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Abstract

Motivation: The identification of suitable conditions for crystallization is a rate-limiting step in pro-

tein structure determination. The pH of an experiment is an important parameter and has the po-

tential to be used in data-mining studies to help reduce the number of crystallization trials required.

However, the pH is usually recorded as that of the buffer solution, which can be highly inaccurate.

Results: Here, we show that a better estimate of the true pH can be predicted by considering not

only the buffer pH but also any other chemicals in the crystallization solution. We use these more

accurate pH values to investigate the disputed relationship between the pI of a protein and the pH

at which it crystallizes.

Availability and implementation: Data used to generate models are available as Supplementary

Material.

Contact: julie.wilson@york.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the predominant method used to determine molecular structure,

X-ray crystallography can provide information on the atomic level

processes of proteins and, in turn, enable the development of thera-

peutic drugs. In order to determine the structure of a target protein by

X-ray crystallography, the protein must be cloned and expressed be-

fore the soluble fraction is purified for crystallization. Only when dif-

fraction quality crystals are obtained can the structure be determined.

Although many protein structures have been solved to date, these only

account for some 3% of all possible protein targets (TargetDB, 2010),

with membrane protein structures being particularly challenging

(Caffrey, 2003) and underrepresented (Doerr, 2008). The use of a pri-

ori information about a protein to ascertain the optimal initial condi-

tions before experimentation could help reduce the number of trials

required which is valuable when protein sample availability is scarce.

Following the advent of online repositories, such as the Protein Data

Bank (PDB) (Berman et al., 2000) and the Biological Macrmolecule

Crystallization Database (Tung and Gallagher, 2008) set up specific-

ally for the development of crystallization strategies (Gilliland et al.,

1994), it has been possible to analyse the data from successful experi-

ments and determine favourable regions of crystallization parameter

space.

It has been shown that protein family can indicate a region of par-

ameter space in which a protein is likely to crystallize (Hennessy et al.,

2000) and that properties such as amino acid frequency, sequence

length, grand average of hydrophobicity (GRAVY) (Kyte and

Doolittle, 1982) and isoelectric point (pI) as well as other properties

can determine a protein’s propensity to crystallize (Smialowski et al.,

2006; Chen et al., 2007; Overton et al., 2008). Investigations have

also indicated that the isoelectric point could be used to determine the

pH at which a protein with an acidic isoelectric point is likely to crys-

tallize (Kantardjieff and Rupp, 2004; Charles et al., 2006).
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Crystallization is often described as a two-stage process, with the

first step being identification of the conditions that allow crystalliza-

tion, followed by the optimization of these conditions to obtain dif-

fraction-quality crystals (Luft et al., 2003; McPherson, 2004). This

study focuses on the first stage—the identification of conditions that

encourage crystallization. An analysis of 9596 structures obtained

from the PDB suggested a link between a protein’s pI and the pH at

which it would crystallize. It was found that acidic proteins tended

to crystallize 0–2.5 pH units above their pI, whereas basic proteins

crystallized 0.5–3 pH units below their pI (Kantardjieff and Rupp,

2004). The authors reported a correlation between pI and pH–pI

that was challenged with claims that the predictive statements had

been made using a misinterpretation of the data (Huber and Kobe,

2004). As a form of data normalization, there will always be a link

between pI and pH–pI, but it was also highlighted that no correl-

ation between pI and pH had been found previously (Page et al.,

2003; Wooh et al., 2003). In defence of their work, the authors of

the original study showed a correlation between the pI of acidic pro-

teins and the pH of successful crystallization and that a linear model

could be used to predict the optimal pH for such proteins. However,

they concluded that a similar model could not be created for basic

proteins because no significant correlation was found (Kantardjieff

et al., 2004). Since the original study, similar relationships between

the pI of proteins and the buffer pH of successful crystallization ex-

periments have been noted for both acidic and basic proteins

(Charles et al., 2006).

