test data, where score
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probabilities are derived. One of the essential components for
the IRTKE, asymptotic covariance matrix of score probabilities,
is also calculated (Andersson, 2016). Then, score probabilities
are used to estimate continuous approximations to discrete
test score distributions by kernel continuization in order
to perform IRTOSE. Later, several researchers investigated
the IRTKE’s performances and related topics. For example,
Andersson (2016) derived an asymptotic standard error for
IRTKE with polytomous items with the delta method, which
was used in equating evaluation, especially in error estimation.
Sample size, distribution misspecification, and anchor test length
were manipulated in their study to explore the effects on the
derived asymptotic standard error. Then, Andersson and Wiberg
(2017) introduced the IRTKE in NEAT at length, and extended
asymptotic covariance matrices to chained and poststratification
equating conditions. They found that IRTKE offered small
standard errors and biases under most circumstances. Further,
Wiberg (2016) investigated how ability changes between two test
administrations affected the IRTKE and other equating methods
in NEAT. Lacking of true equating criterion in empirical data,
they did not draw much conclusions about which method was
better performed. Meanwhile, researchers put forward some
new methods by combing KE with other methods, such as the
local IRTKE, local KE (Wiberg et al., 2014), and linear IRTKE
(Wiberg, 2016). To sum up, the newly proposed IRTKE has
been theoretically validated for its superiority to other methods,
but few simulated studies are carried out to verify its equating
performances when compared with the CTT methods (such as
EE) and IRT methods (such as IRTOSE), which is one of major
objectives in this study.

Simulation Methods
In test equating, the Monto Carlo simulation procedure is
frequently used to generate response data under IRT framework
(Andersson, 2016; Andersson and Wiberg, 2017; De Ayala
et al., 2018). First, item parameters (difficulty, discrimination,
pseudo-guessing, etc.) are randomly drawn from a certain prior
distribution, which is usually lognormal, normal, or uniform
distribution. Then, the response probability of answering an item
right is computed according to the IRT model. Finally, if the
probability is larger than a random number drawn from the
uniform distribution, this person is scored 1, else 0. As illustrated
roughly above, a simulation based on the IRT (simplified as the
IRT method later) gives researchers much freedom to manipulate
the item and person relationships by setting and changing their
different prior distributions. Thus, various equating conditions
could be controlled in experiments, and true values are known
in advance, both of which are important to psychometric
simulation. So, the IRT simulation, indeed, helps. However,
there is always another concern about the possible unfairness
to certain equating methods caused by the IRT, itself (Harris
and Crouse, 1993; Godfrey, 2007; Choi, 2009; Norman Dvorak,
2009; Wiberg and González, 2016; Andersson and Wiberg,
2017; Kim et al., 2017; De Ayala et al., 2018). In detail, a
simulation study backgrounded on the IRT may be partial to
some relevant equating methods, such as IRTOSE and IRTTSE,
and disadvantage others. As one manipulation procedure used

mainly in equating studies, selecting real responses to items from
empirical test data to construct pseudo-tests and pseudo-group
(PTPG) simulation might alleviate this concern, which was first
used by Petersen et al. (1982). In their study, 54 subsamples
each with 1,577 participants were created by selecting cases
from real test data to form random, similar, and dissimilar
samples in ability. PTPG simulation directly constructs pseudo
test forms and pseudo groups satisfying certain requirements
without relying on IRT; thus, it is more neutral to the comparison
of equating methods to some extent. Other studies involving
PTPG exist (Powers and Kolen, 2011, 2012; Sinharay, 2011;
Kim and Lu, 2018). One of their limitations is that repetition
was not used; thus, random error could not be separated
from total error. Further, Hagge and Kolen (2011, 2012) used
PTPG to investigate how differences in proficiency between old
and new equating groups, relative difficulty of multiple-choice
and constructed-response items, format representativeness of
common-item set, and equating methods affected the results.
A new idea proposed was that simulation procedures were
repeated 500 times, and criterion equatings were averaged as a
benchmark to evaluate differences between equating methods.
Therefore, the traditional frequently used IRT simulation method
in test equating and the more neutral PTPG simulation method
were manipulated and compared simultaneously, in order to shed
light on interpretations of equating results impartially.

Criterion Equating
As its name indicates, criterion equating (also called true
equating) is the baseline for equating evaluation. Kolen and
Brennan (2014) summarized four equating criteria, which
included criterion based on error in estimating equating
relationships, equating in a circle, group invariance, and criterion
based on equity property. This study focuses on equating errors.
To calculate them, criterion equating needs to be defined in
advance. One of the true equating relationships considered in
this study is based on the large-sample single group (LSSG).
Suppose one operational test has enough items and representative
samples, where pseudo tests and pseudo groups could be
extracted, which has been introduced before. Then, a true
equating relationship can be founded based on the entire
examinee samples. The logic behind is to treat all examinees
as population after pseudo tests are constructed. However,
another problem still exists about which equating function is
used to calculate equated values. EE, IRT, KE, or IRTKE? One
function might favor equating results under a similar theoretical
framework (Qu, 2007; Ricker and von Davier, 2007; Choi, 2009;
Chen, 2012; Wiberg and González, 2016). That is, the criteria
calculated by the EE reference might lead the EE, KE, even IRTKE
to smaller errors compared with the IRT, as these methods are
exactly EE, itself, or its extension. The criteria calculated by other
references may cause similar problems. Therefore, a reference,
which is fairer and more equal to all equating methods, is needed.
Identity equating (IE) treats identity function as true equating,
where form Y equivalent to a form X score is set equal to
the form X score, and no further transformation is needed at
all. When test specification, design, data collection, and quality
control procedures are adequate, IE would lead to less errors than
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other equating methods. In sum, to avoid it, five true equatings
(IE, EE, IRT, KE, and IRTKE) were used in this study to detect
criterion equating preference by comparing the results from
LSSG reference with those from IE reference.

Therefore, in this study, four equating methods, including
EE, IRT, KE, and IRTKE, are compared under circumstances
where sample size and test length are manipulated. Meanwhile,
the preference caused by the simulation method and criterion
equating are also tested using two simulation methods and
specifying two sorts of criterion equatings. The structure of
this article is as follows. Independent variables, simulation
procedures, and evaluation indices are introduced in the first
part. Then come the results in EG and NEAT. Finally, discussion,
conclusion, and further directions are provided.

MATERIALS AND METHODS

Data
The raw data used in simulation were from a large-scale verbal
test ADM12 as part of an entrance examination to college
(González and Wiberg, 2017). Form I and form II for verbal test
each contains 80 multiple-choice items and 10,000 records, which
are binary scored. The basic statistics are listed in Table 1.

Independent Variables
Five factors were crossed: equating method, sample size, test
length, simulation method, and criterion equating.

