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High nitrogen use efficiency (NUE) in bread wheat is pivotal to sustain high productivity.
Knowledge about the physiological and transcriptomic changes that regulate NUE, in
particular how plants cope with nitrogen (N) stress during flowering and the grain filling
period, is crucial in achieving high NUE. Nitrogen response is differentially manifested in
different tissues and shows significant genetic variability. A comparative transcriptome
study was carried out using RNA-seq analysis to investigate the effect of nitrogen
levels on gene expression at 0 days post anthesis (0 DPA) and 10 DPA in second
leaf and grain tissues of three Australian wheat (Triticum aestivum) varieties that were
known to have varying NUEs. A total of 12,344 differentially expressed genes (DEGs)
were identified under nitrogen stress where down-regulated DEGs were predominantly
associated with carbohydrate metabolic process, photosynthesis, light-harvesting, and
defense response, whereas the up-regulated DEGs were associated with nucleotide
metabolism, proteolysis, and transmembrane transport under nitrogen stress. Protein–
protein interaction and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
analysis further revealed that highly interacted down-regulated DEGs were involved in
light-harvesting and photosynthesis, and up-regulated DEGs were mostly involved in
steroid biosynthesis under N stress. The common down-regulated genes across the
cultivars included photosystem II 10 kDa polypeptide family proteins, plant protein
1589 of uncharacterized protein function, etc., whereas common up-regulated genes
included glutamate carboxypeptidase 2, placenta-specific8 (PLAC8) family protein,
and a sulfate transporter. On the other hand, high NUE cultivar Mace responded to
nitrogen stress by down-regulation of a stress-related gene annotated as beta-1,3-
endoglucanase and pathogenesis-related protein (PR-4, PR-1) and up-regulation of
MYB/SANT domain-containing RADIALIS (RAD)-like transcription factors. The medium
NUE cultivar Spitfire and low NUE cultivar Volcani demonstrated strong down-regulation
of Photosystem II 10 kDa polypeptide family protein and predominant up-regulation
of 11S globulin seed storage protein 2 and protein transport protein Sec61 subunit
gamma. In grain tissue, most of the DEGs were related to nitrogen metabolism
and proteolysis. The DEGs with high abundance in high NUE cultivar can be good
candidates to develop nitrogen stress-tolerant variety with improved NUE.
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INTRODUCTION

Over the past several decades, application of nitrogen fertilizer
has been a practiced way to gain optimal crop yield. N fertilizer
usage is predicted to reach 105 Tg N by 2030 and 135 Tg N by
2050 (Good et al., 2004). However, overuse of fertilizers can cause
significant environmental issues such as erosion, soil quality
depletion, and contamination of water supplies at local, regional,
and global scales (Ahmad et al., 2008; Guo et al., 2010). Thus,
it is important to develop new varieties with high nitrogen use
efficiency (NUE). A better understanding of gene expression and
regulation under nitrogen stressed conditions will help achieve
this goal. Response to nitrogen scarcity in plants is controlled
by changes in gene expression involved in different molecular
mechanisms that are mainly related to plant developmental
processes and yield (Zhang et al., 2006; Kant et al., 2011).

In particular, wheat grain production largely depends on the
provision of N fertilizer and cultivars with high N uptake and
utilization efficiency (Nyikako et al., 2014; Garnett et al., 2015;
Cormier et al., 2016; Hitz et al., 2017). The biological pathways
related to NUE are known to be strongly influenced by genetic
variation as well as environmental factors such as N availability
(Moll et al., 1982; Xu et al., 2012). Studies showed that N
limitation can negatively affect wheat growth, morphology, and
agronomic traits (Chandna and Ahmad, 2015; Curci et al., 2017;
Wen et al., 2018; Wang J. et al., 2019).

Identifying key genes to improve stress tolerance in low N
conditions is a feasible way to raise NUE. It is important to
select cultivars that have contrasting NUEs for a comparative
understanding of gene expression and regulation in response
to N stressed conditions (Hirel et al., 2007; Kant et al., 2010).
There are a number of approaches that have been undertaken
by researchers to unravel how plants adapt to stressed conditions
(Shrawat et al., 2008). In recent years, next-generation sequencing
techniques have provided opportunities to study the gene
expression and their regulations at the transcriptome level,
and they have significantly enhanced the success rate of gene
discovery (Diao et al., 2019). A number of studies also reported
on transcriptome profiling by using Illumina’s RNA-sequencing
(Dai et al., 2015). Most of the studies demonstrated how a
single genotype performed using contrasting environmental and
growth conditions. In Arabidopsis, N response-related genes
were identified using microarray analysis of gene expression
changes in response to short-term and long-term treatments for
nitrate with different concentrations (Wang et al., 2001; Price
et al., 2004). Likewise, transcriptome study on different tissues
with short-term N stress in rice also revealed a significant number
of N responsive genes (Lian et al., 2006). Transcriptome study
on long-term N stress was also reported in rice (Ym et al.,
2009). However, a comprehensive transcriptome investigation
by combining contrasting tissue, developmental stage, genotype,
and N treatment is still lacking.

Nitrogen stress has a significant impact on the overall plant
physiological process (Zhao et al., 2005) related to plant height,
dry matter, grain yield (GY), and grain protein content (GPC)
(Baligar et al., 2007; Wang W. et al., 2003). Nitrogen strongly
influences photosynthesis through a large deposition of leaf N

to ribulose bisphosphate carboxylase/oxygenase (Rubisco) and its
involvement in stomatal opening (Evans, 1989). Approximately
75% of leaf N is allocated to chloroplasts, with about 27% of this
utilized in Rubisco to ensure high photosynthetic activity (Evans,
1989; Makino, 2003). Nitrogen also influences photosynthesis via
its impact on CO2 assimilation and sugar partitioning (Drew
et al., 1989; Foyer et al., 2011; Ishikawa-Sakurai et al., 2014).
The decreased photosynthesis ultimately resulted in decreased
biomass production and yield (Poorter and Evans, 1998; Long
et al., 2006; Jin et al., 2015).

The regulation of plant photosynthetic activity is reported
to be associated with brassinosteroids (BRs), a class of steroid
hormones (Sakamoto et al., 2006; Komatsu et al., 2010). BRs are
known to regulate stress responses and play important roles in
regulating plant growth and development (Wang et al., 2012;
Zhao and Li, 2012; Hayes, 2019). Several studies in Arabidopsis
and rice showed involvement of BRs in controlling flowering,
leaf senescence, chloroplast development, plant height, tiller
numbers, and biomass, which are important agronomic traits
affecting GY (Chono et al., 2003; Mussig et al., 2003; Sakamoto
et al., 2006; Wu et al., 2008; Jeong et al., 2010). In wheat, BRs
were also reported to be involved in promoting root growth and
water stress tolerance (Hayes, 2019; Hou et al., 2019). However,
the correlation of N stress on steroid biosynthesis has not been
well studied. Thus, response to N stress is a rather complex
process, and a better understanding of genes involved in different
pathways is needed to develop stress-tolerant wheat varieties.

This study investigated three Australian bread wheat varieties,
Mace, Spitfire, and Volcani, which are known to have high,
medium, and low NUEs, respectively (Alhabbar et al., 2018b).
Since gene expression in plants is controlled in a temporal and
tissue-specific manner (Koltunow et al., 1990; Maizel and Weigel,
2004) and the N demand is subject to plant developmental
stages, the current study used different tissues at different growth
stages to unravel the broad picture of transcriptome profile with
the objectives of identifying novel genes that are differentially
expressed under long-term N stress compared to high N
treatment, and by characterizing the underlying physiological
and molecular mechanisms of tolerance to N stress.

MATERIALS AND METHODS

Plant Material, Growth Conditions, and
Sample Collection
Three Australian wheat cultivars, Mace, Spitfire, and Volcani,
were used in this study. Plants were grown in a glasshouse
with a complete randomized block design (RCBD) including
three replicates and using pots (190 mm height × 200 mm
top diameter × 180 mm bottom diameter) without holes to
avoid leaching. Plants were grown under controlled temperature
and sunlight conditions [20/11◦C (day/night)] for an 8 h light
and 16 h dark photoperiod. The pots were watered manually
based on soil water capacity. All plants were supplied with a
basal nitrogen dose of 25 kg N ha−1 after 1 week of sowing.
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Nitrogen-free Hoagland solution1 was applied to all plants once
every 2 weeks to meet the nutrient demand of plants except N.
Two N rates—low (LN)/0 kg N ha−1 and high (HN)/100 kg N
ha−1—were applied at mid-tillering (Zadoks scale 22–25) and
booting (Z43–Z45) stages for plants considered as low and high N
treated, respectively. The timing for N applications was adjusted
according to Zadoks (Z) decimal growth stage for wheat. Flexi-
N (containing 50% urea, 25% nitrate, and 25% ammonium) was
used as a source of N because of its high N content (42.2% N).
Flexi-N was used since it contains nitrate that is directly available
to plants while the urea and the ammonium become available
more slowly, enabling a controlled release of N over an extended
period (CSBP, 2012). Times for N application, recording of
flowering time, measurement of chlorophyll content, and tissue
collection were adjusted according to each cultivar’s growth stage.
For RNA extraction, the whole flag and second leaf samples
were collected at the start of the flowering [0 days post anthesis
(DPA)], 10, 20, and 30 DPA, while the developing grains were
collected at 10, 20, and 30 DPA from the middle section of
the main head, then snap-frozen in liquid nitrogen, and then
stored at −80◦C for later RNA extraction. Anthesis dates were
estimated by the appearance of anthers on approximately 50%
of all heads. Plant height was measured from soil surface to
the top of the plant, and peduncle length was measured from
the peduncle bottom to the joint with the stem. Chlorophyll
content was measured using a handheld chlorophyll meter (IC-
CCM-200—Chlorophyll Concentration Meter CCM-200 plus).
One value per plant was taken from the flag leaf and second
leaf on the main stem at four different growth stages: flowering
(0 DPA), 10, 20, and 30 DPA. Each value was the average of
three measurements recorded from the middle of the leaves. The
main stem of each plant was individually labeled to ensure the
same leaves were always measured. All plants in a pot (main stem
plus tillers) were hand-harvested to measure yield components
and the head number per plant counted. The heads were cut off
and the seed number per head was counted. Grain samples were
oven-dried in a forced-air circulating dryer at 60◦C for 72 h. GPC
was measured by near-infrared reflectance (NIR) spectroscopy
using a FOSS NIR Systems model 5000 spinning cup. NIR data
collection used DPIRD wheat calibrations developed over many
years with the WinISI software (FOSS NIR Systems Inc., Laurel,
MD, United States).

