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ABSTRACT

Triple-negative breast cancer (TNBC) is the most
aggressive breast cancer subtype with low over-
all survival rates and high molecular heterogene-
ity; therefore, few targeted therapies are available.
The luminal androgen receptor (LAR) is the most
consistently identified TNBC subtype, but the clini-
cal utility has yet to be established. Here, we con-
structed a novel genomic classifier, LAR-Sig, that
distinguishes the LAR subtype from other TNBC
subtypes and provide evidence that it is a clin-
ically distinct disease. A meta-analysis of seven
TNBC datasets (n = 1086 samples) from neoadjuvant
clinical trials demonstrated that LAR patients have
significantly reduced response (pCR) rates than non-
LAR TNBC patients (odds ratio = 2.11, 95% CI: 1.33,
2.89). Moreover, deconvolution of the tumor microen-
vironment confirmed an enrichment of luminal ep-
ithelium corresponding with a decrease in basal and
myoepithelium in LAR TNBC tumors. Increased im-
munosuppression in LAR patients may lead to a de-
creased presence of cycling T-cells and plasma cells.
While, an increased presence of myofibroblast-like
cancer-associated cells may impede drug delivery

and treatment. In summary, the lower levels of tumor
infiltrating lymphocytes (TILs), reduced immune ac-
tivity in the micro-environment, and lower pCR rates
after NAC, suggest that new therapeutic strategies
for the LAR TNBC subtype need to be developed.

GRAPHICAL ABSTRACT

INTRODUCTION

Triple-negative breast cancer (TNBC) is defined by a lack of
expression of the estrogen receptor (ER) and progesterone
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receptor (PR) and lack of overexpression of the human epi-
dermal growth factor receptor 2 (HER2, ERBB2). Patients
with TNBC are often diagnosed at younger age and expe-
rience a higher risk of relapse and mortality rates than pa-
tients with other breast cancer subtypes (1). While patients
with TNBC have been managed clinically as a single disease
for many years, there is increased recognition that TNBC
is not a single entity but rather a group of diseases, and
targeted therapies for subsets of TNBC patients with tu-
mors expressing patient-specific biomarkers have recently
been developed and approved by regulatory agencies (2–4).
While distinct TNBC subtypes have been identified by gene
expression profiling (5–12), there still exists an urgent clini-
cal need to identify subtype-specific TNBC treatment regi-
mens (13).

The intrinsic gene signature (PAM50)––the most
widely accepted breast cancer molecular classification
system––characterizes most TNBC as basal-like in ori-
gin. This signature adheres to a two-cell origin model,
where TNBC is presumed to arise from the basal layer
of myoepithelial cells (10,13,14). However, approximately
25% of TNBCs do not classify as basal-like with PAM50,
supporting the notion of its inherent diversity (10). Studies
attempting to sub-classify TNBC have identified 3–6
subtypes. The initial report in 2011 by Lehmann et al.
identified six molecular subtypes (basal-like 1 (BL1), basal-
like 2 (BL2), immunomodulatory (IM), mesenchymal
(M), mesenchymal stem-like (MSL) and luminal androgen
receptor (LAR)); and provided preliminary evidence that
the individual subtypes may lend themselves to different
therapeutic strategies (6). Subsequent efforts demonstrated
strong negative correlations between the IMM and MSL
centroids. A refined classification schema replaces the
mesenchymal stem-like (MSL) and immunomodulatory
(IMM) subtypes with the next highest correlated centroid,
as these specimens represent samples enriched in mes-
enchymal stromal cells and tumor-infiltrating lymphocytes
(TILs), respectively (8,15). Another study of a TNBC
microarray dataset by Jezequel et al. similarly observed a
cluster of samples enriched in immunological cells (5,16).
The mesenchymal stem-like and basal-like immune active
sub-groups identified by Burnstein et al. presumably
represent samples with similar compositional discrepancies
(11).

Despite the different methodology used for subtyping,
all studies have consistently shown that the gene expres-
sion profile of LAR tumors is unique compared to other
TNBC subtypes. The LAR subtype represents ∼15–20% of
TNBC. It is characterized by androgen receptor (AR) pro-
tein expression and androgen-induced in vitro growth stim-
ulation that can be inhibited using AR-targeted approaches
(6,7). Despite evidence for AR signaling in vitro, clinical
benefit from single-agent AR-targeted therapies in TNBC
has been limited. Studies evaluating bicalutamide, enzalu-
tamide, and abiraterone have reported median progression-
free survival ranging between 2.8 and 3.3 months, and re-
sponse rates measured in single digits (0–8%) (17–19). Of
note, these studies used immunohistochemical (IHC) detec-
tion of nuclear AR protein expression, with cut-points of
>0% (19) or ≥10% expression (17,18) to identify patients
for treatment. Although recent advances have been made

in understanding the LAR subtype using clustering meth-
ods, no LAR-specific molecular signature has demonstrated
clinical utility.

The tumor microenvironment (TME) is a complex en-
tity that includes the surrounding stromal tissue, arteriole
support and a heterogeneous population of immunologi-
cal components (20). Recent modeling efforts using single-
cell and fluorescent activated cell sorting have been devel-
oped to deconvolve the bulk tissue heterogeneity (20–23).
Interest has been the immune contribution as its central to
carcinogenesis and progression of the disease (20,24–26).
Generally, breast cancers are considered less immunogenic
than other cancer types (24). However, among the clinical
subtypes, TNBCs are the most immunogenic and exhibit
higher tumor-infiltrating lymphocytes (TILs), enriched in
CD8+ T cells and immunosuppressive FOXP3+ regulatory
T cells (20). In TNBC, the addition of immunotherapy (e.g.
pembrolizumab) to cytotoxic chemotherapy has resulted
in improvements in progression-free and overall survival
in the metastatic setting (among PD-L1-positive tumors)
(27,28) and improvements in pathologic complete response
and event-free survival in non-metastatic TNBC (regardless
of PD-L1 expression) (29). The immunological differences
among the TNBC subtypes, especially between LAR and
non-LAR subtypes, need further investigation.