The isoelectric point determines a protein’s minimum solubility

level due to protein–protein interactions being favoured over pro-

tein–water interactions (Gilliland, 1988; Luft et al., 2011). It should

therefore follow that a solution with a pH matching the isoelectric

point would be ideal for crystallization although this has never been

confirmed. One possible reason for this is that the recorded pH is

that of the buffer in the crystallization solution rather than the final

pH of the crystallization cocktail (Zhang et al. 2013). It is known

that the reported buffer pH can differ from the true pH of the ex-

periment by more than three pH units (Bukrinsky and Poulsen,

2001; Newman et al., 2012).

Measurement of pH using a pH meter is time consuming and can

be impractical if it requires reformatting of the crystallization screen

to accommodate the probe. We have shown previously that accurate

measurements of pH can be obtained for crystallization solutions

using spectrophotometry (Kirkwood et al., 2014). The values deter-

mined by our spectrophotometric method are typically within 0.2 pH

units of those measured using a pH meter. Here, we use the spectro-

photometric pH values obtained from numerous experiments to train

a neural network to assign pH values to crystallization conditions.

These values are shown to provide accurate estimates of the pH that

can be used, for example, when mining databases such as the PDB.

Using data obtained from AstraZeneca and from the Structural

Genomics Consortium (SGC), Oxford, we show that most proteins,

both acidic and basic, do crystallize within one unit of their isoelectric

point. This in turn allows for custom crystallization screens to be de-

veloped in instances where protein availability is scarce and allows

deeper exploration of chemical parameter space as the pH is fixed.

2 Materials and methods

2.1 The AZ dataset
Table 1 gives details of the 14 proteins, some commercially available

and some in-house targets from AstraZeneca, which were screened

over a range of pH values. Commercial proteins were obtained from

Sigma-Aldrich and were buffered at pH 7.6. In-house proteins were

also buffered at near neutral pH (either pH 6.5 or pH 7.5). In order

to determine the conditions for crystallization, each protein was ini-

tially screened using sitting-drop vapour diffusion with a bespoke 96

condition sparse matrix screen buffered at 6 different pHs using the

multi-component buffer PCTP (Newman, 2004; Zhang et al.,

2013). This gave a total of 576 conditions with the buffer pH fixed

between pH 4.5 and pH 9.5. For each well, 80 ll of crystallization

solution was dispensed using a Thermo Scientific Matrix Hydra II

robot. Frozen protein samples were defrosted to room temperature

before using a Mosquito pipetting robot (TTP Labtech) to dispense

1 ll protein with 1 ll of the mother liquor in MRC Wilden crystalli-

zation trays. Trays were sealed manually using transparent, pres-

sure-sensitive adhesive tape (Hampton) and stored in a Formulatrix

Rock Imager hotel at 20�C. All images were assessed for crystalliza-

tion after 21 days and the best crystallization conditions selected for

a particular protein. A finer sampling of pH was performed in a 96-

well plate with the chosen components buffered between pH 4.5

and pH 9.5 with PCTP.

2.2 The SGC dataset
The data obtained from the SGC in Oxford relate to 62 605 con-

structs, from which 608 solved protein structures have been de-

posited in the PDB. Descriptive metadata include protein sequence,

family and purification methods as well as crystallization conditions

and follow-up data with PDB codes where relevant. A subset of data

were extracted for experiments performed using the same SGC �
JCSG þ4 sparse matrix screen. The extracted data comprised the

protein sequence and experimental conditions for 1057 different

protein sequences. Experimental results were assessed using the

Table 1. AstraZeneca dataset details

(a)

Protein Source* Conc.