RNA Isolation, Library Construction, and
Sequencing
Leaf and grain samples from three biological replicates were
ground in liquid nitrogen, and the total RNA was extracted using
a pre-chilled Trizol reagent (Invitrogen, Carlsbad, CA) following
the manufacturer’s directions, with some modifications. Proteins
were removed with a protein extraction buffer (1 M Tris–HCl,
5 M NaCl, 10% SDS, 0.125 M EDTA, and 1 M DTT). After
the protein removal, the acid phenol/chloroform/isopropanol
(49:49:2), Trizol, and chloroform were added sequentially for
the extraction of total RNA. Isopropanol was used for the

1https://www.bioworld.com/productinfo/3_43_288_690/126289/Hoagland-
Medium-Nitrogen-Free.html

precipitation of total RNA, which was subsequently treated
with the Qiagen DNase kit to remove potential genomic DNA
contamination. Concentration and purity were checked by
Nanodrop, with 260/280 absorbance ratios of approximately 2.0,
and the degradation and potential contamination was tested
by agarose gel electrophoresis. RNA integrity was confirmed
with an Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA). The mRNA was enriched using oligo (dT) beads
and then fragmented randomly in a fragmentation buffer,
followed by cDNA synthesis using random hexamers and
reverse transcriptase. After first-strand synthesis, a custom
second-strand synthesis buffer (Illumina) was added together
with dNTPs, RNase H, and Escherichia coli polymerase I to
generate the second strand by nick-translation. The final cDNA
library was ready after a round of purification, terminal repair,
A-tailing, ligation of sequencing adapters, size selection, and PCR
enrichment. Library concentration was first estimated using a
Qubit 2.0 fluorometer (Life Technologies) and then diluted to
1 ng µl−1 before checking the insert size on an Agilent 2100
Bioanalyzer. The concentration was then quantified at greater
accuracy by quantitative PCR (Q-PCR) (library activity >2 nM).
Each library with an individual barcode was sequenced by
Illumina HiSeqTM PE125/PE150 (Illumina Inc., United States).

Transcriptome Analysis
A total of 90 different samples, including 30 each from three
cultivars, Mace, Spitfire, and Volcani, were used for RNA-
seq analysis. The samples were subjected to low and high
nitrogen treatments to study a broad range of cell responses
under nitrogen stress. For both treatment conditions, the
replicates showed a high correlation coefficient (r > 0.8) between
samples. For the RNA-seq downstream analysis, three samples
(VAScLNR3, VEScHNR1, and SEScLNR2) were excluded due
to sample quality. A total of 2070.85 million raw reads were
filtered. A total of 1963.99 million clean reads were aligned
against IWGSC RefSeq v1.0 gene models that produce 1750.09
million total mapped reads (TMRs), of which 128.89 million
were mapped to multiple sites (MMR) and 1621.21 million
were uniquely mapped. Among the TMRs, 810.66 million were
mapped with a positive strand and 810.55 million were mapped
with a negative strand (Supplementary Table 1). The average
leaf Q20, Q30, and GC (Base G + Base C) contents were 96.93,
92.31, and 57.21%, respectively. Similarly, the average grain Q20,
Q30, and GC (Base G + Base C) contents were 96.78, 92.16,
and 57.79%, respectively. For both tissues, 95% of the total reads
were filtered as cleaned reads, which confirms the fine quality
of the sequencing results. Approximately, an average of 89% of
clean reads were mapped for N-treated leaf samples, whereas
86% were mapped for grain tissue (Supplementary Table 2). For
each sample, the percent of reads mapped to exon regions was
above 90%, intron reads less than 5%, and intergenic reads less
than 3%. The distribution of mapped reads of each sample in
chromosome 3B was the highest, while the lowest reads were
mapped in chromosome 6A. The gene expression level was
measured by calculating the reads mapped to exons. Read count
was proportional to the actual expression level as well as to
the gene length and the sequencing depth. In order to make
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comparable gene expression levels estimated from different genes
and experiments, fragment per kilobase of transcript per million
mapped reads (FPKM) was used for normalization. Considering
the influence of various gene lengths and sequencing intensity,
FPKM is commonly used to make comparison of gene expression
levels among different samples.

Analysis of Differentially Expressed
Genes
For the FPKM, a value of 1.0 was set as the threshold for
determining whether a gene was expressed or not. HiSeq v0.6.1
(a Python package for high-throughput sequencing data analysis)
was used to analyze gene expression levels in this experiment
using the union mode. The correlation between samples was
justified by the square of the Pearson correlation coefficient.
The DESeq (version 1.10.1, R Bioconductor package) was used
to conduct the differential expression analysis. The normalized
data were fitted to a negative binomial generalized linear model.
The threshold of the p-value after normalization (padj, q-value)
was set as ≤0.05 for filtering accurate differentially expressed
genes (DEGs). The clustering of DEGs was analyzed based
on the FPKM value with the use of ggplot2 (version 2.1.0)
and pheatmap (version 1.0.8) (Anders and Huber, 2010, 2012;
Robinson et al., 2010; Trapnell et al., 2012). The DEGs were
identified using the functional annotations of the IWGSC RefSeq
v1.0 gene annotation.

Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes Pathway
Enrichment Analysis of DEGs
Gene ontology (GO) analysis was performed using ShinyGO
v0.612. GO with a false discovery rate (FDR) corrected at
p ≤ 0.05 was regarded as significant enrichment (Young et al.,
2010). KOBAS (version 2.03, a web server for annotation and
identification of enriched pathways and diseases, was applied for
Kyoto Encyclopedia of Genes and Genomes (KEGG4) pathway
enrichment analysis. Pathways with an FDR corrected at p≤ 0.05
were considered as significant enrichment (Mao et al., 2005;
Kanehisa et al., 2007).

Protein–Protein Interaction Analysis
To predict the interaction of DEGs at the protein level under
N stress and further confirmation of association of DEGs with
biological pathways at the protein level, deduced amino acid
sequences of DEGs were used to make a protein–protein network
using the STRING (version 11.0) tool5, a database for known
and predicted protein interactions and functional associations
predicted in common pathways. Due to the lack of detailed
annotation of the wheat protein data available in STRING, we
used two well-annotated species, rice, and Arabidopsis, as the
reference to get protein–protein interaction information of the

2http://bioinformatics.sdstate.edu/go/
3http://kobas.cbi.pku.edu.cn/
4http://www.genome.jp/kegg/
5https://string-db.org/

homologous wheat proteins. The global network graph of these
interactions was constructed using the experimentally evident
interacted proteins, and disconnected nodes (proteins) were
removed to show the advanced view of highly connected proteins.
MCL clustering using the inflation parameter 1.70 was used to
show the association of clusters in KEGG pathways.

Hierarchical Cluster Analysis
Hierarchical cluster analysis was performed using the Morpheus
package6 Complete linkage analysis was performed using the
Spearman rank correlation values.

Statistical Analysis
All data generated from the glasshouse experiments were
analyzed by SPSS (version 24). Univariate analysis of variance
(UNIANOVA) was used to determine the significance of different
factors on each agronomic trait and protein parameter. The
significant statistical difference was judged at p ≤ 0.05.

RESULTS

Agronomic Performance of Wheat
Cultivars Under Low and High Nitrogen
Conditions
Under N stress (0 Kg N/ha), most of the agronomic traits were
affected negatively in all three cultivars. In general, tiller number,
GY, and chlorophyll content were mostly affected by N stress,
whereas flowering days and GPC were less affected. A strong
variation in grain weight per plant has been observed, which
is considered as a yield component for small-scale glasshouse
experiments. Grain weight per plant was dropped by 78% in
Mace, 81% in Spitfire, and 80% in Volcani (Figure 1A) due to N
stress. Similarly, under N stress, the tiller number (Figure 1B) was
decreased by 72.4, 84.2, and 81.2%, and the chlorophyll content
of both flag leaf and leaf 2 (Figures 1C,D) were decreased by
approximately 85, 80, and 68% for Mace, Spitfire, and Volcani,
respectively. In addition, a significant reduction in plant height
(Figure 1E), main head length (Figure 1F), and spikelet number
per head (Figure 1G) has also been observed under N stress.
Flowering days (Figure 1H) were decreased by 3.2, 4.9, and 7.9%,
and the GPC (Figure 1I) decreased by 4.1, 9.3, and 29.5% in Mace,
Spitfire, and Volcani, respectively. A significant negative impact
of low N on leaf area and peduncle length has also been noticed
(Figures 1J–L). Overall, the influence of N stress on growth and
agronomic traits was variable across the cultivars, where Spitfire
and Volcani were more affected compared to Mace.

Overview of RNA-Seq Transcriptome
Profile in Response to Nitrogen Stress
A total of 12,108 DEGs in leaf tissue and 276 DEGs in grain tissue
were identified under the N stressed condition. Mace, Spitfire,
and Volcani had 699, 10,535, and 1671 DEGs in second leaf and
another 25, 252, and 16 DEGs in grain tissue, respectively. In

6https://software.broadinstitute.org/morpheus/
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FIGURE 1 | Growth and agronomic traits of Triticum aestivum cultivars (Mace, Spitfire and Volcani) under low (0N) and high (100 N) treatments. (A) grain
weight/plant (B) tiller numbers/plant (C) flag leaf chlorophyll content (D) leaf 2 chlorophyll content (E) plant height (F) main head length (G) spikelet number/head (H)
flowering days (I) grain protein percentage (J) flag leaf area (K) leaf 2 area (L) peduncle length. The values are presented as means ± standard deviation (SD) of
three independent biological repeats. Error bars were calculated from three biological replicates and one-way ANOVA was used to test for significance of nitrogen
treatment effects on different parameters at P ≤ 0.05 level. ∗, ∗∗, ∗∗∗ Significant at the 0.05, 0.01 and 0.001 probability level, respectively.

the second leaf tissue, under N stress, the total up- and down-
regulated DEGs at two different time points were variable across
the cultivars. In Mace, at 0 DPA, the down-regulated and up-
regulated DEGs were 434 and 102, respectively. At 10 DPA,
the up-regulated and down-regulated DEGs were 109 and 74,
respectively. Similarly, in Volcani, the down-regulated DEGs at
0 and 10 DPA were counted as 753 and 430, respectively, whereas
the up-regulated DEGs were 354 at 0 DPA and 261 at 10 DPA.
Cultivar Spitfire showed 536 up-regulated and 39 down-regulated
DEGs at 0 DPA, whereas it showed 6624 up-regulated and 3830
down-regulated DEGs at 10 DPA. On the other hand, in grain
tissue at 10 DPA, the down-regulated DEGs were 5, 237, and
8, while the up-regulated DEGs were 0, 15, and 8 identified in
Mace, Spitfire, and Volcani, respectively. Variation in up- and
down-regulated genes across the cultivars can be related to the
difference in their response to N stress (Figure 2).

Common DEGs Between Leaf and Grain
A total of 50 common DEGs were identified between the
second leaf and grain tissue under the N stressed condition,
of which 30 were down-regulated and 7 were up-regulated
in both tissues. Thirteen DEGs showed inconsistent up- and
down-regulation (Supplementary Table 3). Several stress-related
genes have been identified among those common DEGs with
>log2 fold change, including plasma membrane ATPase, Serine
protease HtrA-like, transcription factor AS2/LOB, etc. Several

transmembrane transport-related proteins including sulfate
transporter, glycosyltransferase, and WAT1-related protein were
also common in second leaf and grain tissues. On the
other hand, NUE-related glutamine synthetase and glutamine
dumper were significantly up-regulated in second leaf tissues
but down-regulated in the grain tissue of Volcani, indicating
their tissue-specific expression. Another gene related to amino
acid metabolism, isoaspartyl peptidase/L-asparaginase, was up-
regulated in the second leaf and grain tissue of Spitfire and
Mace, indicating non-specific tissue expression. In general,
the common down-regulating DEGs were largely involved
in carbohydrate metabolic process (chitinase, trehalose-6-
phosphate synthase) and oxidation–reduction process (aldehyde
dehydrogenase, peroxidase, methyl sterol monooxygenase 1-
2, gibberellin 20 oxidase 2, catalase). The up-regulating
common DEGs are involved in N compound metabolic process
(glutamine synthetase), sulfate transmembrane transport (sulfate
transporter), and amino acid metabolism (aminotransferase like
protein, isoaspartyl peptidase/L-asparaginase).