MATERIALS AND METHODS

LAR-Sig signature development

To develop the LAR signature, we used data from 123 fe-
male patients with non-metastatic TNBC disease obtained
from The Cancer Genome Atlas (TCGA) data portal. El-
igibility criteria used to select these samples and detailed
bioinformatics methods are provided in the Supplementary
Materials. Data were normalized with conditional quantile
normalization (CQN v1.8.0) (30). We identified the best k-
means clustering partition of the LAR cohort within the
TCGA RNASeq data using AR correlated genes (31). Sub-
sequently, we developed a centroid model on the 426 differ-
entially expressed genes. Additional methods can be found
in the Supplementary Materials.

LAR-Sig signature benchmarking

We benchmarked our LAR-Sig model’s performance us-
ing seven independent datasets (Table 1) and compared it
with the three published TNBC subtyping methodologies:
TNBCtype-4 (15), fuzzy clustering (5,32) and non-negative
matrix factorization (NMF) (11,33). Three microarray ex-
periments (GSE25055, GSE25065, GSE32646) used the
Affymetrix 133a platforms, while the fourth (GSE106977)
used the Affymetrix HTA 2.0 array. A batch effect was ob-
served only in GSE32646, which was accounted for using
the combat algorithm from the sva package (34). Three
of the TNBC datasets on which our model was bench-
marked were derived from RNA sequencing platforms, in-
cluding BrighTNess, CALGB 40603, and BEAUTY stud-
ies (35–37). Clinical TNBCs (IHC <2 or FISH ratio of
<2.0, if IHC >1) were identified and selected from the
non-TNBC trials (BEAUTY, CALGB 40603, GSE25055,
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Table 1. Testing datasets. We utilized datasets from the Affymetrix mi-
croarray platform (hgu133a and HTA array) and RNA-Seq data

ID Dataset n TNBC Platform

A GSE106977 119 119 Affymetrix HTA 2.0
B GSE25055 310 116 Affymetrix U133A Array
C GSE26055 198 60 Affymetrix U133A Array
D GSE32646 115 26 Affymetrix U133A Array
E BrighTNess 482 482 RNASeq
F CALGB 40603 389 241 RNASeq
G BEAUTY 126a 42 RNASeq

Additional RNASeq samples were available, whereas the original
manuscript reported samples having both RNASeq and DNASeq data.

GSE25065 and GSE32646) (38,39). Concordance was eval-
uated using kappa statistics obtained from the IRR package
(version 0.84.1) (40).

Evaluation of response to neoadjuvant chemotherapy

Additionally, we identified TNBC patients from seven in-
dependent gene datasets who received NAC to investi-
gate whether the response to NAC differed between LAR
and non-LAR TNBCs (Supplementary Materials). The
TNBC samples were selected (see Signature benchmark-
ing above) based on their published hormonal receptor sta-
tus and HER2 expression status. For the GEICAM/2006-
03 clinical trial, GSE106977, the identification of TNBC
samples was provided (41). Pathological complete re-
sponse (pCR) designation was retrieved from supplemen-
tary materials of manuscripts accompanying the four GSE
datasets (38,39,41,42) and from patient-level data from the
BEAUTY study (43). Patient-level data for BrighTNess and
CALGB 40603 was provided through the Alliance Stan-
dardized Translational ‘Omics Resource (ASTOR) via Al-
liance for Clinical Trials in Oncology. Among these patient
cohorts, there were 13 treatment arms. We performed the
meta-analysis adopting a random-effects model across the
thirteen treatment arms to derive the across-study odds ra-
tio (44), using the SAS 9.4 procedures/tools NLMIX (45)
and GENMOD (46).

Deconvolution of bulk sequencing data using single-cell
TNBC dataset

Twenty cell types were previously observed in a single-cell
RNA sequencing experiment, originating from five patients
with primary TNBC disease (47). We obtained the single-
cell gene expression counts and t-SNE clustering scheme
and constructed a balanced dataset with prevalent and low
abundance cell types. The balanced dataset consisted of
eighty nearest neighbors to each of the twenty centroids to
adequately represent the least prevalent cell type (i.e. 106
immature perivascular-like fibroblasts, imPVL). The mean-
dropout relationship (high zero counts while maintaining a
high mean expression level) was evaluated, and the features
were reduced to 3205 genes (a = 1.5, b = 1.1) (48). A de-
convolution model was then constructed using the balanced
TNBC single-cell data and CIBERSORTx (49,50) method.
We combined and scaled the seven NAC datasets (1086)
along with the TCGA (n = 123) dataset using the SVA

package and 9050 common gene features (by gene symbol,
1209 samples) (34). Linear model analysis was performed
on each cell type using limma (v 3.46.0).

Clinicopathological characterization (Mayo-TNBC Cohort)

We subsequently applied the LAR-Sig signature to a co-
hort of women diagnosed with TNBC at Mayo Clinic be-
tween 1 January 1985 and 31 December 2012, treated with
upfront surgery (no neoadjuvant therapy). The procedures
to assemble this cohort, clinicopathological characteris-
tics and outcomes were reported previously (51). Among
the 605 women in this cohort, 269 had adequate tumor tis-
sue for RNA extraction. Sufficient formalin-fixed paraffin-
embedded primary breast tissue for RNA extraction and
sequencing was available from 269 out of 605 women (51).
Additional methods can be found in Supplementary Ma-
terials. Fisher exact tests were used to assess whether pa-
tient or disease characteristics at diagnosis differed between
the LAR and non-LAR groups. Lymphocyte-predominant
breast cancer was defined as 50% or more of either stromal
or intratumoral lymphocytic infiltration (52). This study
was approved by the Mayo Clinic Institutional Review
Board, 12-004582. The need for obtaining inform consent
was waived by the institutional review board, given that the
study was retrospective and non-interventional (51).