Equating Method
EE (chained equating in NEAT), IRTOSE, KE, and IRTKE were
applied to simulated data, which represented equating methods
under the framework of CTT, IRT, KE, and a combination of the
latter two methods, respectively.

Sample Size per Group
Usually, 500 or more cases are required in the IRT data analysis
in consideration of model fit and convergence (Hambleton
and Jones, 1993). Therefore, 500, 1,000, and 2,500 test
takers were considered in this study, which represented
small-, moderate-, and large-sample conditions, respectively, in
educational assessment.

TABLE 1 | Summary statistics for ADM12 verbal test.

Statistics Form I Form II

Sample size 8000 8000

Number of items 80 80

Min (possible min) 9 (0) 11 (0)

Max (possible max) 79 (80) 78 (80)

Mean 43.33 44.24

SD 12.66 12.59

Skewness 0.12 0.04

Kurtosis −0.65 −0.65

Reliability 0.90 0.90

Correlation between form I and form II 0.71

Test Length
Tests including 30 and 45 items were constructed separately.
Meanwhile, in NEAT, the number of internal anchor items was
fixed at 30% of the total items, indicating that 9 and 14 items were
labeled as common between two test forms, respectively.

Simulation Method
The IRT method and the PTPG (pseudo-tests and pseudo-
groups) method were compared.

Criterion Equating
The IE (identity equating) criterion and LSSG (large-sample
single group) criterion were considered. So, in fact, five true
equatings (IE, EE, IRT, KE, and IRTKE) were calculated for each
equating method across 500 repetitions.

Therefore, 240 conditions (4 equating methods × 3 sample
sizes × 2 test lengths × 2 simulation methods × 5 criterion
equatings) were manipulated in this study.

Evaluation Indices
Local and global indices were considered. Equating performances
at a single score point could be inferred from local indices.
Besides, overall performances were formed by adding up local
indices weighted by score frequencies across a whole score scale.

Local Indices
Local indices include absolute bias (AB), standard
error of equating (SE), and root mean squared error
(RMSE). AB is a representative of systematic error.
AB [eY (xi)] =

∣∣ 1
500
∑

reYr (xi)− eYC (xi)
∣∣, eYr(xi) stands for

equating result for xi in the rth repetition, and eYC(xi) is the final
true equating by averaging 500 repetitions of respective criterion
equating function. SE reflects random error, usually caused by

sampling, SE [eY (xi)] =
√

1
500
∑

r
[
eYr (xi)−

1
500
∑

reYr (xi)
]2.

Finally, the random error is added up with the
systematic error to get the total error, RMSE[eY(xi)] =√[ 1

500
∑

r eYr(xi)− eYC(xi)
]2
+

1
500

∑
r
[
eYr(xi)−

1
500

∑
r eYr(xi)

]2.

Global Indices
Global indices include the weighted absolute bias (WAB),
weighted standard error of equating (WSE), and weighted
root mean squared error (WRMSE). As aforementioned,
global indices are a summation of local indices according
to the corresponding weight at each score point. Therefore,
WAB (eY) =

∑
iwiAB [eY (xi)], WSE (eY) =

∑
iwiSE [eY (xi)],

andWRMSE (eY) =
∑

iwiRMSE [eY (xi)], where wi = Ni/NT ,
Ni, and NT are the case numbers of xi and the
population, respectively.

Simulation Procedures
For the PTPG simulation, there were four steps in general. Step 1,
in EG, items were randomly drawn from verbal test form I
to construct the pseudo-tests X and Y without replacement. In
NEAT, items for anchor test A were drawn first followed by the
unique parts in tests X and Y. Note that the items in the whole
test consist of anchor (common) items and unique items. Step 2,
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two groups of students were randomly selected to construct
equating samples without replacement. To be mentioned, in
NEAT, students were categorized into high- and low-ability
groups according to the mean score of the test form II, and
then two pseudo groups with ability differences were selected
randomly. Step 3, pseudo tests X and Y were equated. Finally,
steps 1 to 3 were repeated 500 times, and evaluation indices
were calculated.

For the IRT simulation, a two-parameter logistic model was
first fit to raw data to get the slope, location, and theta parameters.
In step 2, response matrices were calculated for the pseudo items
and pseudo students drawn by the PTPG procedures according to
the formula of the two-parameter logistic model with parameters
calculated in step 1. In step 3, pseudo tests X and Y were equated.
In the end, steps 1 to 3 were repeated 500 times, and evaluation
indices were calculated.

The R software version 3.5.0 (R Core Team, 2017) was used
in the simulation and sample choosing. The EE, IRTOSE, KE,
and IRTKE were performed with the package equate, mirt and
equateIRT, and kequate, respectively (Chalmers, 2012; Andersson
et al., 2013; Battauz, 2015; Albano, 2016). The related R code in
this study could be found in the Appendix.

RESULTS

Overview of Simulated Data
To get a clear view on the simulated pseudo-tests and pseudo-
groups, summary statistics for pseudo test X across replications
are listed in Tables 2, 3. Each row represents one condition
where all 500 repeated samples are aggregated together to get a
brief view of the simulated sample distribution. In EG, sample
means from the PTPG are approximately three points higher than

TABLE 2 | Summary statistics for simulated samples in EG across replications.

Simulation Criterion Sample size-

method equating test length M SD Min Max Sk Ku

PTPG IE 500–30 16.29 5.18 0 30 0.06 −0.59

1000–30 16.28 5.19 0 30 0.06 −0.60

2500–30 16.28 5.19 0 30 0.06 −0.60

500–45 24.43 7.45 1 45 0.08 −0.63

1000–45 24.42 7.45 1 45 0.08 −0.63

2500–45 24.42 7.44 1 45 0.08 −0.63

SG 500–30 16.28 5.19 1 30 0.06 −0.60

1000–30 16.22 5.18 0 30 0.06 −0.60

2500–30 16.28 5.19 0 30 0.05 −0.60

IRT IE 500–30 13.35 5.58 0 30 0.45 −0.35

1000–30 13.36 5.58 0 30 0.45 −0.35

2500–30 13.35 5.57 0 30 0.45 −0.35

500–45 20.04 8.06 0 45 0.49 −0.33

1000–45 20.05 8.06 0 45 0.49 −0.33

2500–45 20.05 8.06 0 45 0.49 −0.33

SG 500–30 13.35 5.57 0 30 0.45 −0.35

1000–30 13.35 5.58 0 30 0.45 −0.36

2500–30 13.36 5.58 0 30 0.45 −0.36

TABLE 3 | Summary statistics for simulated samples in NEAT across replications.