Common DEGs Between 0 and 10 DPA
Under N stress, some DEGs showed consistent up- or down-
regulation at both 0 and 10 DPA (Figure 3) despite the fact
that they were variable between the cultivars. For example,
in Mace, a total of 28 DEGs were commonly expressed at
both 0 and 10 DPA, and of them, 23 were down-regulated
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FIGURE 2 | Number of up- and down-regulated expressed at 0 and 10 DPA DEGs in wheat cultivars (A) Mace, (B) Spitfire, and (C) Volcani. Differentially expressed
genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

FIGURE 3 | Consistently expressed DEGs at two time points in the leaf tissue of wheat cultivars (A) Spitfire, (B) Mace, and (C) Volcani. Differentially expressed genes
(DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

and 5 were upregulated under N stress. Some of those
DEGs showed high fold change (> +2 or < −2) including
plant protein DUF1589 of uncharacterized protein function,
gibberellin receptor GID1A, catalase, a two-component response
regulator, and cytochrome P450 was down-regulated, whereas
RADIALIS-like TF, glycosyltransferase, and receptor-like protein
kinase were up-regulated. In contrast, in Spitfire, among the 310
commonly expressed DEGs at 0 and 10 DPA, 16 showed down-
regulation and 294 showed up-regulation under N stress. Among
the DEGs in Spitfire, the Dof zinc finger protein, two-component
response regulator, glycine-rich protein-A3, and calcium-
dependent protein kinase 15 were down-regulated (log2 fold
change < −4.0), and the cinnamoyl CoA reductase, receptor-
like kinase, protein kinase-like, translation initiation factor IF-2,
aspartate-tRNA ligase, and a beta-glucosidase were up-regulated
under N stress. In Volcani, a total of 127 DEGs were found to be
expressed both at 0 and 10 DPA under N stress. Of them, 86 were
down-regulated and 38 were up-regulated commonly at both

DPA, whereas three DEGs were down-regulated at 0 DPA but
up-regulated at 10 DPA. The top down-regulated DEGs included
a chlorophyll a-b binding protein, methyltransferase, endo-1,3
beta-glucanase, and plant protein DUF1589 of uncharacterized
protein function, whereas the top up-regulated DEGs included
cinnamoyl CoA reductase, MYB TF, glycosyltransferase, and
beta-glucosidase (Supplementary Table 4).

Common DEGs Among Cultivars
Venn diagram analysis was used to identify the number of
common DEGs among the cultivars (Hulsen et al., 2008). In the
second leaf tissue, down-regulated 4 DEGs at 0 and 10 DEGs
at 10 DPA whereas only 3 up-regulated DEGs at 10 DPA were
found in common. The common down-regulated DEGs were
identified as glycine-rich protein A3, calcium-dependent protein
kinase 15, etc. The common up-regulated DEGs were identified as
sulfate transporter and L-allo-threonine aldolase, which is related
to amino acid metabolism. However, in grain tissue, only two
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TABLE 1 | List of DEGs common among wheat cultivars: Mace, Spitfire, and Volcani.

Tissue Up-/down-regulation Stage Gene_id Annotation Log2 fold change

Volcani Spitfire Mace

Leaf Down 0 DPA TraesCS3A02G439500LC Glycine-rich protein A3 −5.816 −4.5188 −5.5826

TraesCS3D02G150400LC Glycine-rich protein A3 −5.4414 −3.2827 −4.9171

TraesCS4A02G245300 Protein DETOXIFICATION −6.9194 −2.5502 −4.1621

TraesCS3D02G150300LC Calcium-dependent protein kinase 15 −4.3632 −4.3883 −5.9832

Down 10 DPA TraesCS2D02G555300 ARM repeat superfamily protein −2.7152 −3.2171 −3.3102

TraesCS2D02G259200 Two-component response regulator −1.9826 −2.7094 −2.2783

TraesCS1B02G388700 Methyltransferase −6.0313 −7.4915 −4.9876

TraesCS6B02G051800 Glycerol-3-phosphate acyltransferase −2.6867 −2.1339 −2.0549

TraesCS7D02G516800 Chaperone protein dnaJ −1.8551 −3.0128 −2.0382

TraesCS3D02G144900 Protein DJ-1 −3.295 −5.0529 −3.237

TraesCS5A02G472500 Amino acid transporter, putative −4.416 −2.385 −2.4211

TraesCS2B02G277300 Two-component response regulator −2.7784 −3.5708 −2.8394

TraesCS3D02G316900LC Nucleoside triphosphatase I −4.4166 HN −4.1874

TraesCS7D02G388400 Tryptophan synthase beta chain −2.9456 −1.4694 −1.9753

Up 10 DPA TraesCS7D02G084100 Sulfate transporter 2.0942 3.4823 2.2596

TraesCS7B02G128800 Epoxide hydrolase 2 4.7394 1.3931 2.5759

TraesCS2D02G379000 L-allo-threonine aldolase 3.7648 2.4275 2.1093

Grain Down 10 DPA TraesCS2A02G194500 LOB domain-containing protein, putative −1.3364 −2.2599 −1.6826

TraesCS2D02G193400 LOB domain-containing protein −1.5747 −2.1909 −1.8922

Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

down-regulated DEGs identified across the three cultivars were
annotated as LOB-domain containing proteins (Table 1).

While considering the common DEGs between two cultivars,
in most cases, the highest number of DEGs was common
between Spitfire and Volcani among all combinations (Figure 4).
The major common down-regulated DEGs between Spitfire
and Volcani in second leaf were identified as methyltransferase,
chlorophyll a-b binding protein, methyltransferase, and
aquaporin, whereas the common up-regulated DEGs were
identified as aminotransferase, early light-induced protein, F-box
domain-containing protein, and glycosyltransferase. In grain
tissues, among the four common down-regulated DEGs between
Spitfire and Volcani, cysteine proteinase inhibitor and Ureide
permease-like protein are related to N metabolism. The top
down-regulated DEGs common between Mace and Volcani
were identified as photosystem II 10 kDa polypeptide family
proteins, chlorophyll a-b binding protein, and plant protein
DUF1589 of uncharacterized protein function, whereas plasma
membrane ATPase and glycosyltransferase were found as the
common top up-regulated DEGs. Similarly, the common top
up-regulated DEGs between Mace and Spitfire were identified as
a vacuolar-processing enzyme, a boron transporter, a nuclease S1,
and cytochrome P450 family protein, whereas down-regulated
DEGs were identified as haloacid dehalogenase-like hydrolase
(HAD) superfamily protein and thaumatin-like protein.

Gene Ontology Reflects the Function of
DEGs in Response to Nitrogen Stress
The top 10 biological process GO terms characteristic to the
DEGs are presented in Figure 5. The frequency of the GO term

is shown as percentage of the genes compared to the total gene
number related to the GO term.

In the case of the second leaf tissue, transmembrane transport
GO term appeared as the top group within up-regulated DEGs
in all three cultivars. Notably, another three top GO terms were
common in Spitfire and Volcani, which were ion transport,
lipid metabolic process, and metal ion transport, indicating
that these two cultivars have some common physiological
response mechanisms to N stress. In contrast, Mace did not
have any other top 10 GO common with either cultivar.
DNA metabolic process and organelle organization are the
next top GO terms for cultivar Mace. On the other hand,
genes showing decreased expression under N stress in Mace
second leaf tissue were mostly involved in defense response
and carbohydrate metabolic process. In Spitfire, decreasing
gene expression was largely related to photosynthesis and
light harvesting, organonitrogen compound biosynthesis process,
and small molecule biosynthetic process. Similarly, in Volcani,
genes with decreased expression patterns were also related to
photosynthesis, carbohydrate metabolic process, and response to
external stimulus.

In the grain tissue, the transmembrane transport process
GO term was the top enriched group among the up-regulated
DEGs in Mace and Spitfire. Mace also showed enrichment in
carbohydrate metabolic process and ion transport. However,
proteolysis and negative regulation of catalytic activity were
common in Spitfire and Volcani among the top 10 enriched GO
terms. Nitrogen compound transport appeared as the common
GO term in all three cultivars among the down-regulated
DEGs. Mace did not show enrichment for negative regulation of
endopeptidase activity and proteolysis like Spitfire and Volcani.
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FIGURE 4 | Venn diagrams of DEGs shared among Mace, Spitfire, and Volcani in leaf and grain tissues at two development stages. (A) The number of
down-regulated genes in leaf. (B) The number of down-regulated genes in grain. (C) The number of up-regulated genes in leaf. (D) The number of up-regulated
genes in grain. Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

However, in Mace and Spitfire, glycolysis process was the top
enriched down-regulated GO term.

KEGG Analysis Spanned Function of
DEGs in Response to Nitrogen Stress
Using the well-annotated rice genome as a reference, KEGG
pathway enrichment analysis identified significantly enriched
metabolic pathways and signal transduction pathways associated
with DEGs. The top 20 most significantly enriched pathways
were selected to produce the KEGG scatter plot (Supplementary
Figure 1). Results for the KEGG pathway terms that were
significant at adjusted p-value q-≤0.5 are shown in Tables 2, 3
for second leaf and grain, respectively. Under N stress, a total
of 41 KEGG pathway terms were significantly associated with
12,108 DEGs in the second leaf, and 14 KEGG pathway terms
were associated with 276 DEGs in the grain tissue. Among
the 41 significant KEGG terms for the second leaf tissue, 3,
15, and 6 KEGG terms were specific to Mace, Spitfire, and
Volcani, respectively, whereas one KEGG term was common
between Mace and Spitfire, six KEGG terms between Mace and
Volcani, and five KEGG terms between Spitfire and Volcani
(Table 2). There were five KEGG terms common in all three
cultivars under N stress, namely, phenylpropanoid biosynthesis,

biosynthesis of secondary metabolites, flavonoid biosynthesis,
metabolic pathways, and starch and sucrose metabolism. Among
the 14 significant KEGG terms associated with DEGs in grain,
eight, four, and one KEGG terms were specific to Mace, Spitfire,
and Volcani, respectively (Table 3). The DEGs in the grain of
all three cultivars were commonly associated with the KEGG
pathway term glycolysis/gluconeogenesis. Among the significant
KEGG terms for DEGs in the second leaf, zeatin biosynthesis,
arginine and proline metabolism, and sulfur metabolism were
specific to Mace, with terms like plant–pathogen interaction,
photosynthesis, pentose phosphate pathway, porphyrin, and
chlorophyll metabolism specific to Spitfire and beta-alanine
metabolism, tryptophan metabolism, ubiquinone, and other
terpenoid-quinone biosynthesis pathways found only in
DEGs of Volcani. In the grain tissue, the KEGG pathways
specific to Mace were glycerolipid metabolism, sphingolipid
metabolism, porphyrin and chlorophyll metabolism, and
galactose metabolism, whereas the pathways specific to Spitfire
were alanine, aspartate and glutamate metabolism, glycine,
serine, and threonine metabolism, and ribosome biogenesis in
eukaryotes. The pathways specific to Volcani were cysteine and
methionine metabolism. In addition, some KEGG pathways
were common between two cultivars only, e.g., Mace and Spitfire
had a MAPK signaling pathway common in the second leaf
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FIGURE 5 | Top biological process GO terms in leaf and grain tissue of wheat cultivars (A) Mace, (B) Spitfire, and (C) Volcani. The frequency of the GO term is
shown as percentage of the genes related to the GO term. GO, gene ontology.

and glycolysis/gluconeogenesis common in the grain tissue. The
KEGG terms common in Mace and Volcani included glutathione
metabolism, galactose metabolism, and ABC transporters,
whereas biosynthesis of amino acids, photosynthesis–antenna
proteins, and circadian rhythm–plant pathways were common
between Spitfire and Volcani.