(mg/ml)

Buffer

solution

pI

Protease K212A a 13 1 4.93

Protease K234A a 13.4 1 5.03

Protease K249A a 12.1 1 5.03

ProteaseE171A a 13.2 1 5

Concanavalin A b 15 2 5.47

Bovine catalase b 15 2 6.79

Pig Trypsin b 31 2 7

Thaumatin b 50 2 8.46

a- Chymo A b 15 2 8.52

Lysozyme b 20 2 9.36

Glycolytic A a 30.1 3 7.52

Glycolytic D a 21.9 3 6.75

Glycolytic wt a 9.76 3 6.75

Kinase 1 a 12.2 4 5.18

(b)

1 20 mM MES, 5 mM calcium chloride, 5 mM DTT,

100 mM sodium chloride, 300 mM AHA, pH 6.5

2 10 mM PCTP, 100 mM sodium chloride, 0.5 mM

TCEP, pH 7.6

3 20 mM Tris–HCL, 150 sodium chloride, 2 mM

TCEP, pH 7.5

4 10 mM Tris, 50 mM sodium chloride, 1 mM DTT,

50 mM Zinc Acetate, pH 7.5

Note: pI values for the commercially available and in-house protein targets

that were screened over a range of pH values are shown in (a) with buffer so-

lution details in (b). Source: a, In-house; b, Sigma-Aldrich.
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score given by a crystallographer, together with the resolution of the

diffraction data and whether or not the structure was solved. For

crystals that were not of diffraction-quality, no estimated resolution

is given it was assumed that the structure was not determined. In in-

stances where crystals were found to be salt, the associated data

were removed. Data from unbuffered experiments were also

removed as it is not possible to obtain an accurate pH value for such

solutions. The remaining data were grouped based on the final stage

reached in the structure determination pipeline as follows:

Group 1: 61 sequences that resulted in structure determination.

Group 2: 50 sequences that resulted in a crystal that diffracted to at

least 3.6 Å.

Group 3: 211 sequences that resulted in at least one protein crystal.

Group 4: 735 sequences that were annotated as ‘crystal—to be fol-

lowed up’.

It should be noted that sequences in the final group may not re-

late to diffraction quality crystals or could be salt crystals that had

not yet been identified as such. Conversely, it is possible that per-

fectly good crystals may have been overlooked.

2.3 Calculation of isoelectric point
Proteins can become more positively or negatively charged by gain-

ing or losing protons due to the pH of their environment. The iso-

electric point (pI) is the pH at which a protein has a net charge of

zero and can be calculated using the charges for the specific amino

acids in the protein sequence. Estimated values for the charges are

called acid dissociation constants or pKa values. In the following

analysis, the pKa values used are those used in the EMBOSS soft-

ware suite (Rice et al., 2000) as shown in Table 2. For a protein

with n� negatively charged amino acids and nþ positively charged

amino acids, the pI can be determined as the pH for which the net

charge given by Equation (1) is zero:

net charge ¼
Xn�
i¼1

�1

1þ 10pKn�pH
þ
Xnþ
i¼1

1

1þ 10pH�pKp
; (1)

where pKn and pKp are the pK values for negatively charged and

positively charged amino acids, respectively. As an example, con-

sider the small amino acid sequence, CRV, with one cysteine

(pKn¼8.5), one arginine (pKp¼12.5) and one valine (no charge).

Including the N-terminal amine group (pKp¼8.6) and C-terminal

carboxyl group (pKn¼3.6) the net charge for an initial pH of 0 is

given by Equation (2):

net charge ¼ �1

1þ 103:6�0
þ �1

1þ 108:5�0
þ 1

1þ 100�12:5
þ 1

1þ 100�8:6

� 0þ 0þ 1þ 1 � 2:

(2)

Therefore, the charge for the sequence CRV is approximately 2

at pH 0. By gradually increasing the theoretical pH, to make the net

charge in Equation (1) equal to zero, it is found that the isoelectric

point of CRV is 8.555, as shown in Figure 1.

The isoelectric point for each sequence in the SGC dataset was

determined in the same manner using an Excel spreadsheet with vis-

ual basic for applications (Microsoft VBA). For the AZ dataset, the

pI was either obtained from Zhang et al. (2013) or calculated as

above and was confirmed using isoelectric focusing.