Geneset enrichment and visualizations

Silhouette plots were constructed with the cluster R pack-
age, alluvial diagrams were built with the alluvial {v 0.1.2}
package (53), and heatmaps were generated with pheatmap
(54). We combined and scaled the seven datasets along with
the TCGA datasets using the SVA package and 9050 com-
mon gene features (by gene symbol) (34). GSVA analysis
(55) of the combined dataset was evaluated using genesets
from cancerSEA (56) as well as proposed immune genesets
(57,58). Parametric gene set enrichment analysis {PGSEA,
v 1.36.6} of the LAR-Sig signature, as present in the com-
bined dataset, was performed (59) evaluating the C2 gene-
sets from MsigDB (60).

RESULTS

The Luminal Androgen Receptor samples have been the
most consistently distinct cohort among the TNBC sub-
types. We investigated whether a two-cluster model more
adequately described TNBC data and developed a signa-
ture to distinguish the LAR samples. Further, we investi-
gated whether the tissue heterogeneity observed with the
LAR samples influence the NAC response rates.

Identification of a 426 gene signature between LAR and non-
LAR tumors using TCGA cohort

We confirmed the appropriateness of the two-cluster ap-
proach using k-means clustering analysis (k evaluated from
2–10) of the 1067 genes correlated with AR expression us-
ing the TCGA TNBC samples (ER, PR and HER2 nega-
tive). Two optimal clusters were observed based upon the
average silhouette width, representing 28 LAR and 95 non-
LAR samples. The PCA of the 1067 genes is provided in
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Figure 1. LAR-Sig signature from the TNBC dataset. (A) Principal component analysis of the 1067 genes correlated with AR expression, depicting the
separation of the LAR cohort. LAR samples are circled and indicated with a purple ‘L’, while non-LAR samples are circled and indicated with a green
‘N’. (B) Silhouette plot of the 426 differentially expressed genes (Bonferroni corrected and |logFC| > 2). Clusters have demonstrated significance, with
average silhouette width of 0.48. (C) A pairs plot depicting the relationship of the expression levels for the HR genes, including AR. We observe that AR
expression among the LAR samples is elevated with respect to the non-LAR samples; however, the expression is not increased with respect to adjacent
normal tissue from TNBC patients. There is a notable positive correlation between ERBB2 expression and AR expression among the LAR samples, while
AR expression has a stronger positive correlation with ESR1 expression among normal adjacent tissues.

Figure 1A, where we observed that the first two components
explained 32.8% of the variance (26.8% and 6.0%, respec-
tively).

Differential expression analysis of LAR versus non-LAR
using the TNBC TCGA cohort was performed with edgeR
for the 16,297 genes with a median read count ≥ 32. We ob-
served 4318 genes differentially expressed after correcting
for multiple testing errors, using Benjamini and Hochberg
correction. Given the large number of differentially ex-
pressed genes, we used a more stringent approach - absolute
log fold change >2 and p-value ≤0.05 after applying Bon-
ferroni’s correction to the familywise error rate – to iden-
tify the more stringent gene set of 426 genes (Supplemen-
tary Table S1), which was subsequently used to construct a
shrunken centroid classification model. The average silhou-
ette width for these two clusters was 0.48 (0.22 for LAR and
0.56 for non-LAR), as demonstrated in Figure 1B (Supple-
mentary Table S2). Lastly, we evaluated the expression lev-
els in the LAR, non-LAR samples of the clinically defining
hormone receptors, and AR to non-adjacent breast tissue

samples from the TCGA. We observe that all four genes’
expression is downregulated in the non-LAR cohort (Fig-
ure 1C). Moreover, the AR over-expression that character-
izes the LAR cohort is not significantly different than that
of the non-adjacent tissue.

Clustering Confirmation of LARs in seven independent tran-
scriptomics NAC datasets

We applied the LAR-Sig to seven independent NAC
datasets to confirm its ability to reproduce the LAR des-
ignation. These seven datasets are detailed in Table 1 and
represent recent clinical trials that have not been interro-
gated with respect to the LAR subtype. Further, three of
the studies characterize the transcriptional profile of TNBC
samples using RNA sequencing.

Clustering solutions are challenged with not having a
known benchmark; therefore, benchmarking often involves
evaluating the agreement between accepted solutions. We
subsequently confirmed that LAR-Sig demonstrated rea-
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Figure 2. LAR-Sig concordance in LAR identification. (A) The distribu-
tions of kappa statistics observed between LAR-Sig and four clustering ap-
proaches (TNBCtype, TNBCtype-4, NMF, and fuzzy clustering), for the
seven NAC datasets. Median kappas is provided as the darker and longer
line, with mean kappa statistic provided with a shorter and lighter line.
Concordance was observed to be lowest among comparisons to the refined
TNBCtype-4 and also observed between the other clustering methods and
TNBCtype-4, suggesting overfitting occurred in the initial efforts. (B) Al-
luvial diagram depicting the classification agreement among the original
TNBCtype, the refined TNBCtype-4, LAR-Sig and pathological complete
response to NAC intervention. We observed a high degree of LAR samples
failing to achieve pCR, which was evaluated further.