Protein–Protein Interaction Network
Analysis of DEGs
MCL clustering using the inflation parameter 1.70 was used to
show the association of clusters in KEGG pathways (Figures 6, 7).
Networks showed that a large number of proteins were involved
in multiple interactions and grouped into seven major clusters.

Among the seven clusters, two large clusters were enriched
in photosynthesis and steroid biosynthesis. All the interacting
DEGs identified as photosynthesis-related, and photosynthesis
antenna proteins were down-regulated while some DEGs
related to steroid biosynthesis were up- or down-regulated.
Among the other clusters, the majority of down-regulated
DEGs were involved in carbohydrate metabolism, amino sugar,
and nucleotide metabolism, whereas up-regulated DEGs were
mostly related to amino acid metabolism and signaling. In
the biosynthesis of secondary metabolites, both the up- and
down-regulated DEGs were involved. Overall, the number of
down-regulated DEGs was higher in the network and was mainly
involved in photosynthesis and photosynthesis-antenna proteins.
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TABLE 2 | Significantly (adjusted p-value ≤ 0.5) enriched KEGG pathways in
Mace, Spitfire, and Volcani under nitrogen stress in second leaf tissue.

Cultivar KEGG pathway KEGG id

Mace Zeatin biosynthesis osa00908

Arginine and proline metabolism osa00330

Sulfur metabolism osa00920

Spitfire Plant–pathogen interaction osa04626

Carbon metabolism osa01200

Glyoxylate and dicarboxylate metabolism osa00630

Photosynthesis osa00195

Glycine, serine, and threonine metabolism osa00260

Carbon fixation in photosynthetic organisms osa00710

Glycolysis/gluconeogenesis osa00010

Fructose and mannose metabolism osa00051

Alanine, aspartate, and glutamate
metabolism

osa00250

Taurine and hypotaurine metabolism osa00430

Pentose phosphate pathway osa00030

One carbon pool by folate osa00670

Porphyrin and chlorophyll metabolism osa00860

Histidine metabolism osa00340

Ascorbate and aldarate metabolism osa00053

Volcani Beta-alanine metabolism osa00410

Terpenoid backbone biosynthesis osa00900

Ubiquinone and other terpenoid-quinone
biosynthesis

osa00130

Tryptophan metabolism osa00380

Butanoate metabolism osa00400

Phenylalanine, tyrosine, and tryptophan
biosynthesis

osa00651

Mace–Spitfire MAPK signaling pathway—plant osa4016

Mace–Volcani Stilbenoid, diarylheptanoid, and gingerol
biosynthesis

osa00945

Plant hormone signal transduction osa04075

Phenylalanine metabolism osa00360

Galactose metabolism osa00052

ABC transporters osa02010

Glutathione metabolism osa00480

Spitfire–Volcani Biosynthesis of amino acids osa01230

Photosynthesis-antenna proteins osa00196

Circadian rhythm—plant osa04712

Cyanoamino acid metabolism osa00460

Cysteine and methionine metabolism osa00270

Mace–Spitfire–Volcani Phenylpropanoid biosynthesis osa00940

Biosynthesis of secondary metabolites osa01110

Flavonoid biosynthesis osa00941

Metabolic pathways osa01100

Starch and sucrose metabolism osa00500

Identification of Nitrogen
Metabolism-Related Genes in Response
to Nitrogen Stress
N metabolism is a vital biological process in plants that
determines crop productivity and yield (Stitt et al., 2002; Cai
et al., 2009). The DEGs involved in N uptake, transport, and

TABLE 3 | Significantly (adjusted p-value ≤ 0.5) enriched KEGG pathway in Mace,
Spitfire, and Volcani under nitrogen stress in grain tissue.

Cultivar KEGG pathway KEGG id

Mace Galactose metabolism osa00052

Oxidative phosphorylation osa00190

Glycerolipid metabolism osa00561

Sphingolipid metabolism osa00600

Glycosphingolipid biosynthesis—globo series osa00603

Porphyrin and chlorophyll metabolism osa00860

Biosynthesis of secondary metabolites osa01110

RNA degradation osa03018

Spitfire Alanine, aspartate, and glutamate metabolism osa00250

Alanine, aspartate, and glutamate metabolism osa00250

Glycine, serine, and threonine metabolism osa00260

Ribosome biogenesis in eukaryotes osa03008

Volcani Cysteine and methionine metabolism osa00270

Mace–Spitfire Glycolysis/gluconeogenesis osa00010

assimilation were listed separately and are presented in Table 4.
Most of the N metabolism-related DEGs showed up-regulation
under N stress. Among the most significant DEGs (fold change
>2.0), 65% were up-regulated and 35% were down-regulated
(Table 5). Spitfire showed abundancy for N metabolism-related
DEGs compared to Mace and Volcani. The top up-regulated
N metabolism-related DEGs included amino acid permease,
glutamate dehydrogenase, low-affinity nitrate transporter protein
NRT1/PTR family 1.1, tyrosine aminotransferase, and high-
affinity nitrate transporter, whereas the top down-regulated
DEGs included amino acid transporter family protein, nitrate
transporter 1.1, nitrate transporter 1.2, nitrate reductase, and
tryptophan aminotransferase. Spitfire showed the most induction
ratio for protein NRT1/PTR FAMILY 1.1 (log2 fold change
6.4) and tyrosine aminotransferase (log2 fold change 5.74).
Mace showed up-regulation of cationic amino acid transporter
and down-regulation of amino acid transporter family proteins,
amino acid permease, and protein NRT1/PTR FAMILY 1.1.
Volcani showed up-regulation of amino acid permease, nitrate
transporter protein NRT1/PTR FAMILY 5.5, and ammonium
transporter and down-regulation of isoaspartyl peptidase/L-
asparaginase, nitrate transporter 1.1 and 1.2, and tryptophan
aminotransferase.

Identification of Common Nitrogen
Stress-Responsive Genes Across the
Cultivars
Identification of the common DEGs between two N treatments
included genes from 6 pair comparisons (2 developmental
stages × 3 cultivars) for leaf and 3 pair comparisons (1
developmental stage × 3 cultivars) for grain tissue. In
the second leaf, a total of 14 up-regulated and 42 down-
regulated DEGs were identified that were common in all three
cultivars (Tables 6, 7). Among the 14 up-regulated common
DEGs, aldo/keto reductase family protein, nuclease S1, alcohol
dehydrogenase, putative, placenta-specific8 (PLAC8) family
protein, and sulfate transporter showed relatively high (log2) fold
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FIGURE 6 | Protein–protein interaction network analysis of DEGs under N stress using Oryza sativa as reference. The different highlighted color indicates the
different clusters of DEGs involved in different KEGG pathways. Differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG).

FIGURE 7 | Protein–protein interaction network analysis of DEGs under N stress using Arabidopsis thaliana as reference. The different highlighted color indicates the
different clusters of DEGs involved in different KEGG pathways. Differentially expressed genes (DEGs), Kyoto Encyclopedia of Genes and Genomes (KEGG).

Frontiers in Genetics | www.frontiersin.org 11 September 2020 | Volume 11 | Article 583785

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-583785 September 28, 2020 Time: 19:39 # 12

Sultana et al. Transcriptomic Study Wheat NUE Genes

TABLE 4 | Differentially expressed genes (DEGs) involved in nitrogen uptake, transport, and assimilation.

Name NUE class DEG count (current study) NUE related effect Host References

AAT Amino acid transporter 57 Important for early seed development Arabidopsis Schmidt et al., 2007

AMT Ammonium transporter 5 Enhanced ammonium permeability
improves growth and yield

Rice Ranathunge et al., 2014

CAT Cationic amino acid transporter 12 Involved in intracellular amino acid
storage and mobilization

Arabidopsis Yang H. et al., 2015

CLC Chloride channel protein 14 Enhanced N assimilation and
tolerance to stress

Oilseed rape Liao et al., 2018

LHT Lysine/histidine transporter 1 Disruption of LHT lead to growth
inhibition and low yield

Rice Wang X. et al., 2019

NRT Nitrate transporter 36 Suppression of
NO−3 -starvation-induced leaf
senescence

Arabidopsis Meng et al., 2016

OPT Oligopeptide transporter 5 Essential for embryo development Arabidopsis Stacey et al., 2002

AGT Alanine: glyoxylate aminotransferase 2 Catalyze transamination reaction in
peroxisome

Arabidopsis Liepman and Olsen, 2001

ASN Asparagine synthetase 1 Regulation of plant development and
tiller outgrowth

Rice Lu et al., 2018

AspAT Aspartate aminotransferase 5 Overexpression related to increase
amino acid content in seed

Rice Zhou et al., 2009

GDH Glutamate dehydrogenase 3 Played important role in nitrogen
metabolism and plant growth, and
grain yield

Rice Abiko et al., 2010

GOGAT Glutamate synthase 3 Increased ammonium assimilation in
root

Arabidopsis Konishi et al., 2014

GS Glutamine synthetase 7 Knockdown negatively affect plant
growth, spikelet no., grain weight

Rice Tabuchi et al., 2005

NR Nitrate reductase 2 Increase lateral root formation under
partial nitrate nutrition

Rice Sun et al., 2015

NiR Nitrite reductase 3 Increased nitrite assimilation Arabidopsis Takahashi et al., 2001

TS Threonine synthase 3 Inhibition related to high methionine
biosynthesis

Potato Zeh et al., 2001

TrP Tryptophan aminotransferase 3 Improved grain yield Wheat Shao et al., 2017

TAT Tyrosine aminotransferase 1 Differentially expressed between low
and high nitrogen treatments

Wheat Current study

GDU Glutamine dumper 2 Involved in export of amino acids Arabidopsis Pilot et al., 2004

change. Eight of the 42 down-regulated DEGs in the leaf tissue
showed high log2 fold change, including 3 photosystem II 10 kDa
polypeptide family protein, 2 methyltransferases, chlorophyll a-b
binding protein, cytoplasmic dynein 2 heavy chain 1, and plant
protein 1589 of uncharacterized protein function. However, the
only two down-regulated DEGs were commonly expressed in
the grain tissue involved LOB domain-containing proteins. These
common genes can be considered important N responsive genes.