Simulation Criterion Sample size-

method equating test length M SD Min Max Sk Ku

PTPG IE 500–30 19.78 4.04 0 30 −0.21 −0.11

1000–30 19.78 4.03 0 30 −0.21 −0.10

2500–30 19.78 4.03 0 30 −0.22 −0.11

500–45 29.67 5.63 3 45 −0.19 −0.06

1000–45 29.67 5.63 2 45 −0.19 −0.07

2500–45 29.67 5.64 2 45 −0.19 −0.07

SG 500–30 19.77 4.04 1 30 −0.22 −0.11

1000–30 19.78 4.03 1 30 −0.22 −0.12

2500–30 19.78 4.03 0 30 −0.22 −0.12

500–45 29.68 5.65 2 45 −0.20 −0.04

1000–45 29.68 5.64 2 45 −0.19 −0.05

2500–45 29.67 5.63 2 45 −0.19 −0.07

IRT IE 500–30 17.77 4.40 2 30 0.26 −0.40

1000–30 17.78 4.40 2 30 0.27 −0.39

2500–30 17.78 4.40 2 30 0.27 −0.39

500–45 26.66 6.18 7 45 0.38 −0.36

1000–45 26.66 6.19 8 45 0.38 −0.36

2500–45 26.66 6.18 6 45 0.38 −0.36

SG 500–30 17.77 4.40 4 30 0.27 −0.38

1000–30 17.77 4.40 3 30 0.27 −0.39

2500–30 17.78 4.39 2 30 0.27 −0.39

500–45 26.65 6.18 8 45 0.38 −0.36

1000–45 26.66 6.18 6 45 0.38 −0.37

2500–45 26.67 6.18 7 45 0.38 −0.36

those from the IRT simulation, and SDs are approximately 0.5
point lower than those from the IRT simulation, which makes
more scores from the PTPG centralize around the mean score
compared with those from the IRT simulation. In NEAT, sample
means from PTPG are approximately two and three points higher
than those from the IRT simulation in the 30- and 45-item
conditions, respectively, but the SDs are approximately 0.5 point
lower than those from the IRT simulation, thus, also making
more cases from PTPG dwell around the corresponding mean
score. It is shown that the mean, SD, and other higher-order score
statistics are similar with the IE and SG references, which makes
results comparable under the same conditions. What is more, in
EG, the mean score for the pseudo-test X in the 30-item condition
is approximately eight points lower than that in the 45-item
condition for the PTPG simulation, and approximately 6.5 points
lower for the IRT simulation. In NEAT, the mean score for the
pseudo-test X in the 30-item condition is approximately 10 points
lower than that in the 45-item condition for the PTPG simulation,
and approximately nine points lower for the IRT simulation. The
results in EG and NEAT are to be described separately next.

EG
In Figure 1, ABs are very small for all equating methods,
except the EE results in low- and high-score ranges, especially
in the former one, indicating that when the premise of test
specification equivalence is satisfied in EG, equating methods
with complicated assumptions and models, such as IRTOSE and
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FIGURE 1 | AB in EG. PTPG, Pseudo-Tests and Pseudo-Groups method; IRT, Item Response Theory method; IE, Identity Equating; LSSG, Large Sample Single
Group; EE, Equipercentile Equating; IRT, IRT observed score equating; KE, Kernel Equating; IRTKE, IRT observed score Kernel Equating. In (A–D), Red, green, blue,
and purple lines represent results of EE, IRT, KE, and IRTKE respectively, calculated by IE criterion. In (E,F), Red, green, blue, and purple lines represent results of
EE, IRT, KE, and IRTKE respectively; continuous, dotted, short-dashed, and long-dashed lines represent results calculated by EE, IRT, KE, and IRTKE criterion
respectively. Test with 45 items under LSSG reference condition was not considered.
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TABLE 4 | Weighted absolute bias (WAB) in EG.

LSSG

IE EE IRT KE IRTKE

EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE

PTPG 500–30 0.02 0.01 0.01 0.01 0.02 0.04 0.04 0.02 0.06 0.01 0.06 0.06 0.02 0.04 0.01 0.01 0.02 0.04 0.03 0.01

1000–30 0.02 0.01 0.02 0.02 0.01 0.05 0.03 0.01 0.05 0.00 0.06 0.06 0.02 0.05 0.01 0.02 0.01 0.05 0.02 0.00

2500–30 0.01 0.02 0.01 0.01 0.00 0.05 0.03 0.01 0.05 0.00 0.05 0.05 0.03 0.05 0.00 0.02 0.01 0.05 0.02 0.00

500–45 0.03 0.02 0.01 0.01

1000–45 0.02 0.02 0.01 0.01

2500–45 0.01 0.01 0.01 0.01

IRT 500–30 0.02 0.01 0.02 0.02 0.02 0.05 0.03 0.03 0.09 0.03 0.08 0.07 0.02 0.04 0.03 0.02 0.03 0.04 0.03 0.02

1000–30 0.01 0.02 0.01 0.01 0.03 0.06 0.03 0.03 0.10 0.02 0.09 0.07 0.04 0.05 0.03 0.02 0.04 0.05 0.03 0.03

2500–30 0.01 0.02 0.01 0.00 0.04 0.07 0.03 0.02 0.11 0.01 0.10 0.07 0.05 0.07 0.04 0.02 0.05 0.07 0.04 0.02

500–45 0.02 0.01 0.02 0.02

1000–45 0.01 0.02 0.01 0.01

2500–45 0.01 0.01 0.01 0.00

A number in bold font is the smallest value under each circumstance.

IRTTSE, are not necessary, since traditional simpler EE can give
acceptable results. Nonetheless, EE should be used cautiously
when equating is performed at extreme scores, where much less
records lay. Because sample size plays a similar role under all
conditions, and its effect on equating is summarized in Table 4,
only figures for 500 test takers are shown, with others to be
requested from the author for correspondence. Note that the
test with 45 items under the LSSG reference condition was not
considered here because 90 (45 + 45) items were needed to
fulfill the LSSG’s philosophy. The ABs change little when sample
size and test length increase, usually by approximately 0.01 raw
score, hardly affecting practical equating and decision making,
according to the rule of Difference That Matter (DTM) (Dorans,
2004). WABs in Table 4 also describe these trends. Besides, WABs
calculated from same true equating are smaller than those from
different ones. However, the difference between them is ignorable
and insignificant. Results for the PTPG and IRT simulation
methods coincide with each other to a high extent in regard
to WABs. To sum up, equating methods perform alike in EG
according to ABs and WABs.

As for the SEs in Figure 2, according to its formula, the
same equating method from different true equating functions
share identical SE values in the LSSG. Therefore, four lines could
be detected, but 16 lines actually exist in Figures 2E,F. The
IRTKE and KE are most stable, followed by IRTOSE, and finally
EE, across whole scores under PTPG simulation circumstance.
When the IRT simulation method is used, IRTKE performs better
than the others based on the IE criterion, whereas KE prevails
based on the LSSG criterion. Again, EE fluctuates more than
the others, and two similar peaks in Figure 1 appear again. In
contrast to ABs, SEs are much larger, meaning that random error
accounts more equating variabilities than systematic error does
in EG. In addition, random error decreases when sample size
becomes larger. A shorter test ensures lower SEs. However, those
two trends caused by the change in sample size and test length

are not significant. All trends mentioned above are quantified
in Table 5.