2.4 Determination of pH by spectrophotometry
A method to accurately determine pH using spectrophotometry has

been developed and is described in detail elsewhere (Kirkwood

et al., 2014). Briefly, the method uses spectrophotometry to measure

light absorbance when the indicator dye, bromothymol blue, is

mixed with the crystallization solution. The absorbance is measured

between 400 and 700 nm in 5-nm increments and the curve obtained

compared with a set of curves for conditions of known pH. The pH

of the most similar curve, determined by the smallest mean absolute

deviation, is assigned as the pH of the condition in question.

Spectrophotometry was used to determine pH values for buf-

fered conditions in a variety of crystallization screens, including the

JCSG-Plus, the Rigaku Wizard, the Hampton Index and the JCSG þ
6, an evolution of the JCSG þ4 screen—the one used in the analysis

of the SGC data. However, as the spectrophotometry method is lim-

ited to values in the range from pH 4.5 to pH 9.5, all conditions that

were assigned a pH value of either 4.5 or 9.5 were removed from

the dataset to avoid the possibility of under or overestimating the

true pH at the extremes. For each of the remaining 5161 conditions,

the chemicals and their concentrations together with the pH meas-

ured by spectrophotometry are given in Supplementary Data S1.

2.5 Linear regression modelling of pH
In the absence of measurements obtained through a pH meter or

spectrophotometry, pH becomes a problematic parameter in data

mining as its inaccuracy could lead to misleading conclusions.

However, it is possible that an accurate estimate of pH can be ob-

tained without experimentation through the use of regression

modelling. The dataset comprising 5161 spectrophotometric pH val-

ues together with the buffer pH and the concentrations of the chem-

ical species involved was divided into a training set, consisting of

those conditions with only one chemical species in addition to the

buffer, and a test set of the conditions with multiple chemical species

(Fig. 2). It was found that a linear regression model of the form:

dpHS ¼ b0 þ b1Bþ b2log10Cþ b3B�log10C; (3)

where dpHS is the predicted pH, B is the buffer pH, C is the concen-

tration and the b terms are the regression coefficients, was suitable

Table 2. EMBOSS acid dissociation constants

Amino acid pKa Charge

Amine group 8.6 Positive

Carboxyl group 3.6 Negative

Cysteine (C) 8.5 Negative

Aspartic acid (D) 3.9 Negative

Glutamic acid (E) 4.1 Negative

Histidine (H) 6.5 Positive

Lysine (K) 10.8 Positive

Arginine (R) 12.5 Positive

Tyrosine (Y) 10.1 Negative

Fig. 1. Net charge of the sequence CRV with varying pH
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for each chemical species. Inspection of the regression coefficients

for individual chemical species revealed patterns in the models, with

subsets of chemicals having similar regression coefficients and the

same predictor variables shown to be insignificant. Supplementary

Table S1 shows how groups with similar regression models also

share similar chemistry. Final regression models were calculated for

each group, after removing 10% of the data from each group for

validation. This grouping of chemicals not only provides a more reli-

able predictive model due to the increased sample size, but it also

allows new chemicals, which are not present in the training set, to

be assigned to a group and an estimate of pH obtained.

For solutions containing multiple chemical species, pH values

were obtained by combining the predicted pH values for each indi-

vidual chemical at the appropriate concentration using the formula:

dpHA ¼ �log10

Pn
i¼1 10�

bpHsi

n

0
@

1
A; (4)

where dpHA is the predicted pH for the solution containing all elem-

ents, n is the number of chemical species in the solution and pHSi
is

the predicted pH the individual species, Si. The formula effectively

determines the pH value by averaging the number of hydrogen

atoms for each chemical in the solution. The 10-fold increase in

hydrogen ions per pH unit decrease shows that the pH of the solu-

tion is dominated by the most acidic species, which is modified

slightly by more basic species. The model requires no weighting of

the parameters as the concentration of individual chemicals has al-

ready been accounted for.