sonable concordance with the previously proposed cluster-
ing methods (TNBCtype, TNBCtype4, Fuzzy and NMF)
for these seven datasets. Figure 2A presents the pairwise dis-
tributions of the Kappa statistic as violin plots, as observed

for the LAR-Sig centroid model and previous clustering
approach. The clustering concordance observed for each
dataset is indicated with letters (A–G) corresponding to Ta-
ble 1. We observed the best concordance among the smallest
dataset (D, GSE32646), with LAR-Sig demonstrating per-
fect agreement with the NMF and Fuzzy based approach.
The most consistent dataset was D (GSE32646) and the
most inconsistent dataset was G (BEAUTY). TNBCtype-
4, although a purportedly refined version of TNBCtype
demonstrated concordance measures as the original and
both were markedly lower in concordances (0.61) than sub-
sequently proposed models. Similarly, the Kappa statistics
between TNBCtype-4 and the Fuzzy clustering and NMF
clustering approaches were also low: 0.53 and 0.38, respec-
tively. Figure 2B presents the parallel set analysis for the
classification of the 1086 samples representing the seven
NAC datasets, including the original TNBCtype classifica-
tions for historical purposes. We observe that only a few
misclassified LAR samples (MSL) are correctly caught with
the TNBCtype-4 refinement, while the dismissed unstable
sample remains misclassified.

Neoadjuvant chemotherapy response and TNBC subtype

We identified four microarray studies submitted to GEO
that included TNBC patients treated with NAC (Table 1),
as well as RNA seq data from the BrighTNess, CALGB
40603 studies, and the BEAUTY TNBC subset. Of the 1086
samples, 1078 had pathological response data available. We
applied the LAR-Sig centroid model to individual study
gene expression datasets and performed a metanalysis of
pCR (yes/no) according to the TNBC subtype. The pCR
rate among LAR samples was 13.34%, compared to 39.15%
in non-LAR samples (Table 2). The results of random-
effects modeling indicated that the odds of a pCR was 2.11
(95% CI: 1.33–2.99), more likely for non-LAR TNBC than
LAR TNBC (Figure 3). As shown in Table 2 and Figure 3,
pCR rates were consistently lower in the LAR group, ex-
cept for two arms from CALGB 40603 trial where the OR
was <1.0 (Arm 1: Taxane followed by A/C) and OR was
1.0 (Arm 3: Taxane & Carboplatin followed by A/C).

Clinicopathological and immunological characteristics of
LAR vs. non-LAR within the Mayo-TNBC cohort

Within the Mayo TNBC cohort, 50 (18.6%) of the 269 tu-
mors were molecularly classified as LAR TNBC and 219
(81.4%) as non-LAR by the LAR-Sig signature. We con-
firmed that patients with LAR TNBC were more likely to
be older (P < 0.001), post-menopausal (P < 0.001), and
to have lower grade tumors (P < 0.001), low Ki67 prolif-
erative indices ≤15% (P = 0.019), and higher median AR
expression by IHC (P = 0.001). All tumors classified his-
tologically as an apocrine subtype (n = 10) were classi-
fied as LAR (Table 3A). Additionally, we observed higher
regional lymph node rates in the LARs than in the non-
LAR samples (45.8% versus 35.2%, P = 0.188). Among 267
patients where TIL scoring was available, 66 (24.7%) had
lymphocyte-predominant breast cancer. Stromal TIL con-
tent tended to be lower in LAR TNBC compared to non-
LAR (P = 0.083) with significant immunosuppression sig-
naling and decreased levels of key immunological lineages
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Table 2. Table 2 shows the pCR rates according to LAR and non-LAR groups for 13 neoadjuvant chemotherapy (NAC) treatment arms across seven
clinical trials. Within the LAR group, the pCR response rates ranged from 13.3% to 45.5%, while within the non-LAR group, the pCR rates ranged from
35.6% to 71.7%. The sample size within the LAR group was small for many of the NAC treatment arms; however, in 11 of the 13 NAC treatment arms,
the pCR rate was higher in the non-LAR group than in the LAR group. We performed a meta-analysis to summarize the LAR effect across the 13 NAC
treatment arms, as measured by the odds ratio [non-LAR vs LAR]. A random-effects logit model was adopted [1]. In the model, the NAC treatment
arm effects were treated as random as opposed to fixed to better capture the variability inherent in the system more realistically; furthermore, the model
included random LAR effects such that the LAR effect was not constrained to be identical in each trial arm stratum. The odds ratio’s expected or average
value [95% CI] was 2.11 [1.33, 2.89]. There was strong evidence of a LAR effect such that within the non-LAR group, the odds of achieving a pCR was
2.11 times the odds within the LAR group

pCR

Id Trial NAC Treatment Arm Group Yes No Total % Yes Odds Ratio

A GSE106977 Taxane + AC A LAR 2 13 15 13.33% 5.68
non-LAR 34 39 73 46.58%

Taxane + Carboplatin+A/C B LAR 1 6 7 14.29% 3.60
non-LAR 9 15 24 37.50%

B GSE25055 Taxane + AC - LAR 4 17 21 19.05% 2.45
non-LAR 34 59 93 36.56%

C GSE25065 Taxane + AC - LAR 1 8 9 11.11% 2.52
non-LAR 18 27 45 40.00%

D GSE32646 Taxane + FEC - LAR 2 4 6 33.33% 1.33
non-LAR 8 12 20 40.00%

E BrightNess Taxane + Veli-
parib + Carboplatin+A/C

A LAR 15 25 40 37.50% 2.20

non-LAR 112 85 197 56.85%
BrightNess Taxane + Carboplatin + A/C B LAR 10 12 22 45.45% 1.73