Finally presented are the RMSEs and their weighted versions.
Since trends are similar in the illustration of ABs and SEs, and
RMSEs are formed by aggregating those two together, it is easy
to comprehend this. Under the PTPG condition, the KE and
IRTKE are spotted as the lowest total errors, whereas under IRT
simulation condition, things get different. The IRTKE performs
best with the IE reference, but the KE prevails when the LSSG is
set as a reference. The EE behaves poorly when scores are very
low or high in Figure 3. RMSEs get smaller as the sample size
increases, and the test length decreases, whose changes are less
than the DTM guideline. Furthermore, index values calculated
from the IE reference are much lower than those from the
LSSG reference. However, the criterion equating deviation is not
spotted because the SEs overweigh the ABs overwhelmingly, and
the former cannot show any more information. More details are
shown in Figure 3 and Table 6.

NEAT
When it comes to NEAT, things get different. In Figures 4–
6, ABs, SEs, and RMSEs are much larger than those in EG,
indicating that equating results in EG are more accurate and
stable in this simulation study. In detail, for ABs in Figure 4,
IRTOSE is the most accurate method, and the difference between
it and the others is extremely large, meaning that when sample
specifications, such as ability and score distribution, are not
equivalent, IRTOSE does an excellent job, benefiting from its
robustness to sample misspecification. Besides one peak, every
plot has a valley near the high-score range. As shown in Table 7,
WABs increase a lot when the test becomes longer, but show
little improvement when the sample size changes. ABs from
IRT simulation are larger than those from the PTPG simulation
results; however, this trend is reversed when it comes to IRTOSE.
Explicitly, WABs for IRTOSE from the IRT simulation are
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FIGURE 2 | SE in EG. PTPG, Pseudo-Tests and Pseudo-Groups method; IRT, Item Response Theory method; IE, Identity Equating; LSSG, Large Sample Single
Group; EE, Equipercentile Equating; IRT, IRT observed score equating; KE, Kernel Equating; IRTKE, IRT observed score Kernel Equating. In (A–D), Red, green, blue,
and purple lines represent results of EE, IRT, KE, and IRTKE respectively, calculated by IE criterion. In (E,F), Red, green, blue, and purple lines represent results of
EE, IRT, KE, and IRTKE respectively; continuous, dotted, short-dashed, and long-dashed lines represent results calculated by EE, IRT, KE, and IRTKE criterion
respectively. Test with 45 items under LSSG reference condition was not considered.
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TABLE 5 | Weighted standard error of equating (WSE) in EG.

LSSG

IE EE IRT KE IRTKE

EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE

PTPG 500–30 0.49 0.52 0.39 0.39 1.27 1.56 1.23 1.23 1.27 1.56 1.23 1.23 1.27 1.56 1.23 1.23 1.27 1.56 1.23 1.23

1000–30 0.34 0.37 0.27 0.28 1.22 1.52 1.19 1.19 1.22 1.52 1.19 1.19 1.22 1.52 1.19 1.19 1.22 1.52 1.19 1.19

2500–30 0.22 0.24 0.18 0.18 1.19 1.49 1.18 1.18 1.19 1.49 1.18 1.18 1.19 1.49 1.18 1.18 1.19 1.49 1.18 1.18

500–45 0.71 0.71 0.55 0.56

1000–45 0.50 0.51 0.39 0.39

2500–45 0.32 0.32 0.25 0.25

IRT 500–30 0.52 0.57 0.42 0.27 1.11 1.54 1.07 1.25 1.11 1.54 1.07 1.25 1.11 1.54 1.07 1.25 1.11 1.54 1.07 1.25

1000–30 0.37 0.39 0.29 0.19 1.07 1.52 1.05 1.26 1.07 1.52 1.05 1.26 1.07 1.52 1.05 1.26 1.07 1.52 1.05 1.26

2500–30 0.23 0.25 0.19 0.12 1.03 1.48 1.03 1.24 1.03 1.48 1.03 1.24 1.03 1.48 1.03 1.24 1.03 1.48 1.03 1.24

500–45 0.76 0.81 0.61 0.34

1000–45 0.53 0.57 0.42 0.23

2500–45 0.34 0.37 0.28 0.15

A number in bold font is the smallest value under each circumstance.

smaller than those from the PTPG simulation. In terms of
criterion equating, IE tells us that IRTOSE is the best-performed
method. However, the LSSG shows some vague opinions because
the results are related to which equating function is used as
true equating. For example, when the EE is chosen as the true
equating, EE performs better than it does under other true
equating conditions. This phenomenon is more evident in the
PTPG simulation.

For the SEs in Figure 5, the IRTOSE, IRTKE, and KE are
more stable than the EE, with the latter one showing two
peaks. However, in the mid-score range where score frequencies
are larger, all the equating methods resemble more. Another
phenomenon worth mentioning is that the SEs for EE get close to
0 in the low and some high-score ranges (Figure 5, plots except
A and E), attributing to the logic of EE transformation that scores
with the same percentile rank are equivalent, even though the two
samples are different in score distribution distinctly. So, it is not
so much stable as inaccurate. The SEs become smaller when the
sample size increases, and the test length decreases in Table 8.
Again, only the test length contributes significantly to the SE
change. The IRT data simulation favors the IRTOSE obviously
as is the same case with the ABs. In short, the IRTKE and KE,
especially the former one, are more stable than the others under
IE reference condition, whereas the IRTOSE is more stable under
the LSSG reference condition.

By illustrating the RMSEs and WRMSEs in Figure 6 and
Table 9, respectively, the IRTOSE is the best choice for equating
in NEAT according to its least amount of total error, followed
by KE and EE, the latter of which shows high peaks. The IRTKE
leads to larger WRMSEs under most circumstances. In addition,
the RMSEs become smaller when the sample size increases, and
the test length decreases, but the changes are not significant
according to the DTM rule. Again, except for the IRTOSE results,
the others from the PTPG simulation are approximately 0.5 point
higher than those from the IRT simulation. No clear difference is
found between the IE and LSSG.