2.6 Modelling pH using machine learning
An artificial neural network (ANN), implemented in Matlab

(MathWorks, 2011) was trained to assign a pH value to crystalliza-

tion solutions. An ANN was employed as they are able quickly to

create a richer, non-linear model than that of regression. ANNs are

machine learning algorithms designed to mimic the processes in the

brain and can be trained to associate a particular output, in this case

a pH value, with particular input features. The neural network was

implemented in Matlab using the fitnet function with the

Levenberg–Marquardt back-propagation method and the hyperbolic

tangent sigmoid transfer function (Beale and Jackson, 1990;

MathWorks, 2013). A single hidden layer network was chosen to re-

duce the risk of overfitting as regression modelling had shown that a

linear model was sufficient. Approximately two-thirds of the data

for the 5161 conditions for which pH values could be determined by

spectrophotometry were used to train the network and the other

third was reserved as an independent test set. The chemical species

included salts, salts of weak acids, organics, polyethylene glycols

(PEGs) of different molecular weights and different functional

groups, compounds containing ammonia, hydroxide and di-hydro-

gen salts. Chemicals were broadly grouped as suggested by the linear

regression analysis (Supplementary Table S1) and stratified sampling

used to divide the chemical groups evenly between the training and

test sets (3524:1637). The concentration of chemicals in each group

was calculated for each condition and these values, together with

the buffer pH, used as inputs to the neural network. We chose a net-

work with a single hidden layer of five nodes as this was the simplest

network that gave a low mean squared error (MSE) between the

output pH and the spectrophotometric pH during training without

overfitting (as assessed by the independent test set).

3 Results

3.1 Assignment of pH
Linear regression showed that four chemical groups—ammonia,

acids, basics and salts of acids—require the full model including the

interaction term relating both the buffer pH and the additional

chemical concentration to the pH of the experiment. The model for

PEGs does not include the chemical concentration as a separate

term, but does include the interaction between chemical concentra-

tion and buffer pH. Organics and salts have the simplest models,

only involving the buffer pH as a variable. The simplified models

were obtained by stepwise variable selection using Bayesian

Information Criterion. More details are given in the Supplementary

Material. The MSE between the spectrophotometric and predicted

pH values is 0.28 in comparison to 0.8 between the values measured

by spectrophotometry and the buffer pH values. The (Pearson’s

product moment) correlation with the measured values is 0.89 for

the predicted pH in comparison to 0.77 for the buffer pH.

Figure 3a shows the pH values measured by spectrophotometry

plotted against those predicted by the neural network for the inde-

pendent test set. The linear relationship between measured and pre-

dicted pH can be shown to have an intercept close to 0 and a

gradient close to 1 suggesting a strong relationship between the two

methods of obtaining pH. For the same test data, the spread of val-

ues obtained by spectrophotometry for any particular buffer pH is

much greater than for the corresponding predicted pH, as can be

seen in Figure 3b. The correlation of the spectrophotometric pH

with the predicted pH is 0.92 (MSE 0.25) in comparison to 0.75

with the buffer pH (MSE 0.97).

The distribution of differences from the spectrophotometry pH

values is shown in Figure 4 for the values assigned by the neural net-

work and for those provided by the buffer pH. The histograms show

the absolute deviations in 0.1 pH unit bins. Although 75% of pre-

dicted pH values are within 0.5 units of the measured pH (i.e. 60.5

pH units) and 95% are within one unit, only 53% of the buffer pH

values are within 0.5 units and just 80% are within one unit.

Closer inspection of the predicted values reveals that 6 of the 66

individual chemicals were involved in the conditions where the devi-

ation from the spectrophotometric pH values was unusually high.