To reveal the high N responsive genes, the top 10 up-
regulated and top 10 down-regulated DEGs were selected in
three cultivars. The log2 fold change value of each group is
shown in Supplementary Tables 5, 6 for the second leaf and
Supplementary Tables 7, 8 for grain. In the second leaf tissue, the
stress-associated glutathione S-transferase (GST), RADIALIS-
like TF, and plasma membrane ATPase were the most N
responsive up-regulated DEGs in Mace. In Spitfire, the top N
responsive up-regulated DEGs were isocitrate lyase, laccase, and
11S globulin seed storage protein 2 related to carbon metabolism,
lignin metabolism, and nutrient reservoir, respectively, whereas
in Volcani, 1-phosphatidylinositol-3-phosphate 5-kinase,

caleosin, protein transport protein Sec61 subunit gamma, and
elongation factor G have appeared on top. In the grain tissue, the
top up-regulated DEGs in Mace were isoaspartyl peptidase/L-
asparaginase, plasma membrane ATPase, and trypsin family
protein. The up-regulated DEGs in Spitfire showing high
responsiveness to N stress were mainly N metabolism-related
and aminotransferase like protein and aspartic proteinase
nepenthesin, whereas in Volcani, invertase/pectin methyl
esterase inhibitor family protein, cysteine proteinase inhibitor,
and glycosyltransferase that is mainly associated with proteolysis
and negative regulation of proton export across plasma
membrane were found more prominent. There was a prevalence
of defense-related down-regulated DEGs detected in the second
leaf tissue of Mace, whereas photosynthesis-related DEGs were
abundant in both Spitfire and Volcani. In the grain tissue of
Mace, Spitfire, and Volcani, the down-regulated DEGs were
predominantly related to proteolysis and N metabolism.

To select the genes that can be related to the tolerance to
N starvation in high NUE cultivars, further analysis was done
for the top genes using hierarchical clustering (see footnote 6).
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TABLE 5 | Up- and down-regulated nitrogen metabolism-related DEGs identified under nitrogen stress in three wheat cultivars (Mace, Spitfire, and Volcani).

Gene id Annotation Mace Spitfire Volcani

0 DPA 10 DPA 0 DPA 10 DPA 0 DPA 10 DPA

TraesCS3D02G402300 Amino acid permease 2.1348

TraesCS3D02G219200 Amino acid permease 2.1584 2.4518

TraesCS3A02G407000 Amino acid permease 2.2959

TraesCS7B02G093200 Amino acid permease 2.4131

TraesCS6B02G314200 Amino acid permease 2.4322 2.662

TraesCS7A02G188200 Amino acid permease 2.9323

TraesCS6A02G285300 Amino acid permease 3.162 3.1234

TraesCS3B02G441100 Amino acid permease 4.0062 3.2429

TraesCS7D02G189000 Amino acid permease 3.4394

TraesCS2D02G304300 Amino acid permease 4.126

TraesCS2A02G305900 Amino acid permease 4.4484

TraesCS3A02G406800 Amino acid permease 4.9359

TraesCS3A02G388000 Amino acid permease 2.535 3.2765

TraesCS3D02G381500 Amino acid permease 2.2199

TraesCS1D02G264700 Amino acid permease −2.9099

TraesCS3D02G479700 Amino acid permease −2.5016

TraesCS3D02G381400 Amino acid permease −2.0337

TraesCS3D02G229500 Amino acid transporter family protein 3.5398

TraesCSU02G023100 Amino acid transporter family protein −4.7472 −5.0356

TraesCS6B02G382000 Amino acid transporter family protein −1.6934 −2.0961

TraesCS6D02G331400 Amino acid transporter family protein −4.2987 1.4516

TraesCS2B02G065200 Amino acid transporter family protein −4.3865

TraesCS7A02G312800 Amino acid transporter, putative 2.4193 1.9703

TraesCS7D02G309200 Amino acid transporter, putative 2.4433

TraesCS3D02G363200 Amino acid transporter, putative 2.849

TraesCS7B02G212500 Amino acid transporter, putative 2.9047

TraesCS7D02G309400 Amino acid transporter, putative 2.9901

TraesCS7B02G213000 Amino acid transporter, putative 2.9956

TraesCS5A02G472600 Amino acid transporter, putative 3.2717 2.3759

TraesCS3A02G370300 Amino acid transporter, putative 3.3707

TraesCS2D02G595500 Amino acid transporter, putative Inf

TraesCS5A02G472500 Amino acid transporter, putative −2.7256 −2.4211 −2.385 −4.416

TraesCS5D02G485100 Amino acid transporter, putative −2.8538

TraesCS3B02G031700 Amino acid transporter, putative −2.6345

TraesCS5D02G180000 Amino acid transporter, putative −4.5107

TraesCS4A02G352900 Ammonium transporter 2.7949 2.1202

TraesCS5D02G519400 Ammonium transporter 3.0723 2.6766

TraesCS5B02G520200 Ammonium transporter 3.4314

TraesCS2A02G035700 Arginase 2.4832

TraesCS5D02G134500 Cationic amino acid transporter 2.7066 2.1466

TraesCS5A02G126900 Cationic amino acid transporter 2.3413 3.0414

TraesCS5B02G126000 Cationic amino acid transporter 2.7743 3.1056

TraesCS5D02G031800 Cationic amino acid transporter, putative 2.0679

TraesCS5A02G025400 Cationic amino acid transporter, putative 2.3862

TraesCS5A02G375600 Cationic amino acid transporter, putative 3.2084

TraesCS2A02G389900 Glutamate dehydrogenase 3.1899

TraesCS2D02G388800 Glutamate dehydrogenase 3.7682

TraesCS2B02G409300 Glutamate dehydrogenase 4.1625

TraesCS4A02G063800 Glutamine synthetase 2.0725

TraesCS4B02G240900 Glutamine synthetase 2.2295

TraesCS6D02G065600 Glutamine synthetase, putative, expressed −2.0463

(Continued)
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TABLE 5 | Continued

Gene id Annotation Mace Spitfire Volcani

0 DPA 10 DPA 0 DPA 10 DPA 0 DPA 10 DPA

TraesCS2A02G186400 GMP synthase (glutamine-hydrolyzing) 2.7531

TraesCS6D02G193200 High affinity nitrate transporter 3.0699

TraesCS3D02G067500 Isoaspartyl peptidase/L-asparaginase 2.3634 −1.7908

TraesCS3B02G088700LC Nitrate reductase (NADH) 1 −3.1147

TraesCS3B02G218400LC Nitrate transporter 1 −2.3208

TraesCS7B02G201900 Nitrate transporter 1.1 2.3595

TraesCS1D02G032700 Nitrate transporter 1.1 −2.9002 −2.8223

TraesCS1D02G214300 Nitrate transporter 1.1 −2.4916 −2.4339

TraesCS1A02G211000 Nitrate transporter 1.1 −3.7814 −2.7462

TraesCS1B02G225000 Nitrate transporter 1.1 −2.4696 −2.9974

TraesCS7D02G357300 Nitrate transporter 1.2 2.3233

TraesCS5D02G067100 Nitrate transporter 1.2 −3.2591 −3.852

TraesCS6B02G364600 Nitrite reductase −2.0746

TraesCS5D02G012500 NRT1/PTR family protein 2.2 2.2733

TraesCS4A02G283900 NRT1/PTR family protein 2.2 2.2821

TraesCS5B02G039100 NRT1/PTR family protein 2.2 −2.6357

TraesCS1D02G256700 Protein NRT1/PTR FAMILY 1.1 6.4103

TraesCS7A02G206400 Protein NRT1/PTR FAMILY 1.1 −2.8104 1.0641

TraesCS6D02G260500 Protein NRT1/PTR FAMILY 5.1 2.4435

TraesCS3D02G375800 Protein NRT1/PTR FAMILY 5.5 2.8288 3.6607

TraesCS3A02G382400 Protein NRT1/PTR FAMILY 5.5 −2.735

TraesCS3D02G375200 Protein NRT1/PTR FAMILY 5.5 −2.3129

TraesCS3D02G375500 Protein NRT1/PTR FAMILY 5.5 −2.2639

TraesCS5D02G498700 Protein NRT1/PTR FAMILY 5.5 −2.2198

TraesCS3A02G382900 Protein NRT1/PTR FAMILY 5.5 −2.3531

TraesCS3D02G093300 Tryptophan aminotransferase −3.4654 −2.4512

TraesCS3A02G093000 Tryptophan aminotransferase −3.1087 −3.515

TraesCS3D02G246700 Tryptophan aminotransferase 2.0486

TraesCS6D02G512700LC Tyrosine aminotransferase 5.7401

The green highlighted values stand for expressional change strength when log2 fold change >2.0 whereas brown when log2 fold change < −2.0. The intensity of color
increases with the increase in degree strength. Inf is an indication of differential up-regulation strength when the respective gene only expressed at low N condition.
Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

The top genes that showed high read count at low N in a high
NUE cultivar (Mace) can be related to its tolerance to N stress.
In the second leaf tissue, the top up-regulated DEGs with high
abundance were principally identified as RADIALIS-like TFs,
GST, and PLAC8 family protein (Figure 8). Similarly, in the
grain tissue, plasma membrane ATPase, isoaspartyl peptidase/L-
asparaginase, and alpha-galactosidase were identified as the top
up-regulated DEGs expressed abundantly in high NUE cultivar
Mace (Figure 9).

DISCUSSION

To improve NUE, it is important to understand the plant
response to N treatments, especially to N limitation at both
physiological and transcriptome levels. Targeting improved GPC
and GY, the present study aimed to explore the transcriptome
response of wheat to long-term N stress and identify potential
candidate genes that are differentially expressed with high relative

abundance across different genotypes in common. According to
previous study, the GY of Mace is higher than those of Spitfire
and Volcani, whereas the GPC of Mace is relatively lower than
those of Spitfire and Volcani. It was also reported that the GY
and GPC of Spitfire are affected more negatively under N-limiting
conditions (Alhabbar et al., 2018a). Thus, it is important to
unravel the underlying genes that can contribute to N stress
tolerance for further genetic manipulation study.

Inadequate supply of N negatively affects plant morphology,
limits growth, and decreases biomass in wheat (van der Werf
et al., 1993). Most plants exhibit prominent changes in their
growth and development under N-stressed conditions. Previous
studies reported that adaptations of plants with nutrient-stressed
conditions are mainly dependent on morphological changes
(Wang J. et al., 2019; Zhao et al., 2005). The results of this study
also confirmed that low N stress inhibited wheat growth, with
significant negative impact on different phenotypes (Figure 1).
These results were consistent with the N stress studies in
wheat (Curci et al., 2017), sorghum (Gelli et al., 2014), corn

Frontiers in Genetics | www.frontiersin.org 14 September 2020 | Volume 11 | Article 583785

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-583785 September 28, 2020 Time: 19:39 # 15

Sultana et al. Transcriptomic Study Wheat NUE Genes

TABLE 6 | Top common up-regulated DEGs identified among wheat cultivars Mace, Spitfire, and Volcani under nitrogen stress.