non-LAR 59 41 100 59.00%
BrightNess Taxane + AC C LAR 4 18 22 18.18% 2.49

non-LAR 36 65 101 35.64%
F CALGB 40603 Taxane + AC 1 LAR 6 6 12 50.00% 0.63

non-LAR 20 32 52 38.46%
CALGB 40603 Taxane + Bevacizumab + A/C 2 LAR 5 8 13 38.46% 1.52

non-LAR 20 21 41 48.78%
CALGB 40603 Taxane + Carboplatin + A/C 3 LAR 6 6 12 50.00% 1.00

non-LAR 23 23 46 50.00%
CALGB 40603 Taxane + Carboplatin + Beva-

cizumab + A/C
4 LAR 5 7 12 41.67% 3.55

non-LAR 38 15 53 71.70%
G Beauty Taxane + AC - LAR 2 7 9 22.22% 6.13

non-LAR 21 12 33 63.64%

noted among the Mayo LAR subset compared to the non-
LAR tumors (Table 3B).

LAR gene signature was associated with bone relapse and lu-
minal related signatures

Geneset enrichment was performed on the combined and
scaled datasets, including the TCGA data. Principal com-
ponent analysis of the combined data was performed,
and any confounding effects of data generation appear to
have been negated (see Supplementary File Figures S1–S3).
Parametric GeneSet Enrichment Analysis (PGSEA) was
implemented to assess 6290 C2 (curated) gene signatures
within the MolSigDB. An annotated heatmap of the evalu-
ated genes signature is provided in Figure 4A. The C2 gene-
sets were filtered down to 107 genesets that contained at
least 5% of our gene signature while containing less than
600 genes. The resulting genesets were generally differen-
tially expressed (89, 83.2%, Supplementary Table S3) and
robust to Bonferroni correction of the family-wise error rate
(72 of 89, 80.9%). The inclusion of an absolute fold change
greater than 5.0 reduced the space to 23 genesets of interest
(Supplementary Table S4, Supplementary File Figure S4).
These genesets are provided in Figure 4B, where we have
clustered the genesets based upon their Jaccard dissimilarity

measure. We observed that the majority of gene signatures
identified interrogated breast cancer data (purplish pink).
We also observed subtype-specific signatures, including the
up-regulation of two signatures associated with apocrine
histology and four luminal associated signatures (Figure
4B). The LAR samples demonstrated a positive correlation
with genes identified as up-regulated with bone (purple) re-
lapse and a similar positive correlation with genes identi-
fied as down-regulated with bone relapse signatures. Con-
versely, LAR samples demonstrated a negative correlation
with genes identified as up-regulated with brain (green) re-
lapse and the same negative correlation with genes identified
as down-regulated with brain relapse signatures. These find-
ings suggest that patients with LAR TNBC are more likely
to relapse to bone and less likely to relapse to the brain.
Further, gene signatures linked to AR, ESR1 and ERBB2
signaling were up-regulated among LAR samples (Figure
4B).

Additionally, we performed individual-pathways analy-
sis (using GSVA on fourteen cancer-specific genesets, the
cancerSEA) to identify cancer-specific pathway differences
among the LAR and non-LAR subtypes (Supplemen-
tary Table S5 and Supplementary File Figure S5). Nine
of the fourteen genesets demonstrated differences in aver-
age scoring means (alpha 0.05), presented in Figure 5A.
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Figure 3. A meta-analysis of NAC treatment response among the LAR and non-LAR TNBC samples. We performed a random-effects model, in SAS 9.4,
across the fourteen treatment arms to derive the across-study odds ratio. The sample size within the LAR group was small for many of the NAC treatment
arms; however, in 11 of the 13 NAC treatment arms the pCR rate was higher in the non-LAR (35.6% to 71.7%) group compared with the LAR group
(13.3–45.5%). The expected or average value [95% CI] of the odds ratio was 2.11 [1.33, 2.89], providing evidence that LAR are significantly less likely to
respond to current NAC regimens.

Particularly, gene signatures related to cell cycle control,
DNA damage, and repair were down-regulated (P values of
4.56 × 10–63, 8.53 × 10–58 and 9.24 × 10–42, respectively) in
LARs compared to non-LARs. Signatures related to stem-
ness, angiogenesis, and differentiation were up-regulated in
the LAR samples relative to non-LAR samples (P values of
7.23 × 10–5, 7.53 × 10–8 and 9.47 × 10–4, respectively).

Next, we investigated ten immune signatures recently pro-
posed as potential proxies of specific immunological activi-
ties (Supplementary Table S6 and Supplementary File Fig-
ure S6). We present the median scores as radial bar plots,
providing a cohort-level immunogram (see Figure 5B). We
observed a marked decrease in tumor proliferation signa-
ture (P = 8.28 × 10–54) among the LAR relative to the non-
LAR. More importantly, we found decreased immunolog-
ical capacity with decreased glycolysis-driven energetics (P
= 3.99 × 10–3). Additionally, myeloid-derived suppressor
cells (MDSCs, P = 5.33 × 10–4) were activated, while prim-
ing and activation of immune cells (P = 1.55 × 10–9), recog-
nition of tumor cells (P = 4.49 × 10–14) and � -IFN signaling
(P = 3.56 × 10–5) were all down-regulated among the LAR
samples compare to non-LAR samples.