One of these chemicals, PEG 2000 DME, should be neutral, but

spectrophotometry suggested a pH of just over 4.5, at the limit of

the method’s reliability. However, it is known that PEGs degrade,

becoming more acidic over time (Ray and Puvathingal, 1985;

Jurnak, 1986; Hampton, 2012). Indeed, when checked with a

Jenway 4330 pH meter, the solution was found to have a pH of just

2.6. The other five chemicals that were associated with large errors

(jeffamine ed-2003, ammonium phosphate dibasic, dl-malic acid, so-

dium malonate, magnesium chloride) were not well-represented in

the training data. Retraining the network with a larger dataset could

therefore improve the results further.

Throughout we have used models to predict the pH of the crys-

tallization solution, however, only a proportion of this is contained

within the drop containing the protein. Using a lysozyme solution at

40 mg/ml with 100 mM sodium chloride and the buffer PCTP at

Fig. 2. Organization of data used for linear regression modelling
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50 mM, we have shown that, when mixed with 50 mM PCTP at pH

5, 7 and 9, the final pH could be predicted from the two buffering

components with neither the salt or the lysozyme having a

noticeable effect. For example, protein solution at pH 5 to mother li-

quor pH 7 in the ratio 2:1 gives a predicted pH of 5.66 which com-

pares with an average measured pH of 5.46 (as shown in

Supplementary Table S3). Only when the ratio of protein solu-

tion:mother liquor was increased to 3:1 did we find that the lyso-

zyme affected the pH.

3.2 Relationship between pI and pH
In order to investigate the claims regarding a relationship between

the pI of a protein and the pH at which it can be crystallized, we cal-

culated the pI from each protein sequence in the SGC dataset. These

data, all screened using the SGC� JCSGþ4 sparse matrix screen,

were selected from the full SGC database and assigned to chemical

groups in order to predict pH as shown in Supplementary Table S2.

Although a spectrophotometric pH value was available for some of

the conditions in the SGC� JCSGþ4 screen (used either for

training the neural network or reserved to test the accuracy of the

assignments), the pH used here for all conditions was that assigned

using the trained neural network. In addition to the chemical con-

centrations, the pH of the crystallization buffer is used as input to

the network. For those wells without a buffer solution (21/96), the

pH of the purification buffer was used instead. Data for any wells

where neither buffer pH nor purification pH was available were

removed. It has been shown that the buffering capacity of the pro-

tein itself is negligible both in vitro (Kirkwood et al., 2014) and

in vivo (Poznanski et al., 2013).

For each well in which a crystal was observed, the calculated pI

was compared with the assigned pH. The protein sequences were

considered in groups, as defined in Section 2.2, reflecting the max-

imum stage in the structure determination pipeline that was at-

tained. The protein structure was determined and deposited in the

PDB for the 61 protein sequences in group 1. However, in addition

to the conditions that led to the final structure, we also have infor-

mation about other conditions that produced crystals. Analysis

shows that crystals are only obtained in conditions with a pH within

one unit of the pI for 9 of the 61 sequences. A total of 28 sequences

only result in crystals within two pH units of the pI, 45 sequences

only result in crystals within three pH units, 57 sequences only result

in crystals within four pH units and the final four proteins crystallize

up to five pH units away from the pI. Thus, for over 70% of these

protein sequences, crystals are only obtained in experiments buf-

fered within three pH units of the pI.

Particularly in cases when available protein is limited, it is im-

portant to identify suitable conditions in as few trials as possible and

restricting screening to a particular pH range would reduce the num-

ber required. Promising initial conditions (including the pH) could

then be optimized to obtain crystals suitable for crystallographic

studies (Jancarik and Kim, 1991). For the 61 proteins in the SGC

dataset that resulted in a structure deposited in the PDB, we found a

correlation of 0.8 between the pH of any crystalline result and the

pH at which the final structure was obtained. We therefore investi-

gated the differences between a protein’s isoelectric point and the

closest pH value for any conditions producing crystals. Again the

proteins were considered in the four groups according to the stage

reached in the crystallization pipeline. For those proteins in group 1,

84% crystallized within one pH unit of their pI and 95%

crystallized within two pH units of their pI. Crystals were found

within one pH unit of their pI for 78% of proteins in group 2 and

within two pH units for 88%. In group 3, 74% of proteins

crystallized within one pH unit of their pI and 90% within two pH

units and for group 4 proteins, 55% produced crystals within one

pH unit of their pI and 82% within two pH units. Overall, 85% of

proteins did produce crystals within two pH units of their pI.