Tissue Gene ID Gene description Mace Spitfire Volcani

0 DPA 10 DPA 0 DPA 10 DPA 0 DPA 10 DPA

Leaf TraesCS2B02G356100 Aldo/keto reductase family protein 3.6628 6.9364 3.5198

TraesCS2D02G507800 Nuclease S1 3.4537 5.5328 5.7459 5.7088

TraesCS6A02G369800 Alcohol dehydrogenase, putative 2.7501 2.5822 2.9478

TraesCS6B02G406000 Alcohol dehydrogenase, putative 1.6613 2.579 2.2855

TraesCS6B02G406300 Alcohol dehydrogenase, putative 3.37 3.7911 4.8851

TraesCS6D02G353300 Alcohol dehydrogenase, putative 2.2798 1.7571 3.9739

TraesCS7B02G128800 Epoxide hydrolase 2 2.5759 1.3931 4.7394

TraesCS7D02G488800 Fatty acid hydroxylase superfamily 1.998 2.1748 3.9123

TraesCS3A02G276800 Glutamate carboxypeptidase 2 2.2004 2.5489 1.6163 4.0203

TraesCS3B02G311000 Glutamate carboxypeptidase 2 2.1156 3.2494 1.6598 4.6158

TraesCS2D02G379000 L-allo-threonine aldolase 2.1093 2.4275 3.7648

TraesCS3D02G496500 PLAC8 family protein 3.5915 2.1039 3.3148

TraesCS7D02G084100 Sulfate transporter 2.2596 3.4823 2.0942

TraesCSU02G455900LC Zinc finger CCCH domain-containing protein 8 1.9752 2.731 2.0028

The green highlighted values stand for expressional change in strength when log2 fold change >2.0. The intensity of color increases with an increase in the degree of
strength. No common up-regulated DEGs among the three cultivars were found in grain tissue. Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA),
10 days post anthesis (10 DPA).

(Jin et al., 2015), and rice (Sinha et al., 2018). In Mace, GY and
GPC were less affected by N stress compared to those in Spitfire
and Volcani in glasshouse conditions, although under high N
conditions, the GPC of Spitfire and Volcani was higher than
that of Mace. In agreement with the previous study (Alhabbar
et al., 2018b), this study further confirms that Mace is more
tolerant of N stress. It was reported that the GY in maize
was decreased by 38% with the change in N treatment from
high to low (Gallais and Hirel, 2004), which can be associated
with the interrupted synthesis of chlorophyll and photosynthesis
performance (McCullough et al., 1994). Many studies also
reported the influence of hormones and N metabolism- and
nutrient stress-related genes on agronomic traits (Singh et al.,
1973; Cai et al., 2009). Thus, it is predicted that under a N stress
condition, many genes involved in different biological pathways
are cross-talking in mitigating the adverse effect of stress instead
of a single factor. However, the GPC and the number of days to
flower were less affected by N stress, which explains that these
parameters can be rather controlled by genotype.

Under N stress, the genes that expressed differentially were
mostly leaf specific compared to grain. Also, the DEGs in the
leaf were related to versatile functions, whereas a significant
percentage of DEGs in the grain were related to transport and
N metabolism. The 50 common DEGs between the second
leaf and grain identified were mostly related to defense, amino
acid metabolism, N metabolism, carbohydrate metabolism, and
sulfate transport. It is known that in the plastid of the leaf,
sulfate is converted to sulfide using the reducing power of
photosynthesis and incorporated into amino acids that later
remobilize to developing seeds (Gallardo et al., 2014; Jobe et al.,
2019). Developing seeds requires sulfur amino acids to synthesize
storage protein to secure germination for the next generation
(Leustek et al., 2000; Saito, 2000). DEG analysis also showed a
higher number of DEGs in Spitfire (10,535 in the second leaf

and 252 in grain) in comparison to Volcani (1671 in the second
leaf and 16 in grain) and Mace (699 in the second leaf and 25
in grain), which indicates that under N stress, Spitfire responds
more actively, and that involves more signaling pathways than
Volcani and Mace. Spitfire responded to N stress mostly by
up-regulating, whereas Mace and Volcani responded by down-
regulating the DEGs.

Precedence of any biological processes at a particular
developmental stage is correlated with the changes in the
expression pattern of corresponding genes involved. GO
enrichment analysis is an effective method to understand the
key biological processes participating in adapting stress. For
instance, a N starvation study in durum wheat reported N
compound metabolism, carbon metabolism, and photosynthesis
as the top enriched biological processes (Curci et al., 2017).
The oxidation–reduction process and metabolic process were top
enriched biological processes in wheat seedlings in response to
N limitation (Wang J. et al., 2019). The top enriched biological
processes in rice have been reported to be associated with
metabolic processes, cellular processes, and transport under
N-starved conditions (Yang S. Y. et al., 2015). This study
showed that the up-regulated DEGs were mainly associated
with transmembrane transport, whereas the down-regulated
DEGs were mainly associated with metabolic process and stress
response, which supports that during grain filling, the plant
increases its overall remobilization through protein degradation
and transport (McCullough et al., 1994; Masclaux-Daubresse
et al., 2008). Significant up-regulation of transmembrane
transport, nitrogenous compound transport, and proteolysis was
common in all three cultivars (Figure 5). However, in Mace,
a greater percentage of up-regulated DEGs were related to
DNA conformation change and sulfate assimilation, whereas
in Spitfire and Volcani, DEGs were highly significant in the
lipid metabolic process. The up-regulation of DNA metabolic
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TABLE 7 | Top common down-regulated DEGs identified among wheat cultivars Mace, Spitfire, and Volcani under nitrogen stress.

Tissue Gene ID Gene description Mace Spitfire Volcani

0 DPA 10 DPA 0 DPA 10 DPA 0 DPA 10 DPA

Leaf TraesCS5A02G472500 Amino acid transporter, putative −2.7256 −2.4211 −2.385 −4.416

TraesCS4B02G363700 Apyrase −2.0965 −2.7293 −4.2829 −2.2361

TraesCS2D02G555300 ARM repeat superfamily protein −3.0653 −3.3102 −3.2171 −3.5676 −2.7152

TraesCS3B02G191100 Branched-chain amino acid
aminotransferase-like

−3.3945 −2.6334 −5.7474

TraesCS7A02G068600 Caffeoyl-CoA O-methyltransferase −3.0217 −4.6356 −2.7735

TraesCS3D02G150300LC calcium-dependent protein kinase 15 −5.9832 −4.3883 −4.219 −4.3632

TraesCS7D02G450300LC CASP-like protein −2.5774 −2.4122 −3.3004

TraesCS6D02G048300 Catalase −3.7606 −1.9888 −2.5888

TraesCS6B02G056800 Catalase −5.2287 −2.4917 −2.5875

TraesCS7D02G516800 Chaperone protein dnaJ −2.0382 −3.0128 −1.8551

TraesCS5D02G464800 Chlorophyll a-b binding protein, chloroplastic −7.1186 −6.6902 −7.2124 −5.7018

TraesCS5A02G350600 Chlorophyll a-b binding protein, chloroplastic −2.0693 −3.4473 −2.5948 −2.6866

TraesCS5B02G353200 Chlorophyll a-b binding protein, chloroplastic −1.7397 −4.9486 −4.2498

TraesCS5D02G357600 Chlorophyll a-b binding protein, chloroplastic −2.4064 −3.6449 −2.6951 −3.6498

TraesCS4A02G099000 Cysteine-rich receptor-kinase-like protein −2.7975 −2.3484 −5.2356

TraesCS7A02G271200 Cytochrome P450 family protein −1.6183 −2.1064 −1.9589

TraesCS7B02G455000 Cytokinin oxidase/dehydrogenase −2.4797 −3.452 −2.9646

TraesCS2B02G336700 Cytoplasmic dynein 2 heavy chain 1 −5.165 HN HN

TraesCS2A02G143200 Gibberellin receptor GID1A −5.7235 −4.3087 −2.9138 −5.0713

TraesCS2D02G146500 Gibberellin receptor GID1A −2.5369 −1.8515 −2.4214 −3.4673

TraesCS3B02G022900 Glutamate decarboxylase −2.0427 −2.9517 −2.1619

TraesCS6B02G051800 Glycerol-3-phosphate acyltransferase −2.0549 −2.1339 −3.2053 −2.6867

TraesCS3A02G439500LC Glycine-rich protein A3 −5.5826 −4.5188 −5.2864 −5.816 −3.8105

TraesCS3D02G150400LC Glycine-rich protein A3 −4.9171 −3.2827 −5.2365 −5.4414 −4.3841

TraesCS1D02G375700 Methyltransferase −3.0195 −6.6682 −7.8387 −6.7881

TraesCS1B02G388700 Methyltransferase −4.9876 −7.4915 −8.3664 −6.0313

TraesCS2D02G258800 N-succinylglutamate 5-semialdehyde
dehydrogenase

−2.3577 −2.3847 −2.5793

TraesCS3D02G316900LC Nucleoside triphosphatase I −4.1874 HN −4.6189 −4.4166

TraesCS6B02G412100 Photosystem II 10 kDa polypeptide family
protein

−8.0008 −8.3988 −11.599

TraesCS6D02G358900 Photosystem II 10 kDa polypeptide family
protein

−7.9982 −8.6648 −10.592

TraesCS6A02G374400 Photosystem II 10 kDa polypeptide family
protein

−8.3938 −7.2319 −8.4213

TraesCS4D02G203800 Plant protein 1589 of uncharacterized protein
function

−6.9524 HN HN HN

TraesCS1D02G286100 Plant protein 1589 of uncharacterized protein
function

−4.1266 −3.3077 −4.1694 −4.9212

TraesCS1A02G287200 Plant protein 1589 of uncharacterized protein
function

−2.8192 −2.7703 −3.9601 −4.9727

TraesCS4A02G245300 Protein DETOXIFICATION −4.1621 −2.5502 −6.7866 −6.9194

TraesCS3D02G144900 Protein DJ-1 −3.237 −5.0529 −3.295

TraesCS7B02G454000 RNAse THREE-like protein 3 −2.1126 −2.2225 −1.9664

TraesCS5A02G018000 Thaumatin-like protein −2.6156 −2.7996 −4.5464 −4.4694

TraesCS7D02G388400 Tryptophan synthase beta chain −2.7685 −1.9753 −1.4694 −3.3613 −2.9456

TraesCS2B02G277300 Two-component response regulator −2.8394 −3.5708 −2.7784

TraesCS2D02G259200 Two-component response regulator −2.4252 −2.2783 −2.7094 −1.9826

TraesCS1B02G196200 U-box domain-containing protein 4 −1.8516 −1.8029 −3.0021

Grain TraesCS2D02G193400 LOB domain-containing protein −1.8922 −2.1909 −1.5747

TraesCS2A02G194500 LOB domain-containing protein, putative −1.6826 −2.2599 −1.3364

The brown highlighted values stand for expressional change in strength when log2 fold change < −2.0. The intensity of color increases with an increase in the degree of
strength. Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).
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FIGURE 8 | Hierarchical clustering of top up-regulated DEGs in leaf tissue. The green bracketed genes are the highly expressed up-regulated genes in high NUE
wheat cultivar Mace. Differentially expressed genes (DEGs), 0 days post anthesis (0 DPA), 10 days post anthesis (10 DPA).

process in Mace can be related to epigenetic change, which
underlies its stability under N stress conditions. A long-
term primed state of the epigenetic mechanism involves DNA
conformation change such as change in chromatin structure,
variation in composition and position of the nucleosome, and
post-transcriptional modification to cope more efficiently with

the subsequent stress (Chinnusamy and Zhu, 2009). Also, the
increase in sulfate assimilation in Mace can be related to the
synthesis of proteins rich in S-containing amino acids such as
glutathione, which is a major component of the stress response
(Yamaguchi et al., 1999; Kopriva and Rennenberg, 2004). In
Spitfire and Volcani, the increase in lipid metabolism can be
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FIGURE 9 | Hierarchical clustering of top up-regulated DEGs in grain tissue. The green bracketed genes are the highly expressed down-regulated genes in high NUE
wheat cultivar Mace. Differentially expressed genes (DEGs).

related to senescence (Xiao and Chye, 2011). It was reported
that, during senescence, synthesis of phytyl-ester synthase is
induced, which is associated with the synthesis of triglycerol
and phytyl-esters of plastid fatty acids (Xiao and Chye, 2011;
Troncoso-Ponce et al., 2013). In contrast to the up-regulated
DEGs, a higher percentage of down-regulated DEGs in Mace
were significantly related to the cellular catabolic process, which
is known to be related to plant biotic and abiotic stress response
(Tavladoraki et al., 2012), whereas in Spitfire and Volcani, the
DEGs were more abundant in photosynthesis. The significantly
decreased expression of photosynthesis-related DEGs can be
related to decreased grain weight per plant in Spitfire and Volcani
(Zhao et al., 2005; Boussadia et al., 2010). However, in all three
cultivars, the down-regulated DEGs were more prominent in the
carbohydrate metabolic process, which indicated that, regardless
of genotypes, N stress can negatively affect plant carbohydrate

metabolism (Rufty et al., 1988) and plants adapted to N stress by
down-regulating the expression of many genes of this kind.