We subsequently investigated the immunological expres-
sion signature associations with a therapeutic response
(pCR) among the LAR and non-LAR subtypes, Figure
5C (Supplementary Tables 7 and 8). Non-LAR responders
demonstrated a near-global increase in immunological ex-
pression patterns (range of P values was 2.65 × 10–5 to
8.07 × 10–3) compared to non-LAR non-responders. While
the evaluation of the LAR subset identified that LAR tu-
mors that achieved pCR exhibited decreased expression of
genes associated with glycolysis (P = 3.44 × 10–3) and tu-
mor recognition (P = 4.82 × 10–2), compared to LAR

non-responders. Conversely, LAR tumors achieving pCR
demonstrated increased expression among genes associated
with antibody-driven innate immunity (7.82 × 10–2), see
Supplementary Table S8.

Deconvolution of the LAR tumor microenvironment shows
significant epithelial, stromal and immunological differences
compared to non-LARs

The presumption of TNBC subtyping is rooted squarely in
the heterogeneity observed among TNBC samples. Differ-
ing cellular origins have been proposed in the carcinogen-
esis of TNBC in contrast to hormone-positive breast can-
cers. The LAR naming convention itself implies that they
are more luminal in origin than basal or myoepithelial. We
constructed a 20 cell type deconvolution model contain-
ing epithelial (basal, myoepithelial, and luminal), endothe-
lial (arteriole support), stromal (fibroblasts), and immune
(T-cells, B-cells, CD4, CD8 and natural killer cells, as well
as plasma cells), see Supplementary Table S9). We evalu-
ated the eight datasets (seven datasets listed in Table 1 and
the TCGA TNBC cohort) called together (1209 samples)
with our deconvolution model to assess the cellular compo-
sition of the LAR and non-LAR subtypes. Fourteen of the
twenty cell types demonstrated significant changes in abun-
dance among the LAR-and non-LAR subtypes, see Figure
6A. We presented the distributions of these fourteen cell lin-
eages in Figure 6B and C, separated by their score represent-
ing their prevalence in the TME. Myofibroblast-like cancer-
associated fibroblasts were highly prevalent among both
LAR and non-LARs, but with an increased presence in the
LAR samples (P = 1.30 × 10–3), as were the inflammatory
cancer-associated fibroblasts (iCAFS, P = 1.66 × 10–34). In
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Figure 4. Heatmap (bi-clustering) of the 1209 TNBC samples from TCGA and seven NAC datasets. The samples were ‘batch’ adjusted with the modCombat
function in the sva package. The left heatmap presents the bi-clustering performed on the dissimilarity matrix of Pearson’s correlation, using complete
linkage. Parametric geneset enrichment analysis of these 160 commonly assayed genes between RNA-Seq and microarray from the LAR-Sig signature was
performed for the C2 genesets from MsigDB. Genesets were down-selected to the 89 genesets sharing at least 5% (eight genes) of our LAR-signature, while
smaller than 600 genes overall were evaluated. Twenty-three genesets were observed to be significantly altered after Bonferroni correction for the family-
wise error rate and possessing an absolute log FC of five or more. Using Jaccard’s dissimilarity measure, these genesets were clustered based upon their
inherent gene membership, and log FC are depicted in the column annotation. Breast cancer signatures predominated the gene signatures (indicated with
lavendar). LAR expression positively correlates with bone relapse signatures (marked with purple coloring) from Smid et al. While negatively correlated
relationships were observed among a similar brain relapse genesets (indicated in green). Here up-regulated genesets are associated with bone relapse up-
signature and vice versa, suggesting bone relapse would be more prevalent among LAR samples. The direct relationships also were mostly observed among
Smid et al., signatures for Luminal (light pink) and apocrine (red) expression signatures, and AR (light blue-green), ESR1 (brown) and ERBB2 (tan)
hormone expression.
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Figure 5. Gene set variation analysis of cancerSEA and Immunograms. Geneset variation analysis (gsva) was performed on the combined and scaled
cohort using genesets from the cancer single-cell atlas (cancerSEA) and a recent aggregation of immune gene signatures. (A) Ten of the 14 cancerSEA
geneset were differentially scored between the LAR and non-LAR cohorts. The down regulation of the cell cycle, DNA damage, and repair associated
genes was observed in LARs. The downregulation of the genes associated with these cellular functions may explain the reduced efficacy observed among
these LAR NAC samples. (B) Similarly, we evaluated recently proposed immune gene signatures and presented them as immunograms. Seven of the ten
immune signatures were observed to be differentially scored, indicated with ‘*’. The proliferation signature confirmed the higher expression in proliferation-
associated genes among the non-LAR, also observed in the cancerSEA. We also observed a decrease in immunological activity among the LAR, including
metabolic glycolysis required to drive innate and acquired immunity, while inhibitory molecules and inhibitory myeloid-derived suppressor cells (MDSCs)
mast cell were significantly up-regulated. Regulatory T-cells were also markedly up-regulated, although not significantly. (C) Evaluating the same signatures
with respect to NAC therapeutic response (1078 samples – 8 samples with missing data) was then performed. No significant immunological activity was
observed among the LAR responders. In contrast, the non-LAR responders demonstrated consistent global elevation of immunological expression levels.