Histograms showing the distribution of shortest distances for each

group are given in Figure 5. It is worth noting that those proteins for

which no crystals were found within three pH units of their pI (6%

of all protein sequences here) tended to have more extreme isoelec-

tric points. Of the 64 such proteins, 46 had a pI outside the range

5–9 and of the 18 protein sequences with a pI in this range, only one

with a pI of 7.9 is within the range 6–8.

The 14 proteins in the AZ dataset (Table 1) were used to further

test the relationship between pI and the pH of successful crystalliza-

tion. Once the best crystallization components had been determined

for a particular protein, a fine sampling of pH was performed in a

96-well plate with the chosen components buffered between pH 4.5

and pH 9.5. Supplementary Figure S1 shows that crystals were ob-

tained within one pH unit towards neutral from their pI for 11 of

the 14 proteins and 13 of 14 crystallize within one pH unit either

Fig. 3. Accuracy of pH values. The pH obtained by spectrophotometry is

shown plotted against the pH predicted by an artificial neural network in (A)

and the pH of the buffer in (B)

Fig. 4. Histogram showing errors in predicted and buffer pH values in relation

to the spectrophotometric pH
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side of their pI. Only one protein, with a pI of 5.18, did not crystalli-

ze within two pH units of its pI.

The stochastic nature of protein crystallization compounds the

difficulties of pattern recognition. Supplementary Figure S1 shows

that, although several proteins crystallize across a wide range of pH

values, crystals are not seen in every 0.25 bin within that range.

Reproducibility in screening has been investigated and the results

suggest that replication could improve success rates in crystallization

experiments (Newman et al., 2007).

4 Discussion and conclusion

Linear regression modelling revealed groups of chemicals with similar

effects on the pH of a crystallization experiments. The simplest mod-

els were obtained for salts with no hydrogen ions and neutral organic

compounds. Although a simple linear regression model can be used to

relate the pH of the experiment to the buffer pH for both of these

chemical groups, the model is different for each group, with the con-

stant offset larger for organics than that for salts. For other groups,

the effect of the additional chemical on the buffer pH depends on the

concentration of that chemical. In the case of PEGs, the chemical con-

centration does not appear as a separate variable, but the interaction

term between buffer pH and the chemical concentration is significant.

It known that PEGs degrade over time (Hampton, 2012; Ray and

Puvathingal, 1985; Jurnak, 1986), increasing the acidity of the solu-

tion. Similarly, ammonia-containing compounds slowly release the

ammonia and affect the pH of a condition (Mikol et al., 1989;

Newman et al., 2012). Thus ammonia-containing compounds can

become more acidic than PEGs, which when fresh and correctly

stored are close to neutral pH, and like the final two groups (acids

and basic) require the full linear regression model including the inter-

action term to represent the pH of the experiment. The last two

groups either contain hydrogen ions that have a large impact on pH

or contain a hydroxide group, with a large but opposite effect on pH.

The largest errors in prediction are due to chemicals that undergo deg-

radation. The deterioration of chemicals, such as PEGs, cannot be pre-

dicted but should be considered and storage conditions such as light

exposure and temperature could perhaps be controlled.

The grouping of chemicals according to their effect on the pH of

a solution means that individual models are not required for each

chemical and the effect of chemicals for which there are no examples

in the training set can be predicted from the model for the appropri-

ate group. Moreover, the increase in the number of examples avail-

able for each model reduces overfitting of the training data and

provides more robust models for prediction. Using the chemical

grouping suggested by linear regression modelling, the most accur-

ate results were obtained using a single-layer neural network with

five nodes. However, the method is less intuitive, and similar results

were obtained using the regression equations.