Kyoto Encyclopedia of Genes and Genomes analysis results
also revealed that in all three cultivars, DEGs were involved
in phenylpropanoid biosynthesis, biosynthesis of secondary
metabolites, flavonoid biosynthesis, and sucrose and starch
metabolism. The regulation of these genes in stress adaptation
has been reported in several studies (Dixon and Paiva,
1995; Huang et al., 2010; Akula and Ravishankar, 2011;
Petrussa et al., 2013). However, some cultivar-specific differences
highlighted the importance of genetic variability in stress
response (Tables 2, 3). For example, DEGs were more
abundantly related to MAPK signaling in Mace and Spitfire, plant
hormone signal transduction, glutathione metabolism in Mace
and Volcani, photosynthesis-antenna proteins, and circadian
rhythm in Spitfire and Volcani. Also, some DEGs that were
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significantly abundant in pathways related to zeatin biosynthesis
in Mace, terpenoid biosynthesis in Volcani, and plant–pathogen
interaction in Spitfire are important to identify the underlying
genes related to biological pathways to develop stress-tolerant
cultivars (Cheong et al., 2002; Vickers et al., 2009).

Protein–protein interaction analysis has been used to identify
DEGs that are interacting in different biological processes
such as photosynthesis, photosynthesis-antenna proteins, and
steroid biosynthesis. Photosynthesis is the vital biological process
by which plants absorb light energy and assimilate CO2 to
produce dry matter and comprises reactions that are regulated
by proteins in the chloroplast (Chandna and Ahmad, 2015).
Within this highly interactive and regulated system, change
in one component can cause changes to other components.
The strength of photosynthesis capacity is mainly dependent
on the N content of chloroplasts in the leaf (Evans, 1989;
Evans and Poorter, 2001; Ripullone et al., 2003). Numerous
studies have reported that N significantly affects photosynthesis
(Wei et al., 2016; Lin et al., 2017) through its association
with the light reaction in the chloroplast and/or the dark
reaction (Sage et al., 1988; Von Caemmerer, 2000). The light-
harvesting complex (LHC) comprises chlorophylls a and b and
the chlorophyll a-b binding protein and is closely associated with
photosystem I and II. LHC plays an important role as a light
receptor that captures and delivers the excitation energy between
two photosystems and adjusts the distribution of excitation
energy by being phosphorylated reversely under changing light
conditions (Sage et al., 1988). The PSII outer antenna LHCB
proteins are important components of the major LHC, and they
consist of minor antenna complexes LHCB4 (CP29), LHCB5
(CP26), and LHCB6 (CP24) and major antenna complexes that
comprise homo- and heterotrimers of LHCB1, LHCB2, and
LHCB3 (Jansson, 1994, 1999). In the present study, all the
chlorophyll a-b binding proteins that interacted with each other
in adjusting N stress were down-regulated. In agreement with the
study in rice seedlings in a water-stressed environment (Dalal
and Tripathy, 2018), the current study identified significantly
decreased expression of components of LHCs of both PSII and
PSI (Figure 10 and Supplementary Table 9). Moreover, the
decreased photosynthesis rate and chlorophyll content under
N-stressed condition (Figure 1) can be related to the differential
expression of chlorophyll a-b binding proteins.

The rate of photosynthesis has an intense positive correlation
with N status in soil (Makino et al., 2003; Nunes-Nesi et al.,
2010). Under N stress, a plant might adapt by reduced chloroplast
surface area and a decreased light energy absorption, which can
affect photosynthesis negatively (Li et al., 2009, 2013; Muller
et al., 2009; Georgieva et al., 2010). In the present study, many
PSII and PSI subunits showed a decreased expression in low
NUE cultivars Spitfire and Volcani under N-stressed condition
(Figure 11 and Supplementary Table 10), which can impede
photosystem repair and photosynthetic electron transport chain
function (Foyer and Shigeoka, 2011). Also, the expression of
cyt559 had decreased, which binds most of the cofactors in
the photocatalytic activity of photosystem II. Among the down-
regulated DEGs of PSII components, the core components PsbO,
PsbP, and PsbQ are known to be involved in the water oxidation

and its optimization process (Bricker et al., 2012). PsaK is
associated with the LHCI antenna system, and PsaO plays a
role in the formation of the docking site for LHCII binding
to PSI (Jensen et al., 2007). The down-regulated PetC provides
resistance to photo-oxidative damages by contributing to the
thermal intemperance of light energy and lumenal acidification
and mediates electron transfer between PSII and PSI (Munekage
et al., 2001). The photosynthetic electron transport component
showed down-regulation for PetE that participates in electron
transfer between P700 and the cytochrome b6-f complex in
photosystem I and PetF (ferredoxins are iron–sulfur proteins)
transfer electrons in a wide variety of metabolic reactions (Achard
et al., 2008). PetH plays a significant role in balancing cyclic and
noncyclic electron flow to supply the ATP and reducing power
required by the plant (Claeys et al., 2012). Moreover, F-type
ATPase gamma and a c subunit aid electron transport in both
photosystems I and II were also significantly down-regulated.
Significantly down-regulated DEGs in low NUE cultivars Spitfire
and Volcani were found as the components of the LHC system
and PSI and PSII, underlying their molecular basis of low
GY mechanisms. Therefore, understanding N stress-responsive
DEGs that participated in photosynthesis might provide a base to
improve the photoprotection capacity to sustain photosynthesis
as well as improving plant N-stress tolerance.

The up- and down-regulated DEGs in relation to steroid
hormone biosynthesis, specifically the BR biosynthesis, in low
NUE cultivars also lead to understanding the role of this hormone
in N stress adaptation (Figure 12 and Supplementary Table 11).
Down-regulated DEGs were more prominent compared to
up-regulated DEGs in this pathway, which indicates the
declined BR hormone biosynthesis. Previous studies showed
exogenous application of BR enhanced photosynthesis under
stress conditions (Niu et al., 2016; Shu et al., 2016). Chlorophyll
is an important parameter and is commonly used to measure
photosynthetic activity. However, chlorophyll is highly sensitive
and responds to stress by decreasing the chlorophyll a, b content
in leaves (Rehman et al., 2016). In low NUE cultivar Spitfire
and medium NUE cultivar Volcani, significantly decreased level
of chlorophyll a-b binding protein can be associated with their
reduced chlorophyll content compared to high NUE cultivar
Mace (Figure 1). Previous studies also reported that BR can
reducing the harmful effect of stress by activating the synthesis of
antioxidants like glutathione reductase, catalase, peroxidase, etc.,
contributing to increase in yield and yield components (Hayat
et al., 2000; Vardhini and Anjum, 2015; Anwar et al., 2018).
In high NUE cultivar Mace, the absence of significant DEGs
related to BR biosynthesis that are interacted at the protein level
can be related to its increased tolerance to N stress, relatively
high chlorophyll content, tiller number, and grain weight per
plant (Figure 1). So far, no previous study has been reported on
the putative role of BRs in wheat under N-stressed conditions.
Thus, identifying the involvement of BR biosynthesis provides
a suitable platform to explore the essential role of BR in N
stress tolerance and further application of BRs to improve
wheat production.

Through annotation of the transcriptome, several known
and putatively N-metabolism-related genes were identified
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FIGURE 10 | Down-regulated protein orthologous (Arabidopsis thaliana) of differentially expressed genes in photosynthesis-antenna proteins pathways. The proteins
in red are down-regulated. The pathway map was generated using KEGG (Kanehisa et al., 2016, 2017).

FIGURE 11 | Down-regulated protein orthologous (Arabidopsis thaliana) of differentially expressed genes in photosynthesis pathways. The proteins in red are
down-regulated. The pathway map was generated using KEGG (Kanehisa et al., 2016, 2017).

both to be up- and down-regulated. Usually, N stress increases
the expression of high-affinity transport systems for nitrate
and ammonium (Crawford and Glass, 1998). Previous reports

showed that high-affinity nitrate transporters were expressed
in N-starved seedlings of Arabidopsis (Wang R. et al., 2003).
In rice, the nitrate transporter (OsNRT2.2) in association
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FIGURE 12 | Up- and down-regulated protein orthologous (Arabidopsis thaliana) of differentially expressed genes in steroid biosynthesis. The protein names
bordered in yellow are up-regulated and red are down-regulated. The pathway map was generated using KEGG (Kanehisa et al., 2016, 2017).

with OsNAR2.1 transports nitrate, which can promote the
elongation of lateral roots (Feng et al., 2011; Li et al., 2007).
In the current study, the expression of high-affinity nitrate
transporters (NRT1/PTR family protein 2.2) was up-regulated
under N stress. This indicates a more efficient N uptake under
N-limited condition. On the other hand, the expression of most
of the dual affinity nitrate transporters (like nitrate transporter

1.1) was decreased under N stress, which is known to regulate
root and shoot growth (Mounier et al., 2014). The down-
regulation of Protein NRT1/PTR FAMILY 5.5 and tryptophan
aminotransferase can be related to the retarded growth and low
GPC and GY of low N-treated plants (Won et al., 2011; Léran
et al., 2015). Also, a decreased expression of nitrite reductase
was observed, which is related to nitric oxide (NO) homeostasis
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(Chamizo-Ampudia et al., 2017). NO can act as a signaling
molecule in plant immune response, defense-related gene
expression, and the hypersensitive response mechanism (Mur
et al., 2012). Conversely, most of the N metabolism-related DEGs
of the known and putative amino acid permease, amino acid
transporter, ammonium transporter, glutamate dehydrogenase,
glutamine synthase family and tyrosine aminotransferase, and
tryptophan aminotransferase were up-regulated. Glutamine
synthetase is a key enzyme (Cai et al., 2009) that catalyzes the
conversion of glutamate (Glu) to glutamine (Gln). GOGAT
is involved in the transfer of the amide group of Gln to
a-ketoglutarate (2-OG) to subsequently produce Glu (Cren
and Hirel, 1999). Gln is involved in the biosynthesis of organic
nitrogenous compounds, such as amino acids, nucleotides,
and chlorophyll, and plays a major role in regulating plant N
assimilation in grain production (Martin et al., 2006; Gadaleta
et al., 2011). In this study, most of the significant DEGs related
to N metabolism were found in Spitfire, and the lowest number
of DEGs with a significant change in expression was identified
in Mace. The high abundance of a nitrate transporter and
ammonium assimilatory gene abundance in low NUE cultivars
Spitfire and Volcani can be related to adapt the N-stressed
condition. Similar results were observed in a transcriptome study
with sorghum, where N assimilator genes were abundant in
sensitive and low NUE cultivars (Singh et al., 1973). The smaller
number of N metabolism-related DEGs can be related to a better
tolerance of Mace to low N conditions. These findings are also
supported by similar outcomes in rice (Lian et al., 2006).