SUMMARY AND DISCUSSION

IRTKE and Other Equating Methods
IRTKE is a new method integrating the IRTOSE into the KE,
taking advantage of the flexible and accurate IRT models fitted
to the testing data (Andersson and Wiberg, 2017). Results show
that the IRTKE and KE produce less random error and total
error than other methods in most situations investigated in
the EG, whereas in NEAT, the IRTOSE is superior to others
in terms of equating errors, with the exception of random
errors calculated with the IE reference. Since the IRTKE is
a combination of the IRTOSE and KE, it is still surprising
that the IRTOSE wins over the IRTKE by every index when
abilities differ a lot in NEAT. We speculate that the IRTKE
is rather a modification of the KE compared to that of the
IRTOSE, which is proven by the result that the IRTKE and
KE show more similarities. In addition, the IRTKE embraces
more basic elements from the KE, such as continuization and
equating, although it calculates score probabilities based on the
IRT models. It is also found that the IRTOSE is proven to be
a good choice when the sample size is large (more than 500
cases), which is considered to be a rough threshold where the IRT
model fitting and parameter estimation can successfully converge
(Hambleton and Jones, 1993; Kolen and Brennan, 2014). In
general, increasing the sample size leads to lower total errors
(represented by the RMSEs and WRMSEs in this study), but the
accuracy improvements are not large enough to make a difference
in equating practices, which contradicts former studies (Moses
and Holland, 2007; Liang and von Davier, 2014). For example,
the levels of the sample size manipulated were 200 and 2000,
and 100, 200, and 1,000 in the Liang and von Davier study
and the Moses and Holland study, respectively. Therefore, we
have confidence in speculating that a larger sample size used in
this study led to the stability of equating errors as it changes.
Small sample conditions, such as the 200 and 500 cases, should
be investigated in the future to explore the equating methods’
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FIGURE 3 | RMSE in EG. PTPG, Pseudo-Tests and Pseudo-Groups method; IRT, Item Response Theory method; IE, Identity Equating; LSSG, Large Sample Single
Group; EE, Equipercentile Equating; IRT, IRT observed score equating; KE, Kernel Equating; IRTKE, IRT observed score Kernel Equating. In (A–D), Red, green, blue,
and purple lines represent results of EE, IRT, KE, and IRTKE respectively, calculated by IE criterion. In (E,F), Red, green, blue, and purple lines represent results of
EE, IRT, KE, and IRTKE respectively; continuous, dotted, short-dashed, and long-dashed lines represent results calculated by EE, IRT, KE, and IRTKE criterion
respectively. Test with 45 items under LSSG reference condition was not considered.
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TABLE 6 | Weighted root mean squared error (WRMSE) in EG.

LSSG

IE EE IRT KE IRTKE

EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE

PTPG 500–30 0.49 0.52 0.39 0.39 1.27 1.56 1.23 1.23 1.27 1.56 1.23 1.23 1.27 1.56 1.23 1.23 1.27 1.56 1.23 1.23

1000–30 0.34 0.37 0.27 0.28 1.22 1.52 1.19 1.19 1.22 1.52 1.19 1.19 1.22 1.52 1.19 1.19 1.22 1.52 1.19 1.19

2500–30 0.22 0.24 0.18 0.18 1.19 1.50 1.18 1.18 1.19 1.49 1.18 1.18 1.19 1.50 1.18 1.18 1.19 1.50 1.18 1.18

500–45 0.71 0.72 0.55 0.56

1000–45 0.50 0.51 0.39 0.39

2500–45 0.32 0.32 0.25 0.26

IRT 500–30 0.52 0.57 0.42 0.27 1.11 1.54 1.07 1.25 1.11 1.54 1.07 1.26 1.11 1.54 1.07 1.25 1.11 1.54 1.07 1.25

1000–30 0.37 0.39 0.29 0.19 1.07 1.52 1.05 1.26 1.07 1.52 1.05 1.26 1.07 1.52 1.05 1.26 1.07 1.52 1.05 1.26

2500–30 0.23 0.25 0.19 0.12 1.03 1.48 1.03 1.24 1.04 1.48 1.03 1.25 1.03 1.48 1.03 1.24 1.03 1.48 1.03 1.24

500–45 0.76 0.81 0.61 0.34

1000–45 0.53 0.57 0.42 0.23

2500–45 0.35 0.37 0.28 0.15

A number in bold font is the smallest value under each circumstance.

performances under extreme conditions, though it may cause
convergence problems. Another inconsistent phenomenon is
that equating errors get larger when test forms are lengthened
(Fitzpatrick and Yen, 2001; Godfrey, 2007; Norman Dvorak,
2009). Kim et al. (2017) investigated the performance of four
approaches to handling structural zeros in NEAT equating where
test length, proportion of common items, examinee ability effect
size, and sample size were manipulated. Consistent with this
study, they also found that evaluation statistics were smaller for
shorter tests than for longer ones. They speculated that since
the IRTOSE employed smoothed distributions using explicitly
specified distributions of ability in the population of examinees, it
gave an advantage to shorter tests. That is, with other conditions
fixed, observed relative frequency distributions for simulated data
sets became smoother for shorter test lengths and, thus, closer to
the population relative frequency distributions. Besides, we infer
that when other factors are fixed, the number of items allocated
to a single score point decreases, thus, making the equating error
increase (Akour, 2006). What is more, the percentage of the
anchor items might affect the equating results, which was fixed
at 30% in this study. In addition, the other extreme ratios of the
anchor items to the total items are worth exploring. Nowadays,
large-scale assessments containing far more than 50 items are
usual, such as PISA, TIMSS, and so on. Nevertheless, limited to
the 80-item ADM verbal test used, a long-test situation was not
manipulated in this study, which could be considered to verify
equating performances in the future.

Data Simulation Preference
The phenomenon that data obtained from the IRT simulation
favors the IRTOSE in NEAT is a signal of simulation method
preference. Nevertheless, it is a relief that the spotted IRT
preference does not affect the final comparative results among
the equating methods because no matter which true equating is
selected, the IRTOSE is the best performed, followed by the EE,
KE, and IRTKE, which are also indicators of robustness of the
IRT equating methods (Skaggs and Lissitz, 1986; Béguin, 2000;

Kim and Kolen, 2006). The mechanism behind might be that
the simulation methods make pseudo test score distributions
different with each other, and thus, equating performances are
not coincident. However, the IRT preference was not spotted
in EG. We speculate that the idealized sample equivalence
controlled by randomly selecting cases in EG made it happen.
More researches could be conducted on the testing simulation
method preference in EG when equivalence assumption is
violated. It also alerts that more caution and proofs validating
equating performance are required before making conclusions
based on one single-simulation study, which is usually ignored.
Further studies could be carried out on finding other fairer
simulation procedures for equating method comparison. That
content specifications were not controlled in test forms is
another limitation in this study, which could be improved by
taking the test content into consideration when pseudo tests
are constructed.