Although we have used our modelling to predict a more accurate

pH for the mother liquor, the same method can also be used to pre-

dict the pH within the crystallization drop by combing the buffering

components. Our results with lysozyme show that the protein itself

does not affect the pH unless used in higher concentrations than

would typically be used (as shown in Supplementary Table S4).

The ability to predict the effect of different combinations of chem-

icals on the pH of an experiment allows information in databases

such as the PDB to be used in data-mining studies that aim to reduce

the number of crystallization trials required. Over the last decade, a

number of investigations have considered a possible link between the

pI of a protein and the pH at which it will crystallize (Charles et al.,

2006). However, such a link has also been disputed (Huber and

Kobe, 2004) and it has also been suggested that ‘the pI value of a pro-

tein should be avoided when choosing the pH for a protein solution’

(Zhang et al., 2013). Zhang et al. (2013) also discuss the issue of the

recorded pH not necessarily being the pH of the experimental condi-

tions. Previous findings have been based on the pH of the buffer solu-

tion, which can differ from the actual pH by more than three pH

units (Bukrinsky and Poulsen, 2001; Newman et al., 2012). Using

more accurate pH values that take into account how the concentra-

tions of the various chemicals in the crystallization cocktail affect the

pH of the buffer solution, we have shown that there is a relationship

Fig. 5. Histograms showing the absolute difference between the pI and the

closest pH at which crystals were obtained for proteins in the SGC dataset.

(a) shows group 1 (structure determined), (b) shows group 2 (diffraction to at

least 3.6 Å), (c) shows group 3 (at least one protein crystal) and (d) shows

group 4 (crystal to be followed up)
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between a protein’s pI and the pH under which it will crystallize. In

addition to data for the conditions leading to protein structure solu-

tion, we have considered the pH of experiments producing crystals

that may not have been confirmed as diffraction quality. We found

that proteins frequently crystallize within one pH unit of their pI and

that 85% of the proteins produced crystals within two pH units of

their pI. In most cases, proteins tended to crystallize at a more neutral

pH with acidic proteins crystallizing above their pI and basic proteins

below their pI, confirming those results found previously

(Kantardjieff et al., 2004; Charles et al., 2006). As the majority of

proteins are of an acidic pI (Berman et al., 2000), we therefore suggest

that a useful initial pH for crystallization trials can be obtained from

the pI of the protein in question, but this pH should not simply be

taken as that of the buffer solution but, if not measured, should be ad-

justed to take into account the effect of any additional chemicals. As

some proteins do not crystallize close to their pI, we investigated pro-

tein properties to determine whether or not such proteins could be

predicted. In addition to pI, the GRAVY and the number of D, C, G,

H, M, F, P, S, T, W, Y residues (Overton et al., 2008) were calculated

for each sequence in the SGC dataset. These properties were used in

unsupervised analyses, including k-means clustering and multidimen-

sional scaling, but we were unable to determine any association be-

tween the sequence properties and the proteins propensity to

crystallize at a pH close to its pI. Differences in physical crystalliza-

tion conditions such as temperature and whether the protein sample

was frozen were not taken into account, although analysis showed

there were sequences that resulted in protein structures at 4 and room

temperature, for both fresh and frozen protein samples with and with-

out ligands.

It is interesting to note that two proteins in the AZ dataset,

Glycolytic enzyme A and Glycolytic enzyme D, have only the single

surface amino acid change E193A and E193D, respectively, but have

very different crystallization patterns. Although Glycolytic enzyme D

crystallizes within a limited pH range, Glycolytic enzyme A crystalli-

zes across a wide range of pH values. This supports the view of Dale

et al. (2003) that the protein itself is an important variable in crystalli-

zation and rational mutagenesis may aid the screening process.
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