contrast, phenotypic differences between the LAR and non-
LAR were minimally explained by the observed epithelial
compositional differences. Increased abundances of basal
epithelial lineages were observed as expected among the
non-LAR samples (basal epithelial, P = 4.21 × 10–4 and cy-
cling basal epithelial, P = 2.40 × 10–28), while mature lumi-
nal lineages increased among the LAR (P = 4.75 × 10–40).
Moreover, compositional differences in immune abundance
may be attributed to decreased immunological expression
and the observed decreased rate of NAC response. While
CD4+ and CD8+ cells were elevated among the LAR sam-
ples (P = 7.32 × 10–7 and 1.79 × 10–7 respectively), cycling
(proliferating) and regulatory T cells both were decreased in
the LAR versus non-LAR samples (P values of 6.71 × 10–8

and 5.88 × 10–8, respectively).
We subsequently evaluated the composition differences

associated with a therapeutic response between respon-
ders and non-responders (pCR) for both the LAR and
non-LAR cohorts (Supplementary Tables 10–11). Non-
LAR responders presented with an increased abundance
of natural killer cells, Thelper cells, cycling T-cells, myeloid,
and plasma cells (P values between 0.025 and 0.035),

compared to the non-LAR non-responders. LAR pa-
tients exhibiting pCR demonstrated increased myoepithe-
lial, iCAFS, and endothelial cells (P values of 4.67 × 10–3,
1.23 × 10–2 and 2.07 × 10–3, respectively) compared to LAR
non-responders, while decreased expression was observed
with myCAFs (P-value = 1.06 × 10–2), See Figure 6D. The
data suggest that the stromal microenvironment is integral
to the containment of the LAR primary tumor growth and
may influence therapeutics response.

DISCUSSION

We investigated the cohort of TNBC RNA-Seq data pro-
vided by TCGA with the hypothesis that the predominant
two TNBC subtypes are non-LAR and LARs. This hypoth-
esis was based on the existing TNBC subtyping literature
demonstrating that LAR is the only TNBC subtype that
consistently exhibited statistically significant dissimilarity
to basal-like TNBC (6,9,10). While several subtypes were
previously reported, most of these subtypes did not demon-
strate statistical significance (6,11,61). Further, we demon-
strated an improved average sample similarity when consid-
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Figure 6. Deconvolution of the RNASeq datasets. TME composition profiles, represented by twenty cell types, were obtained for the three RNASeq
datasets. (A) Volcano plot shows the observed compositional difference between LAR and non-LAR samples. Linear modeling was performed with the
limma package. Fourteen of the twenty cell types were observed to be differently abundant among the TNBC subtypes (� = 0.05). The largest log FC
presented in the basal epithelium (cycling) and myofibroblastic cancer-associated fibroblasts (myCAFs). (B) We divided these fourteen cell types based
on the average prevalence observed in the 1209 samples. We present the distribution of the four most prevalent subtypes (myCAFs, myeloid and two
basal epithelia) as boxplots. The basal epithelium was less prevalent in the LAR samples; similarly, there was also a decrease in myeloid cells. In contrast,
there was enrichment of myCAFs among the LAR samples. (C) We present similar boxplot distributions for the less prevalent cell type distributions,
which were observed to be differentially abundant among the subtypes. Similarly, we observed the decreased presence of myoepithelial cells with an
increase in mature luminal epithelial cells among the LAR samples. There was a discordant increased presence of CD4+ and CD8+ cells among the LAR,
with decreased presence in regulatory and cycling T cells. Minor changes were also observed among the three other fibroblast lineages (inflammatory
CAFs and perivascular-like). (D) A linear model was also evaluated for compositional associations with the therapeutic response for each of the two
subtypes. Here we present the -log10(p value) for the two analyses. A decrease in myofibroblast-like cancer-associated fibroblasts was observed for both
subtypes to be associated with pathological complete response. Conversely, LAR samples that responded to treatment also presented an increased presence
of inflammatory cancer-associated fibroblasts, as were myoepithelial and endothelial lineages. The response among the non-LAR was associated with
increased immunological presence, including myeloid cells, plasma cells, T-helper cells, and cycling T-cells. The cellular increases would appear to be
concordant with the immune signature expression patterns we observed in Figure 5C.

ering a two-class model (Figure 2A). Additionally, the low-
est median concordance (0.53) was observed for TNBCtype
and the refined TNBCTYPE-4 suggesting that the original
methods overfit the number of TNBC subtypes.

The biological and clinical characteristics of the LAR co-
hort remain of clinical interest. Thus, we sought to investi-
gate clinical covariates in the Mayo TNBC dataset. Clin-
icopathologically, LAR TNBC exhibited several unique
characteristics compared to non-LAR. Patients with
LAR TNBC were generally older, more frequently post-

menopausal, had lower grade tumors, lower Ki67 and––as
expected––higher AR expression by IHC (Table 3A). In ad-
dition, we observed that stromal TIL content was numeri-
cally lower in LAR TNBC compared to the non-LAR (Ta-
ble 3B). Moreover, we tested the hypothesis that the LAR
cohort represented a population possessing a poorer re-
sponse rate to NAC intervention. Our analysis indicated
that the non-LAR samples have a 2-fold increase in the
likelihood of responding to NAC (Figure 3, Table 2). Re-
duced pCR response rates were similarly previously re-
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Table 3A. Mayo-TNBC cohort: Patient and disease characteristics at ini-
tial diagnosis. Table presents and confirms LAR clinical associations of in-
creased age, AR protein expression, and enrichment of apocrine phenotype

Variable LAR non-LAR
n = 50 n = 219 P value

Age at diagnosis <0.001
<50 years 7 (14.0%) 89 (40.6%)
50–6, 9 years 26 (52.0%) 102 (46.6%)
≥70 years 17 (34.0%) 28 (12.8%)
Menopausal status
Premenopausal 8 (16%) 102 (46.6%) <0.001
Post-menopausal 42 (84%) 117 (53.4%)
Histology
Ca w/ apocrine
differentiation

10 (20.0%) 0 (0%) <0.001

Ca w/ medullary
features

7 (14.0%) 49 (18.2%)

Metaplastic carcinoma
NST

5 (10.0%) 12 (4.5%)

Invasive carcinoma
NST

28 (56.0%) 158 (58.7%)

Nottingham grade
1–2 16 (32%) 12 (6%) <0.001
3 34 (68%) 207 (95%)
Ki67
≤15% 17 (34.7%) 39 (18.1%)
>15% 32 (65.3%) 176 (81.9%)
(not obtained) (1) (4) 0.019
AR IHC
Median 70% 0% <0.001
25th–75th percentile 22.5–92.5% 0–0%
(not obtained) (10) (46)
AR
0% 7 (17.5%) 135 (78.6%) <0.001
≥1% 33 (82.5%) 37 (21.4%)
(not obtained) (10) (46)
Tumor size
≤2.0 cm 20 (40.0%) 109 (49.8%)
2.1–5.0 cm 26 (52.0%) 96 (35.7%) 0.434
≥5.1 cm 4 (8.0%) 14 (5.2%)

Table 3B. Mayo-TNBC cohort: patient and immunological characteris-
tics at initial diagnosis. It presents the immunological observations at initial
diagnosis. Elevated lymphocytic activity was only marginally observed

Variable LAR Non-LAR
n = 50 n = 219 P value

Stromal TILs
Median 20% 25% 0.083
25th–75th percentile 10–40% 15–50%
Lymphocyte-dominant
BC
Yes 8 (16.0%) 58 (26.7%) 0.145
No 42 (84.0%) 159 (73.3%)
Lymph node
involvement
positive 22 (45.8%) 76 (35.2%) 0.188
negative 26 (54.2%) 50 (64.8%)
(not evaluated – NX) (2) (3)

ported among the LAR (21.1%) subtype identified with
TNBCtype-4 (62).

LAR samples have been characterized as over-expressing
AR, while we demonstrate that AR expression among the
LAR fails to surpass the expression levels of TNBC adja-
cent normal tissue (Figure 1C). The interpretation of AR
expression as over-expressed and, therein, a potential can-
cer driver appears to be more of a type-IV interpretation er-

ror (63). The more appropriate description of AR would be
the characterization of the non-LAR as quadruple negative
breast cancer (QNBC) (64). The enrichment of apocrine tu-
mors among the Mayo TNBC cohort suggests that the role
of AR still warrants further investigation (Table 3A). The
implication of AR has drawn comparisons with prostate
cancer and therein the potential role of AR splice variants as
well as pioneering transcriptional regulatory roles (65–67).
We investigated the overlap of our gene signature with pub-
lished AR activity signatures and observed minimal over-
lap (68–73). In contrast, we observed significant overlap
with ESR1 gene modules (74,75). Specifically, with the ex-
isting ERBB2 (17.9%) and oncotypeDX (14.3%) signatures
compared to other AR and ESR1 gene modules (76). Tran-
scriptional differences were observed between the LAR and
non-LAR cohorts. The LAR cohort demonstrated expres-
sion patterns suggesting that relapses would more likely oc-
cur within the bone rather than in the brain, as charac-
terized by signatures reported by Smid et al (77). These
findings support previous observations that LAR tumors
would be more prone to bone relapse (8). The LAR tumors
demonstrate similarities with age, expression levels, and re-
lapse with hormone-positive cancers. A retrospective anal-
ysis of 92 TNBC cases identified differences in 22% of the
histological assessments. Thirteen discrepancies involved ei-
ther ER or PGR positivity, while 6 cases involved HER2
designations. While the false negatives did not significantly
impact patient treatment, the authors also note that low-
positive ER/PGR share similarities with HR- tumors (78).
We would be remiss if we did not suggest that the LAR sam-
ples appear to be low-positive tumors, needing a histologi-
cal re-assessment.

While the Subsequent evaluation of cancer-associated
genesets (cancerSEA) identified DNA damage and repair
and cell cycle control and proliferation as down-regulated
among the LAR samples, Figure 5A (Supplementary Ta-
ble S8, Supplementary File Figure S5). These results sug-
gest that targeted inhibition of such genes within these path-
ways would be therapeutically ineffective. Decreased prolif-
eration was also observed in the immunogram among the
LAR in comparison to the non-LARs, Figure 5B (Sup-
plementary Tables S9–S11 and Supplementary File Figure
S6). These observations are in corroboration with previ-
ous data demonstrating a lower Ki-67 proliferation index
in LAR TNBC (79). Similarly, the immunological molecu-
lar activity levels were markedly different and substantially
decreased among LAR samples, in contrast to the histolog-
ical observations (Table 3B).

Compositional differences of LAR responders suggest
that primary tumor growth and containment by the my-
oepithelial, iCAF, and endothelial were associated with in-
fluencing the therapeutic response, see Figure 6C (Supple-
mentary Tables 10–11 and Supplementary File Figure S6).
Increased metastasis and invasiveness of the LAR disease
(Figure 5A) may be associated with the trending increase
in lymph node involvement, which we observed among the
Mayo-TNBC cohort (Table 3B). Myofibroblast-like cancer-
associated fibroblast cells were prominent in both TNBC
subtypes, and both subtypes were associated with response.
Modulating these tumor-promoting cells could serve as a
therapeutic strategy regardless of TNBC subtype stratifi-
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cation and should be further investigated. Moreover, the
immunological molecular activity levels were observed to
be markedly different. Among those non-LAR TNBC, im-
munological expression levels are elevated and were more
prominently associated with therapeutic response. The de-
veloped deconvolution model implicated NKT, cycling, and
helper T cells associated with NAC response among the
non-LAR, see Figures 6D and 5C. Whereas immunosup-
pression appears to be nearly universal among the LAR,
it may potentially be acquired through or results from the
down-regulation of glycolysis (Figure 5C) (80). The data
could suggest that the spectrum, strength, and type of im-
mune responses elicited in TNBC disease should be ex-
plored further, particularly with respect to treatment strate-
gies, as improved understanding of LAR TNBC will lead to
enhanced therapeutic efficacy.
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