The common DEGs that were simultaneously induced or
repressed under N stress across the three cultivars are also
potentially important for N stress response. Among the common
down-regulated DEGs (Table 7), photosystem II 10 kDa
polypeptide family protein and chlorophyll a-b binding protein
are related to photosynthesis and light harvesting, which are
sensitive to stress (Rehman et al., 2016; Nowicka et al., 2018).
The chlorophyll content was significantly decreased under the
N-stressed condition in all three cultivars compared to high
N. Down-regulation of stress-responsive DEGs like catalase,
thaumatin-like protein, and cytochrome P450 family protein is
also known to be related to stress adaptation (Cai et al., 2013;
Alam and Ghosh, 2018). Also, the expression of phytohormone-
related DEGs such as gibberellin receptor GID1A and cytokinin
oxidase/dehydrogenase showed down-regulation common in all
three cultivars. Reduced GA levels and signaling are known to
be associated with restrained growth and development of plant
by inducing accumulation of DELLA (Colebrook et al., 2014),
known as positive regulators of N stress-induced anthocyanin
accumulation (Zhang et al., 2017). Under salt stress, the DELLA
mutant has been reported to be strongly correlated with plant
growth, height, time to flowering, and stress tolerance (Achard
et al., 2008). Other studies also showed that GA-induced DELLA
has a positive effect on stress tolerance (Claeys et al., 2012). In
this study, the reduced plant height and growth can be related to
a reduction in GA. Other phytohormone cytokinins (CKs) can
regulate plant developmental processes under stressed conditions
(Rubio-Wilhelmi et al., 2011). Recent studies reported that CKs
act as a long-distance messenger that signals the N status of the

plant in regulating the nutrient uptake system (Rubio-Wilhelmi
et al., 2011). Overexpression of CK degradation enzyme-CKX
has been known to exhibit an increased drought and salinity
tolerance (Schmülling et al., 2003; Nishiyama et al., 2012). In
addition, cytokinin and gibberellin also influence photosynthesis
under stressed conditions (Caers et al., 1985; Biemelt et al.,
2004). Some other common down-regulated genes involved
glycine-rich protein A3, which binds and stabilizes the stress-
inducible transcripts (Sahi et al., 2007), methyltransferase related
to epigenetic tolerance to stress through DNA methylation
(Boyko and Kovalchuk, 2008), calcium-dependent protein
kinase 15, which functions in long-term adaptive processes or
plant development by facilitating cross-talk between different
Ca2+-mediated stress signaling pathways (Lee and Rudd,
2002; Schulz et al., 2013), and a two-component response
regulator that plays a role in stress response by transducing
extracellular signals to the cytoplasm through phosphotransfer
between the two components (Urao et al., 1998). Amino acid
metabolism-related genes like putative amino acid transporters
and branched-chain amino acid aminotransferase-like proteins
are common in the three cultivars and can also contribute to
stress tolerance by down-regulating their expression (Good et al.,
2007). Interestingly, three DEGs annotated as plant protein
1589 with uncharacterized function were all down-regulated,
which are potentially important candidates for further study.
The down-regulation of LOB domain-containing proteins that
were common in the grain of the three cultivars was reported to
be involved in lateral root formation (Liu et al., 2005; Yang W.
et al., 2015). LOB domain-containing proteins are also known to
control the BR hormone negatively in N metabolism as well as
plant growth and development (Bell et al., 2012; Ma et al., 2017).

Some genes common in the second leaf of the three cultivars
showed up-regulation (Table 6) that can facilitate tolerance to
N stress to survive. Among the 14 up-regulated DEGs, 4 were
annotated as putative alcohol dehydrogenase family proteins that
were also reported to accumulate at an increased level under
low-temperature stress in maize and rice (Christie et al., 1991).
Two glutamate carboxypeptidase 2 were up-regulated that are
known to negatively regulate drought and freezing stress and
play a role in carbon and amino acid metabolism (Shi et al.,
2013). Another up-regulated DEG annotated as PLAC8 family
protein was reported to be involved in cadmium tolerance and
accumulation, which can also be a good candidate to increase N
stress tolerance (Wang F. et al., 2019). Also, a sulfate transporter
was found to be up-regulated and has been previously reported as
affected by N deficiency (Yu et al., 2018). As sulfur assimilation is
important for the biosynthesis of S-containing amino acids that
remobilize to develop seeds for storage protein synthesis, a sulfate
transporter is worth further study under the context of NUE.

The DEGs that demonstrated a high expressional change due
to N stress can be an important candidate for N stress response.
Analyzing the expressional variation of genes across the cultivars
with different NUE, this study proposed that the highly up-
regulated genes expressed in high NUE cultivar Mace with high
abundance can contribute to N stress tolerance. In the second
leaf of Mace, the top abundantly expressed up-regulated DEGs
(Supplementary Table 9) in Mace involved RADIALIS-like
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(RADL) TFs, GST, and PLAC8 family protein. GST was
reported to catalyze the glutathione-dependent detoxification
reactions and the reduction of hydroperoxides. It also plays
a role in protection against environmental stresses by binding
and sequestrating secondary metabolites like flavonoids and
phenolics (Tahkokorpi et al., 2007). In maize, ZmGSTU1 can
protect plant cells from oxidative stress damage through binding
and conjugating porphyrinogens. Under stress conditions and
during senescence, porphyrinogens leak from chloroplast to the
cytosol and become oxidized to the lipophilic and phytotoxic
protoporphyrin (Dixon et al., 2010; Lederer and Böger, 2005).
Binding of GST to leaked porphyrinogens can prevent their
auto-oxidation, protecting plant cells from oxidative stress
(Lederer and Böger, 2003). RADL TFs are a subfamily of
MYB-related genes containing a single SANT (SWI3/ADA2/N-
CoR/TFIIIB)/MYB DNA-binding domain, which is highly
homologous to the RADIALIS gene product of Antirrhinum
majus. The Antirrhinum RADIALIS gene is involved in the
regulation of floral asymmetry, and mutation of this gene
results in a symmetrical (or radial) floral morphology (Baxter
et al., 2007). In Arabidopsis, a RADL TF (RSM1) is implicated
in controlling early photomorphogenesis (Hamaguchi et al.,
2008). In rice, overexpression of RADL3 TF (OsRL3) exhibits
a stay-green phenotype during dark-induced senescence in an
ABA-dependent pathway (Park et al., 2018). A study in lady’s
bedstraw (Galium verum) to understand the genetic basis of
morphological difference of its two variants showed that two
short insertions in the promoter region of RADL1 in one variant
can be related with its nonfunctionality and dwarfism (Jeong
et al., 2014). In Barley, the effect of CENTRORADIALIS (CEN)
on developmental timing and shoot and spike morphologies
has been reported (Bi et al., 2019). No previous study has
been conducted for the function of RADL TFs in wheat. In
the current study, the expression of RADL TFs was different
across the cultivars, and future study is necessary to reveal
whether any genetic variation is present at the cultivar level of
this gene family. Another top up-regulated abundantly expressed
PLAC8 family protein can have conserved biochemical function
due to its conserved core domain; however, specific functions
of these family proteins are still unclear. In Arabidopsis, only
PLAC8 domain-containing protein AtPCR and similar proteins
in rice and other organisms (Song et al., 2011) are implicated in
cadmium resistance. PLAC8-containing proteins can also control
cell size and number (Frary et al., 2000) in plant. It is reported in
yeast that cadmium tolerance can involve DNA repair (Di Vietro
et al., 2014). In this study, as the PLAC8 family gene was up-
regulated under N stress and high abundance was detected in a
high NUE cultivar, it can be predicted that this gene may play an
important role in N stress tolerance. Similarly, in the grain tissue
of Mace, plasma membrane ATPase was identified as one of the
top up-regulated DEGs (Supplementary Table 7), known to be
induced in a condition that requires a greater transport activity
and plays an important role in nutrient uptake (Janicka-Russak,
2011). Overexpression of plasma membrane ATPase is also
associated with cadmium stress tolerance (Di Vietro et al., 2014).
Another top up-regulated abundantly expressed DEG in Mace
is a homolog of Arabidopsis (AT3G16150) K+-dependent

L-asparaginase, which is associated with efficient metabolism of
L-Asn under high metabolic demand of N (Bruneau et al., 2006).
Its homolog in model legume Lotus japonicus has been reported
to be involved in N remobilization and seed production (Credali
et al., 2013). Alpha-galactosidase that highly up-regulated under
N stress is a homolog of Arabidopsis AT5G08370, which plays an
important role in leaf development by loosening and expanding
cell wall (Chrost et al., 2007). It is also reported that alpha-
galactosidase can contribute in completing energy-dependent
senescence process and stress response in spite of severe decline
in photosynthesis by maintaining the steady state of sugar supply
through breakdown of wall polysaccharide (Pandey et al., 2017).
To conclude, the above-mentioned genes, notably RADIALIS-
like TFs, PLAC8 family proteins that are not characterized in
wheat yet can be potential candidates to improve NUE and
tolerance to N stress.

CONCLUSION

Identification of DEGs across bread wheat genotypes with
contrasting stress tolerance facilitates a better understanding of
the genetic bases of N stress tolerance. Here, the RNA-seq analysis
using second leaf and grain tissues of low and high N treated
wheat plants demonstrated that gene transcripts involved in lipid
biosynthesis, transmembrane transport, cell communication,
and small molecule biosynthesis were abundantly expressed in
low NUE cultivars under N stress. Higher expression of these
genes will enable low-NUE genotypes to thrive under stress
conditions. The abundance of N metabolism-related genes in
low NUE cultivars also contributes to N stress adaptation.
The DEGs among the three cultivars showed variation in
the magnitude of change in the expression, which indicates
varying degrees of tolerance to N stress. Genes that were
differentially expressed between low and high N treatments
can also be indirectly involved in N metabolism. The DEGs
across genotypes provide an understanding of how differently
wheat genotypes encounter the N stress and how they adapt.
Common N responsive genes across cultivars indicated that
these genes are involved in common pathways under N stress.
Moreover, the top DEGs with high expression in a high NUE
cultivar would be the potential candidates to be explored for
improving wheat NUE.
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