Criterion Equating Preference
In order to investigate whether criterion equating plays a different
role in equating evaluation or not, four equating methods (EE,
IRT, KE, and IRTKE) and IE were chosen as true equatings.
Following this logic, it was found that WABs favor equating
results using the same true equating functions in EG. WSEs
and WRMSEs do not show this preference. Because WSEs are
identical under the same true equating, and random errors (SEs
and WSEs) contribute more than systematic errors (ABs and
WABs) to total errors (RMSEs and WRMSEs) in this study, it
is not surprising that no clear criterion equating preference is
found for WRMSE.

Based on simulation and the discussion above, several
recommendations are summarized. First, when equating is
conducted in EG, and the requirement of the ability equivalence
between the two groups could be satisfied well, the IRTKE is
strongly recommended owing to its much less random error
caused by sampling. However, when equating groups show
clear ability difference in NEAT, the IRTOSE might be a
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FIGURE 4 | AB in NEAT. PTPG, Pseudo-Tests and Pseudo-Groups method; IRT, Item Response Theory method; IE, Identity Equating; LSSG, Large Sample Single
Group; EE, Equipercentile Equating; IRT, IRT observed score equating; KE, Kernel Equating; IRTKE, IRT observed score Kernel Equating. In (A–D), Red, green, blue,
and purple lines represent results of EE, IRT, KE, and IRTKE respectively, calculated by IE criterion. In (E–H), Red, green, blue, and purple lines represent results of
EE, IRT, KE, and IRTKE respectively; continuous, dotted, short-dashed, and long-dashed lines represent results calculated by EE, IRT, KE, and IRTKE criterion
respectively.
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FIGURE 5 | SE in NEAT. PTPG, Pseudo-Tests and Pseudo-Groups method; IRT, Item Response Theory method; IE, Identity Equating; LSSG, Large Sample Single
Group; EE, Equipercentile Equating; IRT, IRT observed score equating; KE, Kernel Equating; IRTKE, IRT observed score Kernel Equating. In (A–D), Red, green, blue,
and purple lines represent results of EE, IRT, KE, and IRTKE respectively, calculated by IE criterion. In (E–H), Red, green, blue, and purple lines represent results of
EE, IRT, KE, and IRTKE respectively; continuous, dotted, short-dashed, and long-dashed lines represent results calculated by EE, IRT, KE, and IRTKE criterion
respectively.
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FIGURE 6 | RMSE in NEAT. PTPG, Pseudo-Tests and Pseudo-Groups method; IRT, Item Response Theory method; IE, Identity Equating; LSSG, Large Sample
Single Group; EE, Equipercentile Equating; IRT, IRT observed score equating; KE, Kernel Equating; IRTKE, IRT observed score Kernel Equating. In (A–D), Red,
green, blue, and purple lines represent results of EE, IRT, KE, and IRTKE respectively, calculated by IE criterion. In (E–H), Red, green, blue, and purple lines represent
results of EE, IRT, KE, and IRTKE respectively; continuous, dotted, short-dashed, and long-dashed lines represent results calculated by EE, IRT, KE, and IRTKE
criterion respectively.
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TABLE 7 | Weighted absolute bias (WAB) in NEAT.

LSSG

IE EE IRT KE IRTKE

EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE

PTPG 500–30 2.08 0.11 2.15 2.79 2.05 0.10 2.13 2.76 2.06 0.10 2.13 2.76 2.06 0.11 2.13 2.76 2.06 0.10 2.13 2.76

1000–30 2.16 0.12 2.15 2.78 2.12 0.09 2.13 2.75 2.13 0.09 2.13 2.76 2.13 0.09 2.13 2.76 2.13 0.09 2.13 2.76

2500–30 2.19 0.10 2.15 2.77 2.17 0.10 2.12 2.74 2.17 0.11 2.13 2.75 2.17 0.11 2.13 2.75 2.17 0.11 2.13 2.75

500–45 2.50 0.10 2.72 3.59 2.46 0.06 2.64 3.53 2.48 0.06 2.69 3.57 2.46 0.06 2.65 3.53 2.45 0.05 2.64 3.53

1000–45 2.58 0.12 2.71 3.56 2.53 0.06 2.65 3.48 2.57 0.04 2.69 3.53 2.54 0.06 2.65 3.48 2.53 0.05 2.65 3.48

2500–45 2.65 0.12 2.71 3.54 2.61 0.05 2.64 3.46 2.65 0.04 2.69 3.51 2.62 0.04 2.65 3.47 2.61 0.03 2.65 3.47

IRT 500–30 2.43 0.03 2.88 3.53 2.39 0.02 2.82 3.45 2.36 0.04 2.79 3.43 2.39 0.02 2.82 3.46 2.38 0.02 2.82 3.46

1000–30 2.57 0.03 2.88 3.53 2.53 0.03 2.79 3.45 2.50 0.05 2.77 3.43 2.53 0.02 2.80 3.45 2.53 0.03 2.79 3.45

2500–30 2.76 0.02 2.88 3.54 2.69 0.03 2.81 3.47 2.67 0.05 2.79 3.45 2.69 0.02 2.81 3.48 2.69 0.03 2.81 3.47

500–45 3.50 0.04 3.72 4.72 3.39 0.08 3.53 4.47 3.37 0.06 3.55 4.49 3.39 0.07 3.53 4.47 3.39 0.08 3.53 4.47

1000–45 3.42 0.04 3.72 4.69 3.32 0.08 3.56 4.49 3.30 0.07 3.57 4.50 3.32 0.08 3.56 4.49 3.31 0.08 3.55 4.49

2500–45 3.52 0.04 3.75 4.68 3.41 0.10 3.57 4.50 3.40 0.09 3.58 4.51 3.41 0.10 3.57 4.50 3.40 0.11 3.57 4.50

A number in bold font is the smallest value under each circumstance.

TABLE 8 | Weighted standard error of equating (WSE) in NEAT.

LSSG

IE EE IRT KE IRTKE

EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE

PTPG 500–30 0.84 0.97 0.52 0.48 1.38 1.05 1.11 1.04 1.38 1.05 1.11 1.04 1.38 1.05 1.11 1.04 1.38 1.05 1.11 1.04

1000–30 0.70 0.90 0.49 0.44 1.24 0.95 1.09 1.04 1.24 0.95 1.09 1.04 1.24 0.95 1.09 1.04 1.24 0.95 1.09 1.04

2500–30 0.53 0.86 0.46 0.42 1.13 0.92 1.08 1.02 1.13 0.92 1.08 1.02 1.13 0.92 1.08 1.02 1.13 0.92 1.08 1.02

500–45 1.43 1.13 0.66 0.63 2.04 1.26 1.37 1.32 2.04 1.26 1.37 1.32 2.04 1.26 1.37 1.32 2.04 1.26 1.37 1.32

1000–45 1.09 1.07 0.61 0.57 1.70 1.20 1.33 1.28 1.70 1.20 1.33 1.28 1.70 1.20 1.33 1.28 1.70 1.20 1.33 1.28

2500–45 0.80 1.03 0.57 0.53 1.49 1.15 1.32 1.27 1.49 1.15 1.32 1.27 1.49 1.15 1.32 1.27 1.49 1.15 1.32 1.27

IRT 500–30 1.55 0.66 0.61 0.53 1.87 0.86 0.98 0.91 1.87 0.86 0.98 0.91 1.87 0.86 0.98 0.91 1.87 0.86 0.98 0.91

1000–30 1.23 0.53 0.57 0.51 1.55 0.75 0.97 0.91 1.55 0.75 0.97 0.91 1.55 0.75 0.97 0.91 1.55 0.75 0.97 0.91

2500–30 0.98 0.43 0.54 0.48 1.35 0.71 0.96 0.93 1.35 0.71 0.96 0.93 1.35 0.71 0.96 0.93 1.35 0.71 0.96 0.93

500–45 2.67 0.74 0.74 0.64 2.99 1.05 1.26 1.12 2.99 1.05 1.26 1.12 2.99 1.05 1.26 1.12 2.99 1.05 1.26 1.12

1000–45 2.24 0.62 0.71 0.62 2.55 0.95 1.22 1.08 2.55 0.95 1.22 1.08 2.55 0.95 1.22 1.08 2.55 0.95 1.22 1.08

2500–45 1.73 0.49 0.67 0.55 2.14 0.88 1.20 1.08 2.14 0.88 1.20 1.08 2.14 0.88 1.20 1.08 2.14 0.88 1.20 1.08

A number in bold font is the smallest value under each circumstance.

TABLE 9 | Weighted root mean squared error (WRMSE) in NEAT.

LSSG

IE EE IRT KE IRTKE

EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE EE IRT KE IRTKE

PTPG 500–30 2.36 0.97 2.22 2.83 2.55 1.05 2.40 2.95 2.55 1.05 2.41 2.95 2.55 1.05 2.41 2.95 2.55 1.05 2.41 2.95

1000–30 2.31 0.91 2.21 2.82 2.49 0.95 2.39 2.95 2.49 0.95 2.40 2.95 2.49 0.95 2.40 2.95 2.49 0.95 2.40 2.95

2500–30 2.27 0.87 2.20 2.80 2.45 0.92 2.38 2.93 2.45 0.93 2.39 2.93 2.45 0.93 2.39 2.93 2.46 0.93 2.39 2.93

500–45 3.16 1.14 2.80 3.65 3.37 1.27 2.98 3.77 3.39 1.26 3.02 3.81 3.37 1.27 2.98 3.77 3.36 1.27 2.98 3.77

1000–45 3.00 1.07 2.78 3.60 3.17 1.21 2.96 3.71 3.20 1.21 3.00 3.75 3.17 1.21 2.97 3.71 3.17 1.21 2.97 3.71

2500–45 2.88 1.04 2.77 3.58 3.08 1.16 2.96 3.69 3.11 1.15 3.00 3.73 3.08 1.15 2.96 3.69 3.08 1.15 2.96 3.69

IRT 500–30 3.25 0.66 2.95 3.57 3.30 0.86 2.99 3.58 3.27 0.86 2.97 3.56 3.30 0.86 2.99 3.58 3.30 0.86 2.99 3.58

1000–30 3.14 0.53 2.94 3.57 3.19 0.75 2.96 3.57 3.16 0.76 2.94 3.55 3.19 0.75 2.96 3.57 3.18 0.75 2.96 3.57

2500–30 3.11 0.43 2.93 3.57 3.15 0.71 2.97 3.60 3.13 0.71 2.95 3.58 3.15 0.71 2.98 3.60 3.15 0.71 2.97 3.60

500–45 4.91 0.75 3.80 4.76 4.90 1.06 3.76 4.62 4.87 1.06 3.77 4.63 4.90 1.06 3.76 4.62 4.89 1.06 3.75 4.61

1000–45 4.59 0.62 3.79 4.73 4.57 0.96 3.76 4.62 4.55 0.95 3.78 4.64 4.57 0.96 3.77 4.62 4.56 0.96 3.76 4.62

2500–45 4.37 0.49 3.81 4.71 4.34 0.89 3.77 4.63 4.33 0.89 3.78 4.65 4.34 0.89 3.77 4.63 4.33 0.89 3.77 4.63

A number in bold font is the smallest value under each circumstance.
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wise choice because it relates to far less systematic error than
the other methods. Second, in the view of data simulation
preference, the PTPG is suitable for comparative studies of
test equating, especially for those including methods under
distinct theoretical backgrounds. In contrast, researchers should
be alert and cautious about the conclusions when comparing
the IRT and the other equating methods based on the IRT
simulation. Similar recommendations are made on the selection
of criterion equating. The final conclusion about equating
study and its further application must be based on solid
proofs and comprehensive and unbiased criteria, which cannot
be overemphasized.

Further researches could focus on several topics. First, for
simplicity, only dichotomous items were considered in this
study. However, polytomous and mixed-format ones could
detect and evaluate more sophisticated and higher-level abilities
in educational tests. Therefore, equating results under these
conditions should be tested. Second, considering that two
or more items with identical contents and psychometric
specifications would be unrealistic in practical tests, items were
drawn without replacement in this study, as were students (or
respondent cases). Since drawing with replacement is also one
usual option in data simulation, future research could try it.
Third, note that raw score distributions used in this study
are close to normal distribution, and equating performances
under other distributions, such as binomial distribution and
χ2 distribution should also be considered. On the other hand,
besides raw data, when simulated pseudo tests are not conformed
to normal distribution, how well would equating methods
perform? In addition, the effect of the IRT data-model misfit
on equating is also worthy of investigation. Finally, besides
multiple-choice question, various types of items exist, such as

constructed response, fill-in-the-blank, and matching questions.
So, equating comparison with mixed-format tests is also a
realistic topic to discuss.
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APPENDIX

R codes for simulation (N = 500, 30 items, PTPG simulation, IE
criterion, in NEAT).
# import raw data
load (’ADM12.Rda’)
vt.form1< - ADM12 [, 81 : 160]
vt.form2< - ADM12 [, 241 : 320]
vt.form1< - as.matrix (vt.form1)
vt.form2< - as.matrix (vt.form2)
# create matrices for result storing
ee.result< - irt.result< - ke.result< - matrix (NA, 31, 500)
wro.irtke< - NULL
irtke.result< - matrix (NA, 31, 1)
sum_500< - matrix (NA, 500, 500)
# repeat sampling and equating 500 times
for (i in 1 : 500){
# divide students into two groups (with high & low abilities) and
sample randomly
form2.mean< - mean (rowSums (vt.form2))
form1.high < - vt.form1 [which (rowSums
(vt.form2)> form2.mean),]
form1.low < - vt.form1[which (rowSums
(vt.form2)< form2.mean),]
items< - sample (1 : 80, 30, FALSE)
high.sam< - sample (1 : nrow (form1.high), 500, FALSE)
low.sam< - sample (1 : nrow (form1.low), 500, FALSE)
# sample items to construct pseudo tests and responses
x.sam< - form1.high [high.sam, items]
y.sam< - form1.low [low.sam, items]
x.sam< - as.matrix (x.sam)
y.sam< - as.matrix (y.sam)
# EE
library (equate)
xa.score< - apply (x.sam [, 22 : 30], 1, sum)
ya.score< - apply (y.sam [, 22 : 30], 1, sum)
x.score< - apply (x.sam [, 1 : 30], 1, sum)
sum_500 [, i]< - x.score
y.score< - apply (y.sam [, 1 : 30], 1, sum)
neat.x< - cbind (x.score, xa.score)
neat.y< - cbind (y.score, ya.score)
neat.x1< - freqtab (x = neat.x, scales = list (0 : 30, 0 : 9))
neat.y1< - freqtab (x = neat.y, scales = list (0 : 30, 0 : 9))
ee < - equate (neat.x1, neat.y1, type = "equip",
method = "chained")
ee.eq< - ee $ concordance
ee.result [, i]< - ee.eq [, 2]
# IRTOSE
library (equateIRT)
library (mirt)
colnames (x.sam) < - c (paste ("x", 1 : 21, sep = ""), paste ("c", 1 :
9, sep = ""))
colnames (y.sam) < - c (paste ("y", 1 : 21, sep = ""), paste ("c", 1 :
9, sep = ""))
x.2pl< - mirt (x.sam, 1, itemtype = "2PL")
y.2pl< - mirt (y.sam, 1, itemtype = "2PL")
par.x< - import.mirt (x.2pl, display = FALSE, digits = 3)

par.y< - import.mirt (y.2pl, display = FALSE, digits = 3)
par.x< - as.matrix (par.x $ coef)
par.y< - as.matrix (par.y $ coef)
row.names (par.x) < - c (paste ("x", 1 : 21, sep = ""), paste ("c", 1 :
9, sep = ""))
row.names (par.y) < - c (paste ("y", 1 : 21, sep = ""), paste ("c", 1 :
9, sep = ""))
par.xy< - list (par.x, par.y)
mod.2pl < - modIRT (coef = par.xy, ltparam = FALSE,
lparam = FALSE)
coef.ab < - direc (mod1 = mod.2pl [1], mod2 = mod.2pl [2],
method = "Stocking-Lord")
irtose.eq < - score (coef.ab, method = "OSE", se = FALSE,
scores = 0 : 30)
irt.result [, i]< - irtose.eq [, 2]
# KE
library (kequate)
ker.x < - kefreq (in1 = x.score, xscores = 0 : 30, in2 = xa.score,
ascores = 0 : 9)
ker.y < - kefreq (in1 = y.score, xscores = 0 : 30, in2 = ya.score,
ascores = 0 : 9)
pre.x< - glm (frequency∼ I (X)+ I (Xˆ2)+ I (A)+ I (Aˆ2)
+ I (X) : I (A), family = "poisson", data = ker.x, x = TRUE)
pre.y< - glm (frequency∼ I (X)+ I (Xˆ2)+ I (A)+ I (Aˆ2)
+ I (X) : I (A), family = "poisson", data = ker.y, x = TRUE)
ke.x< - kequate ("NEAT_CE", 0 : 30, 0 : 30, 0 : 9, pre.x, pre.y)
ke.eq< - getEq (ke.x)
ke.result [, i]< - ke.eq
# IRTKE
x.sam_ke< - x.sam [, c (1 : 30, 22 : 30)]
y.sam_ke< - y.sam [, c (1 : 30, 22 : 30)]
temp.irtke< - tryCatch (
{irtose ("CE", x.sam_ke, y.sam_ke, 0 : 30, 0 : 30, 0 : 9)},
error = function (e) { return (NULL) }
)
if (is.null (temp.irtke)) {wro.irtke< - c (wro.irtke,i)}
else {
irtkeequ< - temp.irtke @ equating
irtke.result< - cbind (irtke.result, irtkeequ [, 1])
}
}
# calculate evaluation criteria
identity.ref< - matrix (NA, 31, 500)
for (i in 1 : 500){
identity.ref [, i]< - 0 : 30
}
#calculate biasˆ2
bias2< - matrix (NA, 31, 4)
irtke.result< - irtke.result [, -1]
colnames (bias2)< - c ("ee", "irt", "ke", "irtke")
bias2[, 1]< - (rowMeans (ee.result - identity.ref))ˆ2
bias2[, 2]< - (rowMeans (irt.result - identity.ref))ˆ2
bias2[, 3]< - (rowMeans (ke.result - identity.ref))ˆ2
bias2[, 4]< - (rowMeans (irtke.result - identity.ref))ˆ2
#calculate ab
ab< - sqrt (bias2)
#calculate VAR
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vars< - matrix (NA, 31, 4)
colnames (vars)< - c ("ee","irt","ke","irtke")
vars [, 1]< - rowMeans ((ee.result - rowMeans (ee.result))ˆ2)
vars [, 2]< - rowMeans ((irt.result - rowMeans (irt.result))ˆ2)
vars [, 3]< - rowMeans ((ke.result - rowMeans (ke.result))ˆ2)
vars [, 4] < - rowMeans ((irtke.result - rowMeans
(irtke.result))ˆ2)
#calculate se
se< - sqrt (vars)
#calculate mse and rmse
mse< - matrix (NA, 31, 4)

mse< - bias2+ vars
rmse< - sqrt (mse)
#calculate wab, wse, wrmse
num_sum< - as.data.frame (table (sum_500))
fre_sum< - num_sum [, 2]/250000
wrmse< - wab< - wse< - numeric(4)
for (i in 1:4){
wrmse [i]< - rmse [, i] %∗% fre_sum
wab [i]< - ab [, i] %∗% fre_sum
wse [i]< - se [, i] %∗% fre_sum
}

Frontiers in Psychology | www.frontiersin.org 19 March 2020 | Volume 11 | Article 308

https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	A Comparison of IRT Observed Score Kernel Equating and Several Equating Methods
	Introduction
	Test Equating and Kernel Equating Method
	Simulation Methods
	Criterion Equating

	Materials and Methods
	Data
	Independent Variables
	Equating Method
	Sample Size per Group
	Test Length
	Simulation Method
	Criterion Equating

	Evaluation Indices
	Local Indices
	Global Indices
	Simulation Procedures

	Results
	Overview of Simulated Data
	EG
	NEAT

	Summary and Discussion
	IRTKE and Other Equating Methods
	Data Simulation Preference
	Criterion Equating Preference

	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix


