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SUMMARY

Glucose homeostasis is maintained bymodulation of metabolic flux. Enzymes and
metabolites regulate the involved metabolic pathways. Dysregulation of glucose
homeostasis is a pathological event in obesity. Analyzingmetabolic pathways and
the mechanisms contributing to obesity-associated dysregulation in vivo is chal-
lenging. Here, we introduce OMELET: Omics-Based Metabolic Flux Estimation
without Labeling for Extended Trans-omic Analysis. OMELET uses metabolomic,
proteomic, and transcriptomic data to identify relative changes in metabolic flux,
and to calculate contributions of metabolites, enzymes, and transcripts to the
changes in metabolic flux. By evaluating the livers of fasting ob/ob mice, we
found that increased metabolic flux through gluconeogenesis resulted primarily
from increased transcripts, whereas that through the pyruvate cycle resulted
from both increased transcripts and changes in substrates of metabolic enzymes.
With OMELET, we identified mechanisms underlying the obesity-associated dys-
regulation of metabolic flux in the liver.
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INTRODUCTION

Glucose homeostasis is tightly regulated to meet the energy requirements of vital organs and maintain

health. Dysregulation of glucose homeostasis leads to metabolic diseases such as obesity and type 2 dia-

betes (Hotamisligil and Erbay, 2008; Kahn et al., 2006; Petersen et al., 2017). The liver plays a central role in

glucose homeostasis by regulating various pathways of glucose metabolism, including gluconeogenesis

and glycolysis (Han et al., 2016; Nordlie et al., 1999; Petersen et al., 2017). The liver is a major player in

the pathophysiology of obesity (Charlton, 2004; Polyzos et al., 2019; Roden and Shulman, 2019). Fasting

hyperglycemia in obesity is attributed to altered glucose metabolism in the liver because of insulin resis-

tance. Because of the complex nature of the obesity-associated pathophysiology of glucose metabolism

in the liver, investigation of the dysregulation in this metabolic system requires data of multiple types

that are obtained under the same condition.

Metabolic flux, the rate of turnover of molecules through a metabolic reaction, is a direct measure of the

activity of the reaction (Jang et al., 2018). Metabolic flux through a reaction is regulated by multiple mol-

ecules: enzymes, substrates, products, and cofactors. Enzymes are regulated by allosteric effectors and

other factors such as posttranslational modifications of enzymes. The amounts of enzymes are determined

by the amounts of transcripts encoding the corresponding enzymes and other factors such as translation

and protein degradation. To investigate metabolic flux and its complex regulation, the amounts of all

the regulators of metabolic flux should be simultaneously measured because molecular interactions be-

tween metabolome layer and other multiple omic layers are mutually connected (Wiley, 2011; Yugi

et al., 2014). The amounts of enzymes can be measured by mass spectrometry-based proteomics, tran-

scripts for enzymes by RNA sequencing, and the amounts of substrates, products, cofactors, and allosteric

effectors by mass spectrometry-based metabolomics. We developed a method of trans-omic analysis

based on direct molecular interactions to construct a multilayered biochemical network using simulta-

neously obtained multi-omic data (Egami et al., 2021; Kawata et al., 2018; Kokaji et al., 2020; Yugi et al.,

2014, 2016). The trans-omic analysis investigated the regulation of metabolic reactions from changes in
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Step 2: Quantify contributions of regulators to changes in metabolic flux

Step 3: Construct a quantitaive trans-omic network for
            changes in metabolic flux (Figures 6 and 7C)
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Figure 1. Overview of the application of OMELET to study glucose metabolism

(Top right) Overview of glucose metabolism (see Table S1 for definitions of metabolites). The model definition is a simplified metabolic network and not the

exact one used as inputs of OMELET. (Top left) Experimental data are acquired from livers of WT and ob/ob mice under fasting conditions and after oral

glucose administration. These data serve as the input for Step 1.
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molecule amounts in response to some perturbations or between conditions. This analysis generates

genome-scale qualitative trans-omic networks, but does not directly indicate quantitative metabolic fluxes

or howmuch each regulatory mechanism affects cellular metabolism. To incorporate the quantitative infor-

mation on metabolic flux, isotopic labeling has been required.

The standard method for measuring metabolic flux is isotopic labeling, in which isotopic tracers are intro-

duced into cells or living animals (Hasenour et al., 2015, 2020; Hiller andMetallo, 2013; Quek et al., 2010). To

analyze the regulation of metabolic flux in a nonsteady state, we developed a kinetic trans-omic analysis

that uses data from isotopic labeling experiments and inferred metabolic flux together with contributions

of regulators to changes in metabolic flux across a multi-layered network (Ohno et al., 2020). Isotopic label-

ing is a powerful technique to measure metabolic flux, but it requires significant optimization to determine

the appropriate isotopic tracers, their dosages, and the time course of isotopic enrichment of metabolites

(Antoniewicz, 2018; Reisz and D’Alessandro, 2017). Recently multi-omic data including metabolomic, pro-

teomic, and transcriptomic data have been increasingly obtained from various tissues and physiological

conditions. Such multi-omic data would contain information on metabolic flux even without isotopic label-

ing. A mechanistic kinetic model is a promising method to integrate multi-omic data for quantitative

understanding of metabolic fluxes and their regulations (Saa and Nielsen, 2017). However, most existing

kinetic modeling frameworks require measured metabolic fluxes as inputs, and quantitative integration

of several omic layers into onemathematical framework is still challenging. Therefore, developingmethods

to infer metabolic fluxes and their regulations from the multi-omic data without use of isotopic labeling is

useful for investigation of dysregulation in the metabolic system such as obesity.

Here, we present a method that we termed Omics-Based Metabolic Flux Estimation without Labeling for

Extended Trans-omic Analysis (OMELET). OMELET (i) infers metabolic fluxes in each condition frommetab-

olomic, proteomic, and transcriptomic data, which are simultaneously obtained from the same individual

samples, (ii) identifies relative changes in metabolic flux between the conditions, and (iii) calculates contri-

butions of regulators to the changes in metabolic flux. We obtained metabolomic, proteomic, and tran-

scriptomic data from the livers of wild-type (WT) and leptin-deficient obese (ob/ob) mice in the fasting state

and 4 h after oral glucose administration. By applyingOMELET to the experimental data, we inferred meta-

bolic fluxes in each condition, and calculated contributions of regulators to changes in metabolic flux be-

tween the conditions. In the fasting state, metabolic fluxes through reactions in gluconeogenesis and the

pyruvate cycle increased in ob/obmice compared to WT mice. The increased metabolic fluxes through re-

actions in gluconeogenesis were caused by increased transcripts. In contrast, in the pyruvate cycle, the

increased metabolic fluxes through pyruvate kinase (PK) involved increased transcripts and that through

phosphoenolpyruvate carboxykinase (PEPCK) was caused by increased substrates. We also calculated

the contributions of regulators to changes in metabolic flux resulting from oral glucose administration.

In response to oral glucose administration, although the metabolic flux through PK did not change in

both WT and ob/ob mice, the regulation of metabolic flux changed: PK flux was regulated by increased

ATP as an allosteric inhibitor in WT mice, and by decreased PK-encoding transcript in ob/ob mice. Thus,

OMELET provided quantitative mechanistic insights into obesity-associated differences in metabolic regu-

lation in the liver without using isotopic tracers.
RESULTS

Overview of the application of OMELET to study glucose metabolism

In this study, we developed OMELET to infer metabolic flux using multi-omic data without using isotopic

tracers, identify relative changes in metabolic flux between conditions, and calculate contributions of reg-

ulators to the changes in metabolic flux (Figure 1). We applied this method to evaluate the differences in

metabolic flux in liver between WT and ob/ob mice, and the dysregulatory mechanisms associated with

obesity. Additionally, we evaluated the differences in metabolic flux between the fasting state and 4-h after

oral glucose administration for both WT mice and ob/ob mice. We had four conditions: WT in the fasting

state, WT after oral glucose administration, ob/ob in the fasting state, and ob/ob after oral glucose admin-

istration. In each condition, we measured the amounts of metabolites, enzymes, and transcripts in liver
iScience 25, 103787, February 18, 2022 3
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Figure 2. Metabolomic, proteomic, and transcriptomic analysis of glucose metabolism in livers from WT and ob/ob mice in the fasting state and

after oral glucose administration

Measured molecules (metabolites, enzymes, and transcripts) mapped onto the glucose metabolism in the liver. Only the metabolites, enzymes, and

transcripts used in OMELET to evaluate the likelihood of the amounts of enzymes and transcripts are shown. Irreversible reactions are shown with one-

headed arrows; reversible reactions are shown with double-headed arrows. Allosteric activation and inhibition are shown with dotted one-headed and

dotted bar-headed arrows, respectively. The bars and error bars in each molecule represent the meanG SD normalized to the mean of the data fromWT in

the fasting state. Enzymes and transcript results are shaded in gray. G6pc was measured at the transcript level but not at the protein level; Gpt and Glud1

were not measured at the protein level. Definitions of the metabolites, enzymes, and transcripts are described in Table S2.
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samples from each mouse. We orally administered glucose to mice that had fasted for 16 h and collected

livers before and 4 h after oral glucose administration (Figure 1: Experimental data).

By applying OMELET to the experimental data, we inferred metabolic fluxes in the glucose metabolism in

each condition, and identified relative changes in metabolic flux between the conditions (Figure 1: Step 1).

We focused on reactions in the glucose metabolism and inferred metabolic fluxes through the reactions in

glycogenolysis, gluconeogenesis, lactate and alanine metabolism, the pyruvate cycle, and the TCA cycle

(Figure 1; Table S1).

The changes in metabolic fluxes between conditions are caused by the changes of regulators such as

enzymes and metabolites. To investigate which regulators caused changes in metabolic flux between

the conditions, we calculated the contributions of the regulators to changes in metabolic flux from

experimental data and kinetic parameters obtained in Step 1 (Figure 1: Step 2).

By integrating changes in the experimental data, changes inmetabolic flux (Figure 1: Step 1), and contributions

of the regulators to the changes in metabolic flux between the conditions (Figure 1: Step 2), we constructed a

quantitative trans-omic network of the glucose metabolism in liver, which represents relative changes in

metabolic flux and the regulation across multi-omic layers associated with obesity (Figure 1: Step 3).
Metabolomic, proteomic, and transcriptomic analysis of glucose metabolism in livers from

WT and ob/ob mice in the fasting state and after oral glucose administration

We obtained metabolomic, proteomic, and transcriptomic data from livers of WT and ob/ob mice in the

fasting state and 4 h after oral glucose administration. The dynamics of blood glucose and insulin concen-

trations differed between WT and ob/ob mice, consistent with obesity phenotype of the ob/ob mice (Fig-

ures S1A and S1B). However, both groups reached a steady state 4 h after oral glucose administration. The

transcriptomic data were reported in our previous studies (Egami et al., 2021; Kokaji et al., 2020), and the

metabolomic and proteomic data were obtained in this study (STAR Methods). We selected 28 metabo-

lites, 15 enzymes, and 17 transcripts relevant to glucose metabolism from the metabolomic, proteomic,

and transcriptomic data, respectively (Figure 2; Table S2). We defined transcript, enzyme, and reaction

names as follows; transcript names are italicized with only the first letter in uppercase (e.g., Pklr), enzyme

names are not italicized with only the first letter in uppercase (e.g., Pklr), and reaction names are not itali-

cized with all letters in uppercase (e.g., PK). Principal component analysis of the metabolites, enzymes, and

transcripts showed that the first principal components captured differences between WT and ob/obmice,

and the second principal components captured changes by oral glucose administration (Figure S1C). The

principal component analysis indicated that the differences between the genotypes, represented by prin-

cipal component 1, exceeded the differences within the genotypes related to oral glucose administration,

represented by principal component 2. Indeed, the principal component 1 represented R50% of the vari-

ance (58% for metabolites, 81% for enzymes, and 50% for transcripts) and principal component 2 repre-

sented %15% of the variance (11% for metabolites, 8% for enzymes, and 15% for transcripts).

We compared amounts of molecules between the conditions and defined increased and decreased mol-

ecules between the conditions. Molecules that showed an FDR-adjusted p value (q value) less than 0.05

were defined as significantly changed molecules. Among them, molecules that showed a fold change

larger than 1.5 and smaller than 0.67 between the conditions were defined as increased and decreased

molecules, respectively (Tables S2 and S3).

Consistent with the greatest separation between the genotypes by principal component analyses, we

observed the greatest number of molecules in glucose metabolism differed between WT and ob/ob
iScience 25, 103787, February 18, 2022 5
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mice (Tables S2 and S3). Comparing WT and ob/obmouse livers in the fasting state showed that increased

metabolites and enzymes in ob/obmice included those in glycogenolysis and gluconeogenesis. After oral

glucose administration, differences in metabolites in ob/ob mouse livers compared to WT mouse livers

partially overlapped with the differences between the genotypes in the fasting state; however, only three

increased enzymes were observed. WT mouse livers showed increases in metabolites of glycogenolysis

and gluconeogenesis following glucose administration. In ob/ob mouse livers, no metabolites in glucose

metabolism were significantly changed by glucose administration. Neither WT nor ob/ob mice had any

changes in enzymes or transcripts when livers from fasting mice were compared to livers from mice of

the same genotype after oral glucose administration. Although we could not find studies obtaining

multi-omic data 4 h after oral glucose administration, the changes in metabolites, enzymes, and transcripts

in ob/ob mice in the fasting state were consistent with those detected in diet-induced obese mice (Soltis

et al., 2017).

The amounts of metabolites, enzymes, and transcripts do not directly reflect metabolic flux and its regula-

tion; however, these data contain information to infer metabolic flux and its regulation. Therefore, we

developed a method to infer metabolic flux and its regulation using the metabolomic, proteomic, and

transcriptomic data.
Inference of metabolic fluxes by OMELET

OMELET is a probability-based model that incorporates metabolomic, proteomic, and transcriptomic

data and uses kinetic equations to predict the parameters of metabolic flux, the elasticity coefficients,

and the mRNA-to-protein ratios for each reaction (Figure 3). The advantages of OMELET are that meta-

bolic flux can be inferred without using isotopic tracers, and that the regulation of metabolic flux can be

determined from the kinetic parameters inferred by OMELET. The inputs of OMELET are the experi-

mental data of the amounts of metabolites x, enzymes e, and transcripts t from the same mouse in

each condition as well as model definitions, which are a stoichiometric matrix of the target metabolic

pathway and information on cofactors and allosteric effectors for each reaction. The outputs are meta-

bolic fluxes v in the target metabolic pathway in each condition, elasticity coefficients ε, and mRNA-

to-protein ratios b. The elasticity coefficient is the change in metabolic flux in response to infinitesimal

changes in metabolites normalized to a reference condition. OMELET is based on a Bayesian method

that calculates posterior probability of the output parameters pðv; ε;bjx; e; tÞ by updating prior probabil-

ity of parameters [pðvjuÞ, pðεÞ, and pðbÞ] and the hyperprior of independent flux pðujmuÞ. The advantages

of a Bayesian method are to avoid the problem of overfitting by defining appropriate priors and to assess

parameter uncertainties by evaluating the posterior parameter distributions rather than the best optimal

parameter values. The posterior probability of the output parameters is achieved by evaluating likeli-

hoods pðe; tjx; v;b; εÞ of the proteomic and transcriptomic data under a given metabolomic data and

parameter set including metabolic flux (STAR Methods). Thus, the posterior probability reflects the

experimental or biological noises of the measured data and to what extent the goodness of fit changes

with altered parameter values. Metabolic flux v in a given metabolic pathway under a steady state con-

dition can be written as a linear combination of independent flux u, and the prior probability of meta-

bolic flux pðvjuÞ is assumed to follow a multivariate normal distribution Nðv l
��mv

l ;S
v
l Þ. We used the elas-

ticity coefficients ε and mRNA-to-protein ratios b to calculate the contributions of regulators to the

changes in metabolic flux between the conditions. Thus, OMELET enabled identification of the specific

reaction with relative changes in metabolic flux between the conditions and the extent to which specific

regulators, such as changes in the amounts of enzymes and metabolites, contributed the inferred differ-

ences in metabolic flux between the conditions.

We validated the performance of OMELET by applying it to simulated datasets of the amounts of metab-

olites, enzymes, and metabolic fluxes in five conditions from kinetic models representing hepatocyte

glucose metabolism (Marı́n-Hernández et al., 2020) and yeast glycolysis (Messiha et al., 2014; Smallbone

et al., 2013) (Figure S2A; Table S4). Themetabolic fluxes throughmost reactions inferred by OMELET highly

correlated with those generated by steady state simulations of the kinetic models for different hepatocyte

and yeast mutants (Figures S2B and S2C) except for those through reactions in glycogen metabolism of the

hepatocyte kinetic model (Figure S2B). The fold changes of metabolic fluxes through reactions of the mu-

tants over those of WT were almost consistent with those simulated by the hepatocyte or yeast kinetic

model (Figures S2D and S2E). These results indicate that OMELET accurately identified the difference in

metabolic fluxes across the reactions in each condition and the changes in metabolic flux among the
6 iScience 25, 103787, February 18, 2022
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mutants. In addition, the validation using the hepatocyte and yeast kinetic models suggests that OMELET

can be applied to different metabolic networks in different species.
Inference of metabolic fluxes in the glucose metabolism in liver of WT and ob/ob mice in the

fasting state and after oral glucose administration

Because the blood glucose and insulin were constant both in WT and ob/ob mice in the fasting state and

4 h after oral glucose administration (Figures S1A and S1B) and the normalized rate of change in the

amounts of metabolites and transcripts per hour approached zero around 4 h after oral glucose adminis-

tration (Kokaji et al., 2020) (Figure S3), we assumed steady state conditions for glucose metabolism in livers

of WT and ob/ob mice. By applying OMELET to the experimental data, we inferred metabolic fluxes in

glucose metabolism in four conditions: WT and ob/ob mice in the fasting state and after oral glucose

administration (Figures 4A and S4; Table S5). The posterior distributions of the metabolic fluxes were ob-

tained by fitting the model to the experimental data for the amounts of enzymes and transcripts in each

condition (Figure S5). We assumed that the liver produces glucose through gluconeogenesis, but does

not consume glucose through glycolysis including glucokinase and phosphofructokinase, in all the
iScience 25, 103787, February 18, 2022 7
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Figure 4. Inference of metabolic fluxes in the glucose metabolism in liver of WT and ob/ob mice in the fasting state and after oral glucose

administration

(A) Posterior distributions of themetabolic fluxes in the glucosemetabolism. Each box contains four density plots corresponding to four different conditions.

Metabolic flux through each reaction is inferred relative to the mean of the prior for the metabolic flux through G6PC in WT mice in the fasting state. Only

representative reactions (shaded gray circles in the map) in each pathway are presented See Figure S4 and Table S5 for complete reaction data

(B) Fold changes of the metabolic flux of ob/obmice over that of WT mice in the fasting state (black bars) and after oral glucose administration (gray bars) in

each reaction, and fold changes of the metabolic flux after oral glucose administration over that in the fasting state in WT mice (blue bars) and ob/ob mice

(red bars) in each reaction. The median of the posterior distribution from OMELET is represented by a black line within the box for each reaction, the box
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Figure 4. Continued

extends from the lower to the 25th and 75th percentiles, and the whiskers extend to 2.5th and 97.5th percentiles to cover 95% of the data. The vertical

orange line indicates the boundary where a fold change equals one.

(C) Sources of glucose production. The stacked bars and error bars represent the mean G SD of the proportions of glycogen, glycerol, lactate, alanine, and

glutamate to the glucose production. The proportions of the sources are calculated from the proportion of metabolic fluxes through PGM, GPD, LDH, GPT,

and GLUD, respectively (black circle), to that through G6PC (yellow circle).

(D) Flux split ratios between ENO and PK reactions. The stacked bars and error bars represent the mean G SD of the proportions of the metabolic fluxes

through ENO and PK to that through PEPCK.
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conditions analyzed according to the previous studies (Jin et al., 2013; Turner et al., 2005). We fixed the

direction of the reaction from glucose 6-phosphate (G6P) to glucose, mediated by glucose-6-phosphatase

and indicated in the model as G6PC for glucose production. A metabolic flux through each reaction was

simultaneously inferred in all the conditions as the relative value to that through G6PC in WT mice in the

fasting state (STARmethods). Consequently, a total of 201 independent parameters were inferred by fitting

the simulated amounts of 15 enzymes and 17 transcripts to the experimental data from 47 mice (1504 data

points in total).

The metabolic flux through G6PC as glucose production is the sum of that through phosphoglucomutase

(PGM) in glycogenolysis and fructose-1,6-bisphosphatase (FBPase) in gluconeogenesis. In WT mice in the

fasting state, the 95% credible interval of the posterior distribution of the metabolic flux through FBPase

(0.67–1.3) was not overlapped with that through PGM (0.05–0.38) (Figures 4A and S4; Table S5), suggesting

that glucose production depended on gluconeogenesis. The small metabolic flux through PGM was

consistent with the depletion of glycogen in WT mice in the fasting state (Figure 2). The metabolic flux

through FBPase was further divided into that through glycerol-3-phosphate dehydrogenase (GPD) and

alpha-enolase (ENO), which represented the metabolic flux through gluconeogenesis from glycerol and

phosphoenolpyruvate (PEP), respectively. The metabolic flux through ENO (median of the posterior distri-

bution: 1.1) and GPD (median: 0.75) were not significantly different (Figures 4A and S4; Table S5), indicating

that both PEP and glycerol are equally used for glucose production. In the pyruvate cycle, the metabolic

flux through PEPCK (median: 2.1) was larger than that through ENO (median: 1.1), and those through py-

ruvate carboxylase (PC) (median: 1.8) and PK (median: 0.98) were not significantly different from that

through ENO (median: 1.1) (Figures 4A and S4; Table S5). This result suggested that PEP was equally

used for glucose production and return to pyruvate. Although some studies showed that the inhibition

of PK flux by glucagon prevents the futile pyruvate cycle in the fasting state (Large et al., 1997), the large

metabolic flux though pyruvate cycle in the fasting state inferred by OMELET is consistent with that

measured by the previous metabolic flux analysis in mice (Hasenour et al., 2015, 2020) and in rats (Beylot

et al., 1995; Jones et al., 1997; Katz et al., 1993). The metabolic flux through PK (median: 0.98) was not signif-

icantly different from those through alanine aminotransferase (GPT) (median: 0.41) and lactate dehydroge-

nase (LDH) (median: 0.35), suggesting that pyruvate synthesis is equally contributed by the influxes from

PEP, alanine, and lactate through PK, GPT, and LDH, respectively. In the TCA cycle, 95% credible intervals

of the metabolic fluxes were large (0.21–4.1 on average) compared to those through other reactions in

glucose metabolism (0.54–0.15 on average), indicating that the metabolic fluxes through reactions in the

TCA cycle were not precisely determined. The metabolic fluxes in glucose metabolism in the liver of fasting

WT mice inferred by OMELET were consistent with those by the previous metabolic flux analyses of fasting

WT mice except for those in the TCA cycle (Burgess et al., 2015; Hasenour et al., 2015, 2020; Satapati et al.,

2012; Wang et al., 2020) (Figures S6A and S6B).

For ob/ob mice in the fasting state, we calculated fold changes of the metabolic flux of ob/ob mice over

that of WT mice for each reaction (Figure 4B, black bars). Although the TCA cycle fluxes were not precisely

determined in the individual conditions including fasting WT and ob/obmice (Figure 4A), the fold changes

of the metabolic flux of fasting ob/obmice over that of fastingWTmice were inferred with relatively narrow

95% credible intervals (0.89–1.3 average) (Figure 4B; Table S5). This would be because the metabolic fluxes

inferred in WT mice were highly correlated with that in ob/ob mice. The fold changes of metabolic fluxes

through reactions in gluconeogenesis (median: 2.0 on average) and the pyruvate cycle (median: 2.3 on

average) were larger than those in glycogenolysis (median: 1.2 on average) and the TCA cycle (median:

1.1 on average) (Figure 4B; Table S5). The metabolic flux through G6PC, glucose production, is a sum of

the metabolic flux through PGM, GPD, LDH, GPT, and glutamate dehydrogenase (GLUD) multiplied by

the number of carbon atoms of the substrates. We quantified the fraction of sources of the glucose produc-

tion by calculating the proportion of the metabolic flux through PGM, GPD, LDH, GPT, and GLUD to that
iScience 25, 103787, February 18, 2022 9
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through G6PC, which represent glycogen, glycerol, lactate, alanine, and glutamate as sources, respectively

(Figure 4C; Table S5). Themedian of the fraction of glucose production from glycerol was 34% in fastingWT

mice and 45% in fasting ob/obmice (Figure 4C; Table S5), and the 95% credible interval of the distribution

of the fraction of fasting ob/ob mice minus that of fasting WT mice (5.6%–17%) was greater than zero (Fig-

ure S7A; Table S5). This result suggested that fat accumulation in the liver of ob/obmice increased the sup-

ply of glycerol as a precursor for glucose. The median of the fraction of glucose production from alanine

was 19% in fasting WT mice and 24% in fasting ob/ob mice, whereas that from lactate was 16% in WT

and 13% in ob/ob mice (Figures 4C and S7A; Table S5), implying that the contributions of alanine and

lactate to glucose production did not change in ob/obmice. The median of the fraction of glucose produc-

tion from glycogen was 15% in WT and 10% in ob/ob mice, whereas that from glutamate was 12% in WT

mice and 5.3% in ob/ob mice. Collectively, the fraction of glucose production from glycerol increased in

ob/obmice, whereas that from glycogen and glutamate decreased. To evaluate the efficiency of using car-

bons of PEP for glucose production through gluconeogenesis rather than for pyruvate through the pyru-

vate cycle, we calculated the flux split ratios between ENO and PK reactions (Figure 4D; Table S5) and

compared them between fasting WT and ob/ob mice (Figure S7B; Table S5). Compared to WT mice,

the ratio of the metabolic flux through PK in ob/ob mice was higher and was similar to that through

ENO, indicating less efficient use of PEP as a source of glucose in ob/ob mice than in WT mice. Because

the pyruvate cycle including PK is known as a futile cycle, in which no net PEP accumulation occurs but en-

ergy is used, the increased ratio of PK flux over ENO flux in ob/ob mice is likely to cause a futile ATP dissi-

pation through PK, PC, and PEPCK reactions. We compared the fold changes of metabolic fluxes through

reactions in the glucose metabolism of ob/obmice over that of WT mice inferred by OMELET with those in

the previous metabolic flux analyses in fasting ob/ob mice (Turner et al., 2005) and high-fat diet-induced

obese mice (Patterson et al., 2016; Satapati et al., 2012) (Figures S6C and S6D). With OMELET, we found

a larger increase in gluconeogenic flux than that in the previous studies (Satapati et al., 2012; Turner

et al., 2005), and smaller increase in glycogenolysis flux than those in the previous studies (Satapati

et al., 2012; Turner et al., 2005). Other differences in glucose metabolism between WT and ob/ob mice

were consistent among the four studies.

To evaluate the effect of oral glucose administration on glucose metabolism, we calculated fold changes of

the metabolic fluxes after oral glucose administration over those in the fasting state in WT mice (Figure 4B,

blue bars) and ob/obmice (Figure 4B, red bars). Orally administered glucose triggered a slight increase in

the metabolic fluxes through most reactions in WT mice and a decrease in ob/ob mice. An exception was

the metabolic flux through PK, which did not significantly change in WT mice and decreased slightly in ob/

ob mice. Neither WT nor ob/ob mice exhibited much change from the fasting state in the sources of

glucose production or the flux split ratio between ENO and PK in response to oral glucose administration

(Figures 4C, 4D, and S7). These results suggested the differences in themetabolic flux betweenWT and ob/

ob mice in the fasting state were maintained after oral glucose administration. However, the effect of oral

glucose on the metabolic flux was opposite within each genotype: The metabolic fluxes slightly increased

in WT mice and decreased in ob/ob mice by oral glucose administration.
Contributions of regulators to changes in metabolic flux between fasting WT and ob/obmice

Flux through reactions involved in metabolism is regulated by the enzymes, substrates, products, cofac-

tors, and allosteric effectors. Each of these can be considered a ‘‘regulator’’ of the reaction. We calculated

contributions of the regulators to changes in metabolic flux between the conditions (Figures 5 and S8;

Table S6). The concept of the contribution is to partition the cause of changes in metabolic flux between

conditions into underlying changes in the amounts of regulators. The contribution was calculated based on

propagation of uncertainty of regulators’ amounts to metabolic flux, and a similar approach was described

in a previous study (Hackett et al., 2016) (STAR methods).

We defined contributions of regulators to changes in metabolic flux (Figure 5A). The regulators of meta-

bolic flux were transcripts, unaccounted enzyme regulators, substrates, products, cofactors, allosteric ef-

fectors, and unaccounted flux regulators. Transcripts represent the mechanism by which changes in

gene expression regulate enzyme abundance; the unaccounted ‘enzyme’ regulators represent other

non-transcriptional mechanisms that influence the amount of enzyme such as protein degradation and

stability. The unaccounted ‘flux’ regulators include such mechanisms as phosphorylation of enzymes and

unknown allosteric effectors that were not accounted for or measured in OMELET. The contribution of

regulator h to a change in metabolic flux through each reaction jh was calculated as
10 iScience 25, 103787, February 18, 2022
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Figure 5. Contributions of regulators to changes in metabolic flux between fasting WT and ob/ob mice

(A) Schematic representation of contributions of regulators to changes in metabolic flux between conditions. The contribution was defined based on the

sensitivity of the metabolic flux to the regulator, which is calculated using the kinetic parameters including elasticity coefficients (Figure S9; Table S5) and

mRNA-to-protein ratios (Table S5), and changes in the amounts of regulators between the conditions. See also STAR methods.

(B) Contribution of regulators to changes in metabolic flux between WT and ob/ob mice in the fasting state. The reactions with the fold changes of the

metabolic flux of ob/obmice over that of WT mice in the fasting state larger than 1.5 are in red text. The stacked bars indicate the mean of the contributions

independently calculated in all the Markov chain Monte Carlo samples in Figure S8. See also Table S6.

(C and D) Scatterplots illustrating the relationships between the contributions of enzyme (C) or metabolite (D) to changes in metabolic flux and the fold

changes of the metabolic flux of ob/ob mice over that of WT mice in the fasting state. For each reaction, the mean G SD of the distribution of the

contributions of enzyme or metabolite to changes in metabolic flux (x axis) is plotted against the mean G SD of the distribution of the fold changes of the

metabolic flux of ob/obmice over that of WTmice in the fasting state (y axis). The vertical gray dotted line indicates the boundary where a fold change equals

1.5. The reactions with the fold changes of the metabolic flux of ob/obmice over that of WT mice in the fasting state larger than 1.5 are in red text. See also

Tables S5 and S6.
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with a sensitivity of themetabolic flux to the regulator v (vv=vyh) and a change in the amount of the regulator

between conditions Dyh. The contribution is calculated for changes in metabolic flux through each reaction

between each pair of conditions. The sum of the contributions of all regulators to a change in metabolic flux

equals one, and a larger contribution indicates a stronger regulatory effect on metabolic flux. The contri-

bution is a normalized value for eachmetabolic flux, thus is independent of themagnitude of the changes in

metabolic flux between the conditions. The contribution was independently calculated in all the Markov

chain Monte Carlo samples and represented as a distribution (Figure S8). We focused on the regulators

with a mean contribution larger than 0.25; all regulatory contributions are available in Table S6.
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We applied this analysis to evaluate the contribution of each type of regulator, including the unaccounted

flux regulators, to the difference in metabolic flux between WT and ob/ob mice in the fasting state (Fig-

ure 5B). We also examined the relationships between the contributions of enzymes or metabolites and

the fold changes of the metabolic flux of ob/ob mice over that of WT mice in the fasting state (Figures

5C and 5D). For these analyses, the contribution of enzyme is the sum of its transcript and unaccounted

enzyme regulators, and the contribution of metabolites is the sum of that of substrates, products, cofac-

tors, and allosteric effectors. We found that, except for PEPCK, enzymes in the reactions with a fold change

in metabolic flux greater than 1.5 in the ob/ob mice exhibited a greater contribution (Figure 5C) than did

metabolites (Figure 5D). For PEPCK, the contribution of the enzyme was smaller and that of metabolites

was larger. In particular, the substrate contributed the greatest effect (median: 0.73) on the increasedmeta-

bolic flux through PEPCK (Figures 5B and S8; Table S6).
Quantitative trans-omic networks for changes in metabolic flux between WT and ob/obmice

in the fasting state

To reveal a global landscape of alteration and dysregulation of metabolic flux in fasting ob/ob mice, we

constructed a quantitative trans-omic network by integrating the experimental data (Figure 2), the relative

changes in metabolic flux (Figure 4), and the contributions of the regulators (Figure 5). The resulting

network consisted of four layers (Transcript, Enzyme, Metabolic Flux, and Metabolite) (Figures 6A–6D).

Nodes in the Transcript, Enzyme, Metabolic Flux, and Metabolite layer represent the transcripts, enzymes,

reactions, and metabolites. Lines connecting nodes in the Transcript layer to those in the Enzyme layer

represented regulation of enzymes by transcript, and those by unaccounted enzyme regulators were not

displayed. Lines connecting nodes in the Enzyme layer to reactions in the Metabolic Flux layer represented

the contributions of the enzyme to changes in the metabolic flux between the conditions. Lines connecting

nodes in the Metabolite layer to the reactions in the Metabolic Flux layer represented regulation of

changes in metabolic flux by metabolites and were color-coded according to substrate, product, cofactor,

or allosteric effector. Unaccounted flux regulators were not displayed. The size of nodes represents fold

changes of the corresponding molecules or reactions in ob/obmice over those of WT mice, and the width

of the lines between the layers represents the contributions of regulators to changes in metabolic flux.

We extracted the subnetworks comprised of gluconeogenesis (Figure 6C) and of the pyruvate cycle (Fig-

ure 6D), which together represented the network with median of the fold changes of the metabolic flux of

ob/obmice over that of WTmice that were larger than 1.5 (Figure 5B, red text). In the subnetwork of gluco-

neogenesis (Figure 6C), many transcripts, enzymes, and metabolites also increased in ob/obmice (2.2-fold

increase in metabolites, 1.9-fold in enzymes, and 1.4-fold in transcripts on average within each layer) and

size of nodes were qualitatively similar among Transcript, Enzyme, andMetabolite layers. By contrast, as for

edges of contribution from one layer to another, the contributions of enzymes to metabolic flux were larger

than those of metabolites. On average within the subnetwork, the contribution of enzymes was 0.67,

whereas the contribution of metabolites was 0.017. In addition, contributions of transcripts to enzymes

were similar among many enzymes including glycerol-3-phosphate dehydrogenase 1 (Gpd1), phospho-

glycerate mutase 1 (Pgam1), and enolase 1 (Eno1) except for glucose-6-phosphate isomerase 1 (Gpi1)

and fructose bisphosphatase 1 (Fbp1). These results indicate a hierarchical and quantitative regulation

in gluconeogenesis, where 1.4-fold increase in transcripts contributed to 79% of 2.0-fold increase in meta-

bolic fluxes, whereas 2.2-fold increase in metabolites contributed to only 1.7% of the increase in metabolic

fluxes (Figure 6E).

Pyruvate cycle consists of three reactions: PK reaction catalyzed by pyruvate kinase (Pklr) enzyme with the

substrate PEP, PC reaction catalyzed by pyruvate carboxylase (Pcx) enzyme with the substrate pyruvate,

and PEPCK reaction catalyzed by phosphoenolpyruvate carboxykinase 1 (Pck1) enzyme with the substrate

oxaloacetate. Although fold changes in metabolic fluxes (2.5-fold for PK, 2.2-fold for PC, and 2.0-fold for

PEPCK) and metabolites (1.5-fold for PEP, 1.9-fold for pyruvate, and 1.5-fold for oxaloacetate) in the sub-

network of pyruvate cycle were similar, changes in enzymes were different among reactions (Figure 6D): the

enzyme Pklr increased, Pcx did not significantly change, and Pck1 decreased in ob/ob mice. These differ-

ences in fold changes of molecules resulted in different contributions to metabolic flux among PK, PC, and

PEPCK. Contribution of the enzyme Pklr to the PK flux (median: 0.87) was much larger than that of the sub-

strate PEP (median: 0.0017) and Pklr enzyme mainly caused an increase in PK flux in ob/ob mice. The me-

dians of the contribution of Pcx enzyme and pyruvate to PC flux was 0.62 and 0.31, respectively, and both

the enzyme and substrate contributed to increase in PC flux. Contribution of Pck1 enzyme to PEPCK flux
12 iScience 25, 103787, February 18, 2022
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Figure 6. Quantitative trans-omic networks for changes in metabolic flux between WT and ob/ob mice in the fasting state

(A) Key to the quantitative trans-omic network for the relative difference between WT and ob/ob mice in the fasting state. See also Tables S2, S5, and S6.

(B) The full quantitative trans-omic network.

(C) The subnetwork of gluconeogenesis.

(D) The subnetwork of the pyruvate cycle.

(E) A simplified metabolic pathway with metabolic fluxes and the contributions of main regulators. The color of the arrow in each reaction indicates the main

regulators, which we defined as those with a mean contribution larger than 0.25. The size of the arrow in each reaction indicates fold changes of the

metabolic flux in ob/ob mice over those in WT mice.
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(median: 0.21) was smaller than that of the substrate oxaloacetate (median: 0.74) and the substrate, rather

than the enzyme, contributed to the increase in PEPCK flux. In all metabolic fluxes through PK, PC, and

PEPCK in pyruvate cycle, contributions of Pklr, Pcx, and Pck1 transcripts to Pklr, Pcx, and Pck1 enzymes (me-

dians: 0.86, 0.59, and 0.18) were almost equal to those of Pklr, Pcx, and Pck1 enzymes to PK, PC, and PEPCK

fluxes (medians: 0.87, 0.62, and 0.21), respectively, indicating that the contributions of the enzymes to

changes in the metabolic flux were explained by those of the transcripts. These results suggested that

the increased Pklr expression triggered the increased metabolic flux through the pyruvate cycle, which

caused the accumulations of substrates, including pyruvate and oxaloacetate, and the large contributions

of substrates to increases in metabolic fluxes through the downstream reactions of PC and PEPCK.
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We also constructed a quantitative trans-omic network after oral glucose administration (Figure S10), which

showed similar features with those in the fasting state. Thus, oral glucose administration had little effect on

the differences in the steady state metabolic flux betweenWT and ob/obmice, and on the contributions of

the regulators to the differences in the metabolic flux.
Contributions of regulators to changes in metabolic flux induced by oral glucose

administration within WT or ob/ob mice

We calculated the contributions of the regulators to changes in the metabolic flux by oral glucose admin-

istration in WT and ob/ob mice separately (Figures 7 and S8; Table S6). We examined the relationships

between contributions of enzyme or metabolite to changes in the metabolic flux and fold changes of meta-

bolic fluxes after oral glucose administration over those in the fasting state within each genotype (Fig-

ure 7A). None of the reactions showed a fold change of metabolic flux more than 1.5 nor less than 0.67,

and no apparent relationship was found between the contributions of enzyme or metabolite and fold

changes of the metabolic flux by oral glucose administration.

Among all the reactions, the largest difference in the contribution of the regulators by oral glucose admin-

istration between WT and ob/obmice was found in PK (Figure 7B, right), a reaction with unchanged meta-

bolic flux in WT mice and slightly decreased metabolic flux in ob/ob mice (Figure 4B). Allosteric effectors

had the largest contribution to the change in metabolic flux through PK in WT mice (median: 0.55, Figures

7B and S8), whereas the Pklr transcript had the largest contribution in ob/ob mice (median: 0.95). These

results suggested that the change in metabolic flux through PK by oral glucose administration was caused

by different mechanisms between WT and ob/ob mice: changes in allosteric effectors in WT mice and

changes in Pklr gene expression in ob/ob mice.

To explore the differences of the contributions of the regulators to the decreased metabolic flux through

PK between WT and ob/obmice, we constructed a quantitative trans-omic network for the relative change

in metabolic flux through PK by oral glucose administration in WT mice (Figure 7C, left) and ob/ob mice

(Figure 7C, middle). In WT mice, the substrate PEP and the allosteric inhibitor ATP in the Metabolite layer

increased in response to oral glucose administration. The regulatory input from ATP in theMetabolite layer

to PK in the Metabolic Flux layer (median: 0.50) was the largest among the regulatory inputs from the me-

tabolites. In ob/ob mice, no metabolites in the Metabolite layer increased nor decreased following oral

glucose administration. The regulatory input from Pklr in the Enzyme layer to PK in the Metabolic Flux layer

(median: 0.95) was larger than regulatory inputs from metabolites, including PEP, ADP, fructose 1,6-bi-

sphosphate (F1,6P), ATP, alanine, and phenylalanine, each of which had a regulatory input less than

0.10. The regulatory input from Pklr in the Transcript layer to Pklr in the Enzyme layer (median: 0.93) was

almost equal to that from Pklr in the Enzyme layer to PK in the Metabolic Flux layer (median: 0.95), indi-

cating that the contribution of enzyme was explained by that of transcript. These results suggested that

the change in metabolic flux through PK was caused by increased ATP as an allosteric inhibitor in WT

mice and by slightly decreased Pklr transcript in ob/ob mice. Given that the glucose-induced changes in

metabolic flux through PK were not large (Figure 4B), we interpreted these findings to indicate that WT

and ob/ob mice used different regulatory mechanisms, allosteric regulation and transcripts, respectively,

to maintain the metabolic flux through PK rather than to change metabolic flux.
DISCUSSION

In this study, we developed a method OMELET to investigate alterations and dysregulation of metabolic

flux in the liver that are associated with obesity. Using OMELET, we inferred the metabolic fluxes in glucose

metabolism in livers of WT and ob/ob mice in the fasting state and after oral glucose administration to

identify relative changes in metabolic flux between the conditions. The metabolic flux through reactions

in gluconeogenesis and the pyruvate cycle increased in ob/ob mice compared to WT mice in the fasting

state. The increased metabolic fluxes through reactions in gluconeogenesis were mainly caused by

increased transcripts. In the pyruvate cycle, increases in transcripts mediated the increased metabolic

flux through PK and increases in substrates the increase through PEPCK. In response to oral glucose admin-

istration, differences in the metabolic fluxes within mice of the same genotype were small compared to

those between WT and ob/ob mice. Oral glucose administration did not change metabolic flux through

PK in either WT or ob/ob mice, but the metabolic flux was regulated by increased ATP in WT mice and

by decreased Pklr transcript in ob/ob mice. Thus, WT and ob/ob mice used different regulatory
14 iScience 25, 103787, February 18, 2022
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Figure 7. Contributions of regulators to changes in metabolic flux through PK by oral glucose administration

(A) Scatterplots illustrating the relationships between the contributions of enzymes and metabolites to changes in metabolic flux and the fold changes of the

metabolic flux after oral glucose administration over that in the fasting state inWTmice (upper graphs) and ob/obmice (lower graphs). For each reaction, the

mean G SD of the distribution of the contributions of enzyme or metabolite to changes in metabolic flux (x axis) is plotted against the mean G SD of the

distribution of the fold changes of themetabolic flux of ob/obmice over that of WTmice in the fasting state (y axis). The vertical gray dotted line indicates the

boundary where a fold change equals one. PK is highlighted in red.

(B) Contribution of regulators to changes in metabolic flux between fasting and after oral glucose administration in WT mice (left) and ob/obmice (middle).

The stacked bars indicate themean of the contributions independently calculated in all the Markov chain Monte Carlo samples in Figure S8. The violin plot in

each reaction represents the distribution of the distance quantified as L2 norm between the contribution in WT and ob/obmice independently calculated in

all the Markov chain Monte Carlo samples. The vertical red line in each violin plot means the median of the distribution. See also Table S6.

(C) Quantitative trans-omic networks for relative changes in metabolic flux through PK by oral glucose administration in WT mice and ob/ob mice. The

networks had the same structures as those in Figure 6. Schematic representation of the main regulators to changes in metabolic flux between fasting and

after oral glucose administration is displayed to the right of each network. We considered F1,6P as an allosteric activator, and ATP, alanine, and

phenylalanine as allosteric inhibitors for PK in the Metabolite layer.
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mechanisms, allosteric regulation and transcripts, respectively, to maintain the metabolic flux through PK

rather than to change metabolic flux.

Although isotopic labeling is the current gold standard for measuring metabolic flux, it requires substantial

experimental optimization of appropriate isotopic tracers, their dosages, and the time course of isotopic

enrichment of metabolites. The administration method of isotopic tracers should be carefully determined

depending on the biological questions (McCabe and Previs, 2004; Srivastava et al., 2016). The exchange of

metabolites between multiple different organs through the blood circulation makes it difficult to precisely

predict the contribution from other organs to the labeling patterns in the target organs (Fernández-Garcı́a

et al., 2020; Srivastava et al., 2016). Furthermore, when we investigate metabolism in fasted mice which

external nutrients do not come into, the addition of isotopic tracers can perturb the relevant metabolic

flux, resulting in different metabolic states (Previs and Kelley, 2015). For example, when 13C-propionate

or 13C-lactate is used as an isotopic tracer for measurement of gluconeogenic flux in fasted mice, the

measured metabolic fluxes differ between tracers because the administration of 13C-propionate increases

metabolic flux through the pyruvate cycle (Perry et al., 2016). In contrast, the use of multi-omic data to infer

metabolic fluxes reduces the complexity in the current standard isotopic labeling experiments regarding

the experimental optimization, administration of isotopic tracers, and metabolite exchanges between

different organs. Furthermore, the metabolomic, proteomic, and transcriptomic data provide not only

the metabolic flux through individual reactions but also the regulation of metabolic flux frommultiple mol-

ecules. Therefore, although isotopic labeling is certainly the current best way to study metabolic fluxes,

OMELET can be an alternative tool to investigate metabolic flux without using isotopic labeling. However,

the accuracy of inference of metabolic flux without isotopic labeling data needs to be validated. We

validated the performance of OMELET by applying it to the simulated datasets from kinetic models of

the hepatocyte glucose metabolism (Marı́n-Hernández et al., 2020) and yeast glycolysis (Messiha et al.,

2014; Smallbone et al., 2013) (Figure S2). We also applied OMELET to the data in fasting mouse liver

and found that the inferred metabolic fluxes in WT mice were consistent with those in the previous studies

(Figures S6A and S6B). The fold changes of the metabolic fluxes through most reactions in the glucose

metabolism of ob/obmice over that of WTmice inferred by OMELET were consistent with those in the pre-

vious studies, except for that through glycogenolysis (Figures S6C and S6D). These results suggested that

the experimental data of the amounts of enzymes and metabolites would contain some, if not sufficient,

information on metabolic fluxes as latent parameters, which can be inferred by OMELET. One disadvan-

tage of using multi-omic data to infer metabolic fluxes based on kinetic modeling is that many assumptions

including reaction kinetics and regulations underlie in kinetic modeling. In addition, kinetic modeling re-

quires more number of parameters such as turnover rate, dissociation constant of metabolites, equilibrium

constants, and elasticity coefficients compared to a general metabolic flux analysis using isotopic tracers,

which makes the optimization of parameters difficult in kinetic modeling using multi-omic data.

OMELET is a kind of kinetic modeling framework of metabolism. Although mechanistic kinetic models of

metabolism enable a quantitative understanding of metabolic flux and its regulation, the difficulty in ob-

taining kinetic parameters especially in intact cells or tissues has been a major drawback. To overcome

this challenge, advanced kinetic modeling frameworks have been developed (Saa and Nielsen, 2017),

including Optimization and Risk Analysis of Complex Living Entities (ORACLE) (Miskovic and Hatzimanika-

tis, 2010), General Reaction and Assembly Platform (GRASP) (Saa and Nielsen, 2015), Ensemble Modeling

(EM) (Tran et al., 2008), and Mass Action Stoichiometric Simulation (MASS) (Jamshidi and Palsson, 2008). In

comparison with these kinetic modeling frameworks, OMELET is characterized by several features

including both advantages and disadvantages. The major advantage of OMELET is that it can infer meta-

bolic fluxes from metabolomic and proteomic data (and transcriptomic data if available), whereas most

kinetic modeling frameworks infer kinetic parameters using metabolic fluxes as inputs which are experi-

mentally measured or inferred by constraint-basedmodeling. OMELET infers relative changes in metabolic

flux between conditions using relative quantification of metabolites, enzymes (and transcripts if available)

instead of absolute quantification, which is more difficult to obtain than relative quantification. Another

important feature is that OMELET can quantitatively integrate several omic layers based on kinetic equa-

tions. Such multi-omic integration into one mathematical framework is still very challenging even in the

advanced kinetic modeling frameworks described above. Furthermore, OMELET does not require the

description of reaction kinetics for all the reactions in the metabolic pathway of interest: only a subset of

reactions associated with measured metabolites and enzymes needs to be described in reaction kinetics.

The existing kinetic modeling frameworks require the description of reaction kinetics in all the reactions.
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However, the occurrence of missing data in multi-omic studies increases uncertainty of parameters and

simulation results in mathematical modeling. In contrast, OMELET attempts to overcome this problem

by omitting descriptions of reactions kinetics for reactions whose regulator amounts are not measured,

which reduces the uncertainty of inferred metabolic fluxes and contributions of regulators. One of the

disadvantages of OMELET is that OMELET cannot be used to predict the metabolic state under specific

perturbations to kinetic parameters because of the lack of kinetic descriptions for a part of the metabolic

reactions in the pathway. Another disadvantage is that OMELET does not explicitly consider thermody-

namic constraints on metabolic fluxes and kinetic parameters as ORACLE and GRASP do. The thermody-

namic constraints could be incorporated into OMELET as priors for them in the future.

We used the simultaneously obtained experimental dataset of the amounts of metabolites, enzymes, and

transcripts from the same samples for OMELET. Using simultaneously obtainedmulti-omic data, a Bayesian

method has the potential to analyze metabolic flux (Heinonen et al., 2019) and its regulation (Hackett et al.,

2016; John et al., 2019; Saa and Nielsen, 2016). Such datasets enabled us to apply a Bayesian method rather

than analyzing the population mean. A Bayesian method can incorporate uncertainties inherent in the

experimental data, such as measurement noise and population heterogeneity. Based on a Bayesian

method, we assumed the experimental data resulted from a generative model that described the underly-

ing processes given latent parameters, and evaluated the probability that themodel yields the data by likeli-

hood. In OMELET, the enzymes were derived from a generative model based on metabolic flux, and the

transcripts from a generative model based on protein turnover (Figure 3). Using these two generative

models in OMELET, we evaluated the likelihood of the enzymes and transcripts from each mouse to infer

unknown parameters including metabolic fluxes, elasticity coefficients and mRNA-to-protein ratios.

OMELET does not require kinetic and thermodynamic parameters that have already been reported for the

metabolic pathway of interest. There are two reasons why we inferred kinetic parameters in OMELET. The

first reason is that most kinetic parameters have been determined in isolated enzymes and it is unclear

whether they reflect enzyme behavior in intake cells or tissues under the experimental conditions we

analyze (Davidia et al., 2016; Heckmann et al., 2020; Teusink et al., 2000). The parameter values depend

on many factors such as tissue types or experimental and physiological conditions. The second reason is

that, thanks to the minimal information requirement, OMELET is not specific to the glucose metabolism

whose kinetic parameters are well characterized but applicable to different metabolic networks in different

species whose kinetic parameters are not well characterized.

UsingOMELET, we found altered and dysregulatedmetabolic flux associated with obesity. We found that the

large increase in metabolic flux through reactions in gluconeogenesis in ob/obmice compared toWTmice in

the fasting state was mainly caused by increased gene expression of the enzymes (Figure 6). There are several

transcription factors (TFs) involved in controlling the expression of genes encoding enzymes involved in

gluconeogenesis. For example, cAMP response element-binding protein (CREB) activates transcription of

G6pc and Fbp1 (Hanson and Reshef, 1997; Herzig et al., 2001), as well as Gpi1 and Pgam1 (Everett et al.,

2013). Liver-specific knockdown of CREB reduced fasting plasma glucose concentrations in ob/ob mice

through downregulation of G6pc and Fbp1 (Erion et al., 2009). In addition to these key TFs identified by in-

dividual experiments, high-throughput measurements and multi-omic analyses have revealed many more

TFs involved in metabolic alteration associated with obesity (Egami et al., 2021; Kokaji et al., 2020; Soltis

et al., 2017). Although TFs contribute to changes in metabolic flux in glucose metabolism associated with

obesity, metabolic flux is also regulated by metabolites that include substrates, products, cofactors, and allo-

steric effectors. In this study, we found that transcripts, rather than metabolites, mainly contributed to the dif-

ferences in the metabolic flux through reactions in gluconeogenesis except for GPI and FBPase between WT

and ob/ob mice (Figure 4). Our results suggested that TFs would trigger increased gluconeogenic flux asso-

ciated with obesity by promoting the expression of the genes encoding the relevant metabolic enzymes.

In the pyruvate cycle, increased oxaloacetate (a substrate), rather than Pck1, contributed to the increased

metabolic flux through PEPCK in fasting ob/ob mice (Figure 6D). Several metabolic flux analyses showed

that the metabolic flux through PEPCK increased associated with obesity (Patterson et al., 2016; Satapati

et al., 2012; Sunny et al., 2011), which was consistent with our data. Given that PEPCK is an irreversible re-

action and there are no known allosteric effectors, possible regulators of the metabolic flux through PEPCK

include Pck1 amounts, the substrate oxaloacetate, and the cofactor GTP. However, it has been unclear

which regulator mainly contributed the increased metabolic flux through PEPCK associated with obesity.
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Among the possible regulators, Pck1 amounts decreased associated with obesity in the fasting state

(Samuel et al., 2009; Satapati et al., 2012; Sunny et al., 2011), which was observed in our proteomic data

(Figure 2). These studies suggest that the increased metabolic flux is not consistent with the decreased

Pck1 amount. Here, we found that increased oxaloacetate, although inferred as parameters, was respon-

sible for the increasedmetabolic flux through PEPCK (Figure 6D), which provides amechanistic explanation

for the increased metabolic flux through PEPCK that is associated with obesity.

The only difference in the contributions of regulators to the changes following oral glucose administration

betweenWT and ob/obmice was in metabolic flux through PK (Figure 7). In WTmice, the allosteric effector

ATP was the largest contributor to the slightly decreased PK flux. In ob/ob mice, a reduction in Pklr tran-

script was the largest regulatory contributor. A reason why allosteric regulation was not the main regulator

in ob/ob mice may be because amounts of allosteric effectors, such as ATP, were high even in the fasting

state and did not increase following oral glucose administration (Figure 2).

In calculating the contributions of regulators to changes in metabolic flux between the conditions, we

considered unaccounted flux regulators as one of the regulators of metabolic flux and unaccounted

enzyme regulators as one of the regulators of enzymes. The contributions of unaccounted flux regulators

to changes in metabolic flux between fasting WT and ob/ob mice were smaller than those of other regu-

lators in all the reactions in gluconeogenesis and the pyruvate cycle, indicating that changes in metabolic

fluxes through these reactions can be explained by known regulators that we considered (Figures 5B and

S8). In contrast, the contributions of unaccounted enzyme regulators to changes in enzyme in reactions

through GPI and FBPase were relatively larger than those through other reactions, indicating that the in-

crease in enzyme in ob/ob mice cannot be explained by the transcripts. Although we used a simple linear

relationship between the amount of an enzyme and a transcript in OMELET, an increase in enzyme that is

not accompanied by the changes in transcripts should be explained by other regulatory mechanisms, such

as changes in protein stability. Furthermore, the contributions of unaccounted flux regulators to changes in

metabolic flux between fasting and after oral glucose administration were larger in many reactions than

those between fasting WT and ob/ob mice (Figures 7B and S8). To explain the contributions of unac-

counted flux regulators, we need to consider posttranslational modifications, such as phosphorylation,

of enzymes. Such data can be incorporated by including phosphoproteomic data.

It is important to consider that binding of metabolites to TFs can regulate gene expression. In this study,

however, we did not model the influence of metabolites on transcript levels via TF regulation. To incorpo-

rate the regulation of gene expression by binding of metabolites to TFs into OMELET, metabolite-TF, and

TF-gene interactions with information on activation or inhibition should be specified. The expression of

transcript amounts as a function of metabolites in a steady state would enable us to evaluate the likelihood

of the transcript amounts (Bhattacharya et al., 2014). A major difficulty would be insufficient biological

knowledge about metabolite-TF and TF-gene interactions. Another difficulty would lie in parameter esti-

mation for modeling the complex regulation of gene expression just frommetabolomic and transcriptomic

data. Additional experimental data such as protein amounts of TFs, promoter activities of target genes,

and chromatin states would be needed (Yugi et al., 2019). Although metabolite-TF and TF-gene interac-

tions can regulate gene expression, the inclusion of TFs regulated by metabolites would have little effect

on our metabolic flux inference and calculation of contributions to changes in metabolic flux between con-

ditions because the amounts of transcripts were directly given by the experimental data.

In conclusion, we developed OMELET, which uses the simultaneously obtained multi-omic data to infer

metabolic fluxes in the glucose metabolism in multiple conditions and to identify changes in metabolic

flux between the conditions. Furthermore, we calculated the contributions of the regulators to the changes

in metabolic flux between the conditions. OMELET is designed to infer metabolic flux without using iso-

topic labeling data and to simultaneously infer changes in metabolic flux and the contributions of regula-

tors. The quantitative trans-omic network provided insights into the obesity-associated changes in the

glucose metabolism in liver and revealed comprehensive molecular mechanisms for understanding the pa-

thology of alteration and dysregulation of metabolic flux associated with obesity.
Limitations of the study

There are several limitations of this study. We did not examine enzyme activities (Vmax or kcat) and

assumed that kcat is constant: the change in metabolic flux is proportional to the change in enzyme amount
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when the amounts of metabolites are constant. Although we considered unaccounted flux regulators,

which reflect enzyme activities not explained by enzyme amounts, the measurement of actual enzyme ac-

tivities would be important to understand the regulation of metabolic flux by enzymes. In addition, variation

of one enzyme is not always correlated with the variation of its coding transcript across different conditions,

but we assumed a nearly linear relationship between enzyme and transcript changes to simplify the

modeling (Liu et al., 2016; Lundberg, 2010) ). Changes in enzyme amounts that cannot be explained by

changes in transcript amounts under the linear assumption, such as Gpi1 and Fbp1, can be explained by

unaccounted enzyme regulators in OMELET. Nevertheless, incorporating other processes that contribute

to changes in enzyme amounts including protein stability and translation rate would facilitate more accu-

rate modeling of OMELET. The 95% credible intervals of the metabolic fluxes in the TCA cycle were large

compared to those through other reactions in glucose metabolism (Figures 4A and S4), indicating that the

metabolic fluxes in the TCA cycle were not precisely determined. The large credible intervals of the inferred

metabolic fluxes in the TCA cycle may be because of small changes in the amounts of enzymes and metab-

olites in the TCA cycle between the conditions. Alternatively, the large credible intervals of the inferred

metabolic fluxes in the TCA cycle may be because we did not consider the compartmentation of reactions

into cytosol and mitochondria, and inferred metabolic fluxes averaged in a whole cell. Concentrations of

several metabolites, especially citrate and a-ketoglutarate, could differ between cytosol and mitochondria

(Chen et al., 2016; Lee et al., 2019), which may affect the calculation of metabolic fluxes and contributions to

the changes in metabolic fluxes between conditions. In addition, OMELET is based on a steady state

assumption and cannot infer dynamic changes in metabolic flux under nonsteady state conditions.
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d The MATLAB and R code for OMELET is available at GitHub (https://github.com/usa0ri/OMELET). An

image for Docker container that include RStan and R software to perform OMELET is available at Dock-

erHub Registry (https://hub.docker.com/repository/docker/saori/rstan).

d The datasets generated during this study are in the published article.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

We used the mouse liver samples obtained simultaneously with those previously published (Egami et al.,

2021; Kokaji et al., 2020). Briefly, 10-week-old male C57BL/6J wild-type and ob/ob mice (Japan SLC, Inc.,

Shizuoka, Japan) were overnight (16 hours) fasted or administrated 2 g/kg body weight of glucose orally

after overnight fasting. The mice before or four-hour after glucose loading were sacrificed by cervical dislo-

cation and the whole or left lobe of the liver was dissected and immediately frozen in liquid nitrogen. The

frozen liver was pulverized with dry ice to a fine powder with a blender and separated into tubes for tran-

scriptomic, proteomic, and metabolomic measurements. Note that all the omics data was simultaneously

measured from the same individual mice. All the mouse experiments were performed according to proto-

cols approved by the animal ethics committee of The University of Tokyo.

We hadmice under four conditions:WTmice in the fasting state (n = 11), ob/obmice in the fasting state (n =

12), WT mice after oral glucose administration (n = 12), and ob/ob mice after oral glucose administration

(n = 12). The metabolomic data of five samples in each condition were reported in our previous studies

(Egami et al., 2021; Kokaji et al., 2020). We obtained the metabolomic data from all the samples in this

study. The transcriptomic data from all the samples in the fasting state and five after oral glucose admin-

istration were reported in our previous studies. We obtained the transcriptomic data from seven samples

after oral glucose administration in this study.
METHOD DETAILS

Metabolic network for glucose metabolism in mice

A metabolic network for glucose metabolism in mice was constructed to infer metabolic fluxes and calcu-

late the contributions of regulators to changes in metabolic flux between conditions. The network consists

of 35 metabolites and 22 reactions (Table S1) in gluconeogenesis, glycogenolysis, lactate and alanine

metabolism, and the TCA cycle (Figure 2).

We included isoforms whose gene expression levels were high in the liver in themetabolic network. Most of

the cytosolic enzymes had one dominant isoform and the amounts of transcripts of other isoforms were

much lower under all the conditions we analyzed, suggesting that other isoforms would not modify the

enzyme activity carried by the dominant isoforms.

The liver produces glucose through the gluconeogenesis and consumes glucose through glycolysis. The

gluconeogenesis in liver includes reactions catalyzed by glucose 6-phosphatase (G6PC) and fructose-bi-

sphosphatase 1 (FBPase), while the glycolysis includes reactions by glucokinase (GK) and phosphofructo-

kinase (liver type) (PFKL). Assuming that the metabolic flux through GK and PFKL were negligible in livers of

WT and ob/ob mice in all the conditions, we included G6PC and FBPase in the metabolic network but not

included GK and PFKL. This is supported by several studies showing that the glucose production was more

dominant than the glucose consumption in livers of overnight fastingWTmice (Burgess et al., 2005; Hasen-

our et al., 2015, 2020; Satapati et al., 2012; Wang et al., 2020) and ob/obmice (Turner et al., 2005). We also

assumed that glucose consumption and metabolic fluxes through GK and PFKL are negligible four hours

after oral glucose administration, supported by previous studies using rats (Jin et al., 2003). Although we

did not find any studies to support the glucose production in ob/ob mice four hours after oral glucose

administration, ob/obmice after oral glucose administration in this study showed similar temporal changes

in blood glucose and insulin (Figures S1A and S1B) toWTWTmice. In addition, PFKL enzyme was not quan-

tified at the protein level because its amounts were smaller than other enzymes in the glucose metabolism

(Matsumoto et al., 2017). GK enzyme was quantified at the protein level but its substrate, free glucose, was

not measured. Therefore, we includedG6PC and FBPase in themetabolic network but not includedGK and

PFKL reactions. This also reduces the complexity of the metabolic model and computational cost for the

metabolic flux estimation.
24 iScience 25, 103787, February 18, 2022
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Although glycogen phosphorylase and glycogen synthase are important to analyze glycogen degradation

and synthesis, we did not include these reactions in our metabolic network because the amounts of these

enzymes were not measured. The reason why we did not include glycogen phosphorylase and glycogen

synthase is that the regulation of glycogen metabolism is so complex that OMELET would not precisely

infer themetabolic flux through glycogen phosphorylase and glycogen synthase from the amounts of these

enzymes and associating metabolites. Phosphorylation and subcellular localization of enzymes and hor-

mones play important roles in regulations of glycogen metabolism in the mammalian liver ((Ros, 2009)

Han et al., 2016), which makes the modeling very complex. In addition, we did not examine enzyme activ-

ities (Vmax or kcat) and assumed that kcat is constant. This assumption would be not the case with glycogen

phosphorylase and glycogen synthase. For these reasons, we anticipated that it would be difficult to infer

metabolic flux and its regulation even if the amounts of glycogen phosphorylase and glycogen synthase are

available. Therefore, we considered only PGM to express the net glycogen metabolic flux.

Glycogen levels increased after oral glucose administration in both WT and ob/obmice (Figure 2); howev-

er, it is unclear whether glycogen degradation or synthesis is dominant at four hours after oral glucose

administration. Therefore, we did not fix the direction of PGM reaction either toward glycogen synthesis

or degradation.

Pyruvate dehydrogenase (PDH), converting pyruvate to acetyl-CoA, was not included in the metabolic

network because several studies showed that the metabolic flux through PDH was small (�5%) relative

to those through the TCA cycle in WT mice in the fasting state (Perry et al., 2016). Malic enzyme (ME), con-

verting malate to pyruvate, was not considered because ME inhibitor did not affect the metabolic flux pro-

ducing pyruvate in fasting rodent models (Hasenour et al., 2020; Perry et al., 2016; Petersen et al., 1995),

suggesting the small contribution of ME to the metabolic flux.

Cytosolic andmitochondrial compartments were not considered for simplification and averagedmetabolic

fluxes as a single compartment were inferred in this study. Malate dehydrogenase (Mdh) has cytosolic

(Mdh1) and mitochondrial (Mdh2) isoforms, but we only considered Mdh2 as a part of reactions in the

TCA cycle for simplification.

OMELET is based on a Bayesian method and evaluates likelihood of the enzyme and transcript amounts

based on measured data (see the following sections), but we did not use all enzymes and transcripts in

the metabolic network for evaluation of the likelihood. Glucose 6-phosphatase was not used for evaluation

of the likelihood because it could not be quantified at the protein level. This was because unique peptides

for mouse glucose 6-phosphatase were not identified in data-dependent acquisition (DDA). Reactions

from citrate to succinate including aconitase (ACO), isocitrate dehydrogenase (IDH), and alpha-ketogluta-

rate dehydrogenase (OGDH) were not used to evaluate the likelihood of their enzymes because the

amounts of their substrates and products were not measured. Since reaction kinetics are not described

for ACO, IDH, and OGDH in OMELET, we did not include the NADH as a product inhibitor of these en-

zymes. Note that production of NADH from ACO to OGDH is included in the stoichiometric matrix of

the metabolic network. Bicarbonate in PC and CO2 in PEPCK were not included because we assumed

that their amounts are constant across the conditions and do not affect changes in metabolic flux between

conditions. Fructose 2,6-bisphosphate was not included as an allosteric inhibitor of FBPase because its

amount was not measured in our metabolomic analysis. Reactions in which NADP+ and NADPH participate

were not described in reaction kinetics in OMELET.
Algorithm of OMELET

We first review a framework of Bayesian inference. Statistical model consists of a likelihood, representing a

probability of the observed data z at a given parameter values q, and a prior distribution for q, denoting a

probability distribution of each parameter reflecting the feasible assumptions and prior knowledges.

Bayes’ theorem calculates the renormalized product of the likelihood pðzjqÞ and the prior distribution pðqÞ,

pðqjzÞfpðzjqÞpðqÞ
to produce the posterior parameter distribution pðqjzÞ, a probability of the parameters taking the values

given the observed data. The posterior distribution is obtained by updating the parameter values following

the prior distributions toward better fittings to the observed data evaluated in likelihood. The definition of

the prior distribution is critical especially when the sample size is small whereas sufficient samples make its
iScience 25, 103787, February 18, 2022 25
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effects on posterior parameter distribution decreases to get closer to maximal likelihood estimation. One

may assume additional parameters for prior distributions, which can be achieved by defining hyperpara-

meters h,

pðq;hjzÞfpðzjqÞpðqjhÞpðhÞ
to introduce a hierarchical structure in prior distributions. Furthermore, Bayesian regression uses the addi-

tional observed data w as explanatory variables to calculate posterior distributions defined as

pðq;hjz;wÞfpðzjq;wÞpðqjhÞpðhÞ:
In Omics-based Metabolic flux Estimation without Labeling for Extended Trans-omic analysis (OMELET),

observed data z is the experimental data of the amounts of enzymes and transcripts from the same samples

obtained from multiple conditions. The observed data w as explanatory variables is the experimental data

of the amounts of metabolites. Parameters q include metabolic fluxes in each condition, elasticity coeffi-

cients in linlog kinetics and mRNA-to-protein ratios. The prior pðqÞ is defined for all the parameters, and

the hyperprior pðhÞ is defined only for metabolic fluxes, which has hyperparameters h to obtain a

steady-state metabolic flux distribution based on the reactions of the metabolic network of interest. The

likelihood pðzjqÞ, which describes the relationship between the experimental data and the parameters,

is the product of the probability of the measured amounts of enzymes given the parameters and the prob-

ability of the measured amounts of transcripts given the parameters.

We start from defining the prior and hyperprior for metabolic fluxes as multivariable normal distribution in

each condition l = 1; 2;.;g. The metabolite concentration xl and metabolic fluxes v l describes a system of

mass balances around each metabolite in the form

_xl = Sv l (Equation 1)

for r 0 reactions andmmetabolites, where S denotes the stoichiometric matrix that links metabolites to their

reactions via stoichiometry. Note that this stoichiometric matrix is based on the open-formed metabolic

network that is transformed by removing rows for the metabolites that participated in transporting reaction

across the system boundary, resulting in m<r 0. The vector of the time derivative for metabolites _xl around

steady state is assumed to follow m-dimensional multivariate normal distribution

_xl � N �0;Sl
_x
�

(Equation 2)

with diagonal covariance matrix Sl
_x = diagðsl

_xÞ2. sl
_x represents the extent of relaxation from the steady

state and is defined later based on the influx and efflux around each metabolite. The number of variables

that need to be specified to calculate a steady-state fluxes in (Equation 1) is f = r 0 � rankðSÞ. Let us denote
the vectors of independent and dependent flux variables ul and vdj of length f and rankðSÞ, respectively.
Since dependent flux variables can be directly computed as linear combination of independent flux vari-

ables, we have only to estimate independent flux as hyperparameter to obtain the full metabolic fluxes.

Here the vector of independent flux was assumed to follow the multi-dimensional normal distribution

p
�
ul

��mu
l

�
= N �ul

��mu
l ;S

u
l

�
(Equation 3)

with mean mu
l and diagonal covariance matrix Su

l = diagðsu
l Þ2. The deviations of independent fluxes were

determined as su
l = cumu

l with a fixed coefficient of variance cu. The relation between independent and

dependent flux variables can be obtained via decomposition of the full flux vector into the vectors of inde-

pendent and dependent flux, and the (Equation 1) can be expressed as

_xl =
�
Sd Su

�" vd
l

ul

#
= Sdvd

l + Suul (Equation 4)

where m3rankðSÞ matrix Sd and m3f matrix Su contain columns corresponding to dependent and inde-

pendent flux variables, respectively. When Sd is regular withm= rankðSÞ and detðSdÞs0, the full flux vector

is directly computed as

v l =

"
vd
l

ul

#
=

"	
Sd

�1

ð _xl � SuulÞ
ul

#
=

"
�
	
Sd

�1

Su

Ir�m

#
ul +

"	
Sd

�1

0

#
_xl =Wuul +W _x _xl (Equation 5)

with transformation matrices Wu and W _x defined based on the inverse of Sd . Here we just considered the

metabolic pathways in which the stoichiometric matrix Sd was regular, and in other words the following
26 iScience 25, 103787, February 18, 2022
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situation was not considered because the full metabolic fluxes could not be computed from independent

flux variables: r 0<m or linearly dependent rows in S resulting in rankðSÞ<m. We avoided these conditions by

appropriate definition of the target metabolic pathway and stoichiometric matrix.

Now we obtain the prior distribution of the full metabolic fluxes from (Equation 5). Since linear combination

of normal random variables is also normal random variables, the vector of full metabolic flux follows the

r 0-dimensional normal distribution

pðv ljulÞ = N �v l

��mv
l ;S

v
l

�
(Equation 6)

with mean mv
l =Wumu

l and covariance matrix Sv
l = WuSu

l ðWuÞu +W _xSl
_xðW _xÞu. The diagonal covariance

matrix Sl
_x represents the variances around prior metabolite changes. In strict steady state, the prior for

metabolite change becomes Dirac’s delta function at zero by increasing the variances, we can relax the

steady-state assumption on individual metabolites and encode allowance for accumulations or depletions

of them. The squared diagonal element sl
_x was obtained from the mean of the prior distribution of meta-

bolic flux as

sl
_x =

c _x

2

�
S +

mv
l + S�

mv
l

�
; (Equation 7)

with a fixed coefficient of variance c _x by defining production and consumption stoichiometric matrices as,

S + =
1

2
ðabsðSÞ + SÞ; S� =

1

2
ðabsðSÞ� SÞ; (Equation 8)

where absðSÞ is the matrix of absolute values of the corresponding entries of S. Note that the entries of the

matrix S + corresponds to the number of molecules of metabolite produced by the reaction. Conversely,

each entry of the matrix S� give the number of molecules of metabolite consumed by the reaction.

Next, we define the likelihood of the measured amounts of enzymes given parameters and prior for

elasticity coefficients based on linlog kinetics. Since the experimental data of the amounts of metabolites

and enzymes is usually not available for all reactions in themetabolic network, the likelihood was calculated

for a subset of the reactions. We consider the metabolic flux through the subset of the reactions R4 R0 =
f1; 2;.;r 0g, where R consists of r reactions. For each sample k = 1; 2;.;nj under condition l ðl = 1; 2;.;gÞ,
the amounts of metabolites xkl (am31 vector) and the amounts of enzymes ekl (a r31 vector) are obtained

after normalizing by the average amounts across all the conditions. In the linlog kinetics framework, the

metabolic flux through reaction j˛R ðbv jklÞ is expressed as

bv jkl = v0
j ejkl

	
1 + ε

u
j lnxkl



; (Equation 9)

where v0j is the metabolic flux in the reference state, and εj is the m31 vector of elasticity coefficients. v0j is

defined as the mean of the prior metabolic flux values across conditions as v0j = 1=g
Pg
l = 1

mv
jl where mv

jl is a prior

mean of the metabolic flux vjl . εji describes the effect of changes of the amounts of metabolites xi on the

metabolic flux vj, and is positive if metabolite i is a substrate or an allosteric activator for reaction j, while

negative if the metabolite is a product or an allosteric inhibitor. If metabolite i does not directly participate

in reaction j, the value of εji equals to zero. According to (Equation 9) the amount of the enzyme is calculated

using the inferredmetabolic flux vjl. Here, the amount of the enzyme in each sample ejkl is assumed to follow

the normal distribution around the estimated value bejkl , and we obtain the likelihood of the measured

amount of the enzyme given parameters as

p
�
ejkl

��xkl; vjl; εj;s
be�=N

	
ejkl

���bejkl; ðsbeÞ2
;
bejkl =

vjl
v0
j

1

1+ ε
u
j ln xkl

;
(Equation 10)

where vjl is the inferred metabolic flux of reaction j. For simplicity, the variance of the error term sbe is set to

the same values in all the reactions, samples, and conditions. We placed half-Cauchy priors with scale 0.5

on sbe , set as a weakly informative prior distribution given that sbe was expected to be less than one.

Elasticity coefficients are likely not to significantly deviate from the range between -1 and 1 theoretically

(Kacser and Burns, 1995), and are likely to be positive for substrates and allosteric activators whereas
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negative for products and allosteric inhibitors. This property generates prior distributions for elasticity

coefficients as

p
�
εji

�
=

8>>>>>>>><>>>>>>>>:

H�εji��1� if metabolite i is substrate

or allosteric activator in reaction j

H��εji

��1� if metabolite i is product

or allosteric inhibitor in reaction j

d
�
εji

��0� others
HðxjsÞ=

ffiffiffi
2

p

s
ffiffiffi
p

p exp

�
� x2

2s2

�
; x˛½0; +NÞs

dðxjmÞ= lim
s/0

1ffiffiffiffiffiffiffiffiffiffiffi
2ps2

p exp

 
� ðx � mÞ2

2s2

!
; x˛ð �N; +NÞ

(Equation 11)

where HðxjsÞ indicates half-normal distribution with variance s, and dðxjmÞ indicates Dirac’s delta function

equal to zero everywhere except for m.

Theoretically, the elasticity coefficient in linlog kinetics indicates the degree of saturation of the enzyme

with a particular metabolite, and can qualitatively capture the saturation of individual enzymes with their

regulators (Childs et al., 2015; Wang et al., 2004). The greater the absolute value of elasticity with its metab-

olite, the less saturated the enzyme catalyzing the reaction is with the metabolite. The assumption in

OMELET that elasticity coefficients are likely to be close to zero is consistent with the distribution of exper-

imentally calculated elasticity coefficients of more than 4,000 reactions in E. coli (Reznik et al., 2017).

The amounts of enzymes are explained in the context of not only metabolic flux but also of protein turnover.

Here we define the likelihood of the measured amounts of transcripts given parameters and priors for

mRNA-to-protein ratio bij. For each sample k = 1; 2;.; nj under condition l ðl = 1; 2;.;gÞ, the estimated

amounts of enzymes bekl and the corresponding amounts of transcripts btkl represents the enzyme change

rate _ekl as

_ekl =
�
k +
l

�ubtkl � �k�
l

�ubekl; (Equation 12)

where k +
l and k�l are r31 vectors of kinetic parameters for protein synthesis and degradation, respectively.

Assuming the amounts of enzymes as stable within the observed time intervals, the amounts of enzymes

and transcripts have a linear relationship and we obtain the likelihood of the measured amount of the tran-

script given parameters as,

p
�
tjkl
��bejkl;bjl;s

bt �=N
	
tjkl
���bt jkl; ðsbt Þ2
;

bt jkl = 1

bjl

bejkl;
(Equation 13)

using mRNA-to-protein ratio bjl = k +
jl =k

�
jl and the estimated amount of enzyme bejkl in each sample defined

in (Equation 10). The parameter to determine the variance of the error term s
bt is simplified as the common

values in all the reactions, samples, and conditions. We placed half-Cauchy priors with scale 0.5 on s
bt .

Given that there is a high correlation between copy numbers of RNA and protein especially in the glucose

metabolism (Matsumoto et al., 2017), themRNA-to-protein ratio bjl is expected to be close to one when the

amounts of enzymes and transcripts are normalized to their averages. Therefore, the prior distribution for

bjl can be described by

p
�
bjl

��sb

l

�
= N

	
bjl

���1; �sb

l

�2

(Equation 14)

with error term defined by s
b

l in each condition. We placed half-Cauchy priors with scale 0.5 on s
b

l .

Combining the likelihood with the priors based on linlog kinetics (Equations 6, 10 and 11, and Table S7) and

protein turnover (Equations 13 and 14, and Table S7), the joint posterior distribution is given by
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pðv; ε;b; sbe ;sbt je; x; t; cu; c _x ;SÞ
fpðe; tjx; v; ε;sbe ;b;sbt Þpðvju; c _x ;SÞpðujmu; cuÞpðεÞpðbÞpðsbeÞpðsbt Þ;
pðe; tjx; v; ε;sbe ;b;sbt Þ=pðejx; v; ε; sbeÞpðtjx; v; ε;b;sbt Þ:

(Equation 15)

where pðe; tjx; v; ε;sbe ;b; sbt Þ is the likelihood of the measured amounts of enzymes based on linlog kinetics

combined with the likelihood of the measured amounts of transcripts based on protein turnover,

pðvju; c _x ;SÞ is the prior distribution for metabolic flux v, pðujmu; cuÞ is the hyperprior distribution for inde-

pendent flux u, pðεÞ is the prior distribution for elasticity coefficients ε, pðbÞ is the prior distribution for

mRNA-to-protein ratios b, pðsbeÞ is the prior distribution for parameter of error term sbe , and pðsbt Þ is the
prior distribution for parameter of error term s

bt .
Application of OMELET to mouse data

We applied OMELET to the experimental data from mice in four conditions: WT in the fasting state, WT

after oral glucose administration, ob/ob in the fasting state, and ob/ob after oral glucose administration.

The independent fluxes were constrained so that the flux through G6PC in WTmice in the fasting state was

fixed at one. Ametabolic flux through each reaction was inferred simultaneously in all the conditions and as

inferred as the relative value to that through G6PC inWTmice in the fasting state. The amounts of pyruvate

and oxaloacetate were not available in our measurements because of their chemical instability and low con-

centrations. For such metabolite species, the relative amounts normalized to the mean across the condi-

tions were inferred as parameters. The amounts of enzymes of glutamic pyruvic transaminase (Gpt) and

glutamate dehydrogenase 1 (Glud1) were not measured and only the likelihood of the measured amounts

of transcripts was evaluated. Several enzymes function as complex including succinate dehydrogenase,

which is also known as respiratory complex II. Two subunits of succinate dehydrogenase, subunit A

(Sdha) and subunit B (Sdhb), were available both in the amounts of enzymes and transcripts. The amounts

of Sdha and Sdhb were independently normalized to the mean values across the conditions, and then the

product was introduced as e for the reaction through succinate dehydrogenase (SDH) in (Equation 10).

Other reactions were catalyzed by a single enzyme or by complex with only one subunit measured and a

single enzyme data was used. The parameters for coefficient of variances cu and c _x were fixed at 0.1 and

0.01, respectively.

We performed posterior predictive checks to evaluate the fitting of the model to the measured data of the

amounts of enzymes and transcripts from mice. Posterior predictive distributions of enzymes can be simu-

lated by sampling parameters from the posterior and using them to generate replicate data sets based on

(Equation 10). Posterior predictive distributions of transcripts can be simulated in the same way based on

(Equation 13). We compared the posterior predictive distributions with the measured data and confirmed

the good fits to the experimental data of the amounts of enzymes and transcripts (Figure S5).

Parameter estimation

Based on the specified prior distribution and likelihood, the posterior distributions of parameters were

numerically estimated by Markov Chain Monte Carlo (MCMC) sampling. The algorithm was a No-U-turn

sampler (NUTS), a variant of Hamiltonian Monte Carlo (HMC), constructing an iterative process that even-

tually converges to the true posterior distribution (Hoffman and Gelman, 2014). For application to the data

frommice, we ran four chains of 20,000 iterations with 10,000 burnings with thinning of 2, resulting in 20,000

samples in total. Convergence of Markov Chains was evaluated by R-hat diagnostic, which compares the

between- and within-chain estimated for model parameters. All our runs satisfied R-hat less than 1.05, indi-

cating that chains weremixed well. All the parameter estimation was performed using RStan library (version

2.19.2) in R software (3.6.1) within a Docker container (Merkel, 2014).

Simulation using hepatocyte kinetic model

The model of hepatocyte glucose metabolism (Marı́n-Hernández et al., 2020) was kindly provided by Dr.

Álvaro Marı́n Hernández and Dr. Emma Saavedra as COPASI (Complex Pathway Simulator) format (Hoops

et al., 2006). The kinetic model represented the glycolytic pathway from glucose down to lactate as well as

the pentose phosphate pathway and glycogen metabolism. We used the reactions except for cofactor

metabolism (NADPH consumption, ATP-consuming processes, adenylate kinase, nucleotide diphosphate

kinase, glutathione reductase, and glutathione peroxidase) because the mass balance for cofactors is not

considered in OMELET. We also excluded transketolase reaction because of the fixed amounts of its
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substrates, which makes it difficult to infer metabolic flux through transketolase using the relative amounts

of metabolites across conditions in OMELET. Briefly, we first perturbed the original model (WT) to generate

models of four mutant strains (mutant 01 to 04), and then 50 datasets including the amounts of metabolites,

enzymes, and metabolic fluxes were generated for each of the models. The parameters of theWTmodel in

enzyme i (z0i ) to be perturbed included rate constants of mass action, Vmax for forward and backward, or

constant fluxes. The magnitude of perturbation zl (l = 1;.;5), strain-specific noise, was set so that mutant

strains with perturbed parameter sets zl were gradually deviated from the WT model (Table S8).

Based on the perturbed model, sample datasets were generated by introducing sample-specific noises

z
sample
i � Nð0; ð0:1zliÞ

2Þ for each parameter value zli , which represented variety between samples in the

same strain and were assumed to be common in all the strains. Steady-state simulation using the parameter

set with the strain-specific and sample-specific noises produced a dataset containing 50 samples with the

amounts of metabolites, enzymes, and metabolic fluxes under each of the five conditions. The perturbed

parameter names and values in the hepatocyte kinetic model are listed in Table S4. All the steady-state

simulation were executed using COPASI software (Hoops et al., 2006).

To evaluate the performance of OMELET, only the dataset of the amounts of enzymes andmetabolites, not

including metabolic fluxes, were used as input. Since the amounts of transcripts were not available, we

obtained the joint posterior distribution

pðv; ε;b;sbe je; x; cu; c _x ;SÞfpðejx; v; ε; sbeÞpðvju; c _x ; SÞpðujmu; cuÞpðεÞpðbÞpðsbeÞ (Equation 16)

where the likelihood of transcripts (Table S6) was removed from (Equation 15). The independent fluxes were

constrained so that themetabolic flux through glucose uptake (glucose transporter; GLUT) inWT strain was

fixed at one. A metabolic flux through each reaction was inferred as the relative value to that through GLUT

in WT. The parameters for coefficient of variances cu and c _x were fixed at 0.1 and 0.01, respectively. For

MCMC sampling, we ran four chains of 5,000 iterations with 2,500 burnings with thinning 2, resulting in

5,000 samples in total. The metabolic fluxes inferred by OMELET were then compared with those obtained

from the perturbation and steady-state simulation of the kinetic model.
Simulation using yeast kinetic model

The model of yeast glycolysis was downloaded from the public model repository BioModels Database (Le

Novère et al., 2006) as SBML (Systems Biology Markup Language) format (Hucka et al., 2003), with the iden-

tifier BIOMD0000000503 (Messiha et al., 2014; Smallbone et al., 2013). The kinetic model represented the

glycolytic pathway from glucose down to ethanol as well as the pentose phosphate pathway, and only the

glycolytic part was used in our simulation. Briefly, we first perturbed the original model (WT) to generate

models of four mutant strains (mutant 01 to 04), and then 50 datasets including the amounts of metabolites,

enzymes, and metabolic fluxes were generated for each of the models. The parameters of theWTmodel in

enzyme i (z0i ) to be perturbed included kcat, Vmax, or an enzyme concentration. The magnitude of pertur-

bation zl ðl = 1;.;5Þ, strain-specific noise, was set so that mutant strains with perturbed parameter sets zl

were gradually deviated from the WT model (Table S8).

Based on the perturbed model, sample datasets were generated by introducing sample-specific noises

z
sample
i � Nð0; ð0:1zliÞ

2Þ for each parameter value zli , which represented variety between samples in the

same strain and were assumed to be common in all the strains. Steady-state simulation using the parameter

set with the strain-specific and sample-specific noises produced a dataset containing 50 samples with the

amounts of metabolites, enzymes, and metabolic fluxes under each of the five conditions. The perturbed

parameter names and values in the yeast kinetic model are listed in Table S4. All the steady-state simulation

were executed using the Simbiology toolbox in MATLAB (The MathWorks, Inc., Natick, Massachusetts,

United States of America).

To evaluate the performance of OMELET, only the dataset of the amounts of enzymes andmetabolites, not

including metabolic fluxes, were used as input. We obtained the joint posterior distribution described in

(Equation 16). The independent fluxes were constrained so that the metabolic flux through glucose uptake

(hexose transporter; HXT) inWT strain was fixed at one. Ametabolic flux through each reaction was inferred

as the relative value to that through HXT in WT. The parameters for coefficient of variances cu and c _x were

fixed at 0.1 and 0.01, respectively. For MCMC sampling, we ran four chains of 20,000 iterations with 17,500

burnings with thinning 2, resulting in 5,000 samples in total. The metabolic fluxes inferred by OMELET were
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then compared with those obtained from the perturbation and steady-state simulation of the kinetic

model.
Contributions of regulators to flux changes

We define a contribution jjh of regulator h to changes in metabolic flux through reaction j between condi-

tions. The regulators include transcripts, unaccounted enzyme regulators, substrates, products, cofactors,

allosteric effectors, and unaccounted flux regulators. The unaccounted enzyme regulators can include

other regulatory mechanisms of the protein amount of enzyme such as protein degradation and stability.

The unaccounted flux regulators can include other regulators such as phosphorylation of enzymes and un-

known allosteric effectors not included inOMELET. The concept of the contribution is to partition the cause

of changes in metabolic flux between conditions into underlying changes in the amounts of regulators

including enzymes and metabolites. The contribution was calculated based on propagation of uncertainty

of regulators’ amounts to metabolic flux, and a similar approach was described in a previous study (Hackett

et al., 2016). Note that we analyzed only the local effects of regulators on changes in metabolic flux and do

not evaluate the effects on changes in metabolic flux in which the regulator was not directly participated.

Before we calculated the contribution, we define the amounts of unaccounted flux regulators and unac-

counted enzyme regulators. Based on (Equation 9), the inferred metabolic flux through reaction j in condi-

tion l can be described as

vjl = bv jkl +4v
jkl = v0

j ejkl

	
1 + ε

u
j ln xkl



+4v

jkl: (Equation 17)

4v
jkl is the amount of an unaccounted flux regulator in sample k in condition l and represents the deviation of

the inferred metabolic flux from that calculated using linlog kinetics. Similarly, based on (Equation 13), the

measured amount of enzyme in reaction j can be described as

ejkl = bjltjkl +4e
jkl: (Equation 18)

4e
jkl is the amount of an unaccounted enzyme regulator and represents the deviation of the measured

amount of the enzyme from that calculated using the amount of transcript and the mRNA-to-protein ratio.

Combining (Equations 17 and 18), we obtain

vjl = v0
j

	
bjltjkl + 4e

jkl


	
1 + ε

u
j lnxkl



+4v

jkl (Equation 19)

which represents metabolic flux vjl as a function of the transcript tjkl , the unaccounted enzyme regulator 4e
jkl ,

the metabolites xkl including substrates, products, cofactors and allosteric effectors, as well as the unac-

counted flux regulator 4v
jkl .

We defined the contribution to changes inmetabolic flux from transcripts, unaccounted enzyme regulators,

andmetabolites of substrates, products, cofactors, and allosteric effectors, as well as unaccounted flux reg-

ulators. Based on propagation of uncertainty, assuming that interactions between regulators is ignored,

the variance VarðvjÞ of inferred metabolic flux vj through reaction j can be approximated as

Var
�
vj
�
z
X
h

 
vvj
vyjh

!2

Var
	
yjh



(Equation 20)

with the amount of regulator h (yjh), the sensitivity of the metabolic flux to the regulator vvj=vyjh, and the

variance of the amount of the regulator VarðyjhÞ. Regulator h is the transcript, the unaccounted enzyme

regulator, substrate, product, cofactor, allosteric effector, or unaccounted flux regulator. The variance of

the amount of the regulator between two conditions VarðyjhÞ is expressed as the change in the amount

of the regulator between the two conditions Dyjh as

Var
	
yjh


=

�
Dyjh
2

�2

: (Equation 21)

The sensitivity of the metabolic flux to each regulator vvj=vyjh is defined based on (Equations 17 and 19) as
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vvj
vyjh

=

8>>>>>>>>>><>>>>>>>>>>:

bjv
0
j

	
1+ ε

u
j lnx



if regulator h is the transcript

v0
j

	
1+ ε

u
j lnx



if regulator h is the unaccounted enzyme regulator

v0
j ejεji

yjh
if regulator h is a metabolite

1 if regulator h is the unaccounted flux regulator

; (Equation 22)

where x and ej indicate the means of the metabolites and enzyme in reaction j across two conditions,

respectively. Using the variance and the sensitivity of the metabolic flux to the amount of each regulator,

we defined a contribution of the change in regulator h to the change in metabolic flux through reaction j as

jjh =

 
vvj
vyjh

!2	
Dyjh


2
P

h

 
vvj
vyjh

!2	
Dyjh


2: (Equation 23)

The contribution was a compositional data whose sum of the contributions of all the regulators to a change

in metabolic flux equals one. The contribution ranged from zero to one, and the larger value meant the

stronger effect of the regulator to the change in metabolic flux.

The contribution was calculated for changes in metabolic flux through each reaction between each pair of

condition (Figure S8); WT and ob/obmice in the fasting state,WT and ob/obmice after oral glucose admin-

istration, fasting and after oral glucose administration inWTmice, and fasting and after oral glucose admin-

istration in ob/ob mice. Therefore, the calculated contributions represent the extent to which a change in

each regulator contributed to the change in metabolic flux between the conditions.
Metabolomic analysis

Metabolomic measurements were performed as previously described (Egami et al., 2021; Kokaji et al.,

2020). Total metabolites and proteins were extracted from the liver with methanol:chloroform:water

(2.5:2.5:1) extraction. Approximately 40 mg of the liver was suspended with 500 mL of ice-cold methanol

containing internal standards [20 mM L-methionine sulfone (Wako), 2-morpholinoethanesulfonic acid

(Dojindo), and D-Camphor-10-sulfonic acid (Wako)] for quantification of metabolites, then with 500 mL of

chloroform, and finally with 200 mL of water. After centrifugation at 4,600 3 g for 15 min at 4 �C, the sepa-

rated aqueous layer was filtered through a 5 kDa cutoff filter (HumanMetabolome Technologies) to remove

protein contamination. The filtrate (320 mL) was lyophilized and, prior to MS analysis, dissolved in 50 mL

water containing reference compounds [200 mM each of trimesic acid (Wako) and 3-aminopyrrolidine

(Sigma-Aldrich)]. Proteins were precipitated by addition of 800 mL of ice-cold methanol to the interphase

and organic layers and centrifuged at 12,0003 g for 15 min at 4 �C. The pellet was washed with 1 mL of ice-

cold 80% (v/v) methanol and resuspended in 1 mL of sample buffer containing 1% SDS and 50 mM Tris-Cl

pH8.8, followed by sonication. The total protein concentration was determined by bicinchoninic acid (BCA)

assay and was used for normalization of metabolite concentration among samples.

All CE-MS experiments were performed using an Agilent 1600 Capillary Electrophoresis system (Agilent

technologies), an Agilent 6230 TOF LC/MS system, an Agilent 1200 series isocratic pump, a G1603A Agilent

CE-MS adapter kit, and a G1607A Agilent CE electrospray ionization (ESI)-MS sprayer kit. Briefly, to analyze

cationic compounds, a fused silica capillary [50 mm internal diameter (i.d.)3 100 cm] was used with 1 M for-

mic acid as the electrolyte (Soga and Heiger, 2000). Methanol/water (50% v/v) containing 0.01 mM hexa-

kis(2,2-difluoroethoxy)phosphazene was delivered as the sheath liquid at 10 mL/min. ESI-TOFMS was per-

formed in positive ion mode, and the capillary voltage was set to 4 kV. Automatic recalibration of each

acquired spectrum was achieved using the masses of the reference standards ([13C isotopic ion of a pro-

tonatedmethanol dimer (2CH3OH+H)]+,m/z 66.0631) and ([hexakis(2,2-difluoroethoxy)phosphazene +H]+,

m/z 622.0290). The metabolites were identified by comparing their m/z values and relative migration times

to the metabolite standards. Quantification was performed by comparing peak areas to calibration curves

generated using internal standardization techniques with methionine sulfone. The other conditions were

identical to those described previously (Soga et al., 2006). To analyze anionic metabolites, a commercially
32 iScience 25, 103787, February 18, 2022
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available COSMO(+) (chemically coated with cationic polymer) capillary (50 mm i.d.3 105 cm) (Nacalai Tes-

que, Kyoto, Japan) was used with a 50 mM ammonium acetate solution (pH 8.5) as the electrolyte. Meth-

anol/5 mM ammonium acetate (50% v/v) containing 0.01 mM hexakis(2,2-difluoroethoxy)phosphazene was

delivered as the sheath liquid at 10 mL/min. ESI-TOFMSwas performed in negative ionmode, and the capil-

lary voltage was set to 3.5 kV. Automatic recalibration of each acquired spectrum was achieved using the

masses of the reference standards ([13C isotopic ion of a deprotonated acetate dimer (2CH3COOH-H)]-,m/

z 120.0384) and ([hexakis(2,2-difluoroethoxy)phosphazene +deprotonated acetate (CH3COOH-H)]-, m/z

680.0355). For anion analysis, D-camphor-10-sulfonic acid were used as the internal standards. The other

conditions were identical to those described previously (Soga et al., 2009). The acquired raw data were

analyzed using our proprietary software (Sugimoto et al., 2010).
Proteomic analysis

Sample preparation of proteomic analysis. Sample preparation of proteome analysis were performed

as described, previously (Matsumoto et al., 2017). Frozen powder of liver and muscle were lysed with a so-

lution containing 2% SDS, 7 M urea, and 100 mM Tris-HCl, pH 8.8, and then subjected to ultrasonic treat-

ment (five times for 30 s with intervals of 30 s) with a Bioruptor (Diagenode). The samples were diluted with

an equal volume of water. The protein concentrations of the samples were determined with BCA assays

(Bio-Rad), after which portions (200 mg of protein) were subjected to methanol–chloroform precipitation.

The resulting pellet was dissolved in digestion buffer (0.5 M triethylammonium bicarbonate containing

7 M guanidine hydroxide) and heated at 56�C for 30 min. Each sample was diluted with an equal volume

of water, after which portions were subjected to BCA assays. The remaining solution (50 ml) was diluted

with 50 ml of water and subjected to digestion with lysyl-endopeptidase (2 mg, Wako) for 4 h at 37�C. After
the addition of 100 ml of water, the samples were further digested with trypsin (2 mg, Thermo Fisher) for 14 h

at 37�C. To block cysteine/cystine residues, we treated the digest with 0.625 mM Tris(2-carboxyethyl)phos-

phine hydrochloride (Thermo Fisher) for 30 min at 37�C, then performed alkylation with 3.125 mM 2-iodoa-

cetoamide (Sigma) for 30min at room temperature and quenching with 2.5 mMN-acetyl-l-cysteine (Sigma).

The resulting digests were freeze-dried and then labeled with the mTRAQD0 reagent (SCIEX). For a deep

proteomics, tryptic digests were separated into 6 fractions with off-Line high-pH reverse phase chromatog-

raphy (Matsumoto et al., 2017).

DDA of peptides for multiple reaction monitoring (MRM) method development. Target proteins

were selected from the proteins listed in three Kyoto Encyclopedia of Genes and Genomes (KEGG) path-

ways; Glycolysis / Gluconeogenesis (mmu00010), Citrate cycle (mmu 00020), and Starch and sucrose meta-

bolism (mmu 00500), and proteins related to insulin signaling. A key step for the establishment of a success-

ful targeted proteomic analysis is the accurate selection of proteotypic peptides (PTPs) for the targets of

interest. Therefore, we first performed a discovery phase aimed at the selection of PTPs, which was based

on a deep proteomic characterization of total protein extract of the murine liver and muscle. mTRAQ-

labeled peptides as mentioned above were fractionated by reversed-phase chromatography on a 16-cm

column (inner diameter, 100 mm) packed in house with 2-mm L-column C18 material (CERI). Peptides

were eluted with a linear gradient (typically 5–45% B for 40 min, 45–95% B for 1 min, and 95% B for

10 min, where A was 0.1% formic acid and 2% acetonitrile, and B was 0.1% formic acid and 90% acetonitrile),

at a flow rate of 200 nl/min. The high-performance LC system (Eksigent nano-LC) was coupled to a Triple-

TOF5600 hybrid mass spectrometer (SCIEX). Data acquisition was performed in IDA mode with the iTRAQ

option. Survey MS spectra were acquired for 100 ms, and the 10 most intense ions were isolated and then

fragmented with an automatically optimized collision energy for anMS/MS acquisition time of 100ms. Peak

lists (mgf) generated by the AB SCIEX MS Data Converter were used to search a database containing IPI

mouse version 3.44 (55 078 protein entries; IPI, European Bioinformatics Institute) protein sequences

concatenated with decoy sequences, with the use of the MASCOT algorithm (Matrix Science). The search

was conducted with the following parameter settings: trypsin was selected as the enzyme used, the allowed

number of missed cleavages was set to two, and themTRAQD0 label on theNH2-terminal or lysine residues

and carbamidomethylation of cysteine were selected as fixed modifications. Oxidized methionine and the

mTRAQD0 label on tyrosine were searched as variable modifications. The precursor mass tolerance was 50

p.p.m., and the tolerance of MS/MS ions was 0.02 mass/charge (m/z) units. We imported all significant pep-

tide-spectrum matches (PSMs) (MASCOT score >20) into a relational database written in MySQL. From this

dataset, we preferentially selected PTP candidates which met the following criteria: 1. more than six amino

acids; 2. absence of tryptic missed-cleavage sites; 3. The C-terminus of PTPs is Lys or Arg; 4. absence of
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methionine residues. To verify whether these PTP candidates were actually identified and quantified in our

MRM systems, trypsin digests used in ‘‘DDA of peptides for MRMmethod development’’ were labeled with

either mTRAQD0 or mTRAQD4 and subjected to MRM assays. All MRM traces were analyzed by iMPAQT-

quant (Matsumoto et al., 2017). Peak groups were scored on the basis of cosine similarity with MS/MS

spectra obtained in DDA, peak coelution of at least three fragment ions for each peptide, the presence

or absence of interfering ions, and intensity. Finally, we selected 2-3 PTPs per target protein and purchased

from Funakoshi Co. All PTPs were resuspended with 20%-50% ethanol, pooled and labeled with mTRAQD4

using standard procedures.

MRM analysis. MRM analysis was performed with a QTRAP5500 instrument (SCIEX) equipped with nano-

Advance UHPLC (MICHROM) and HTS-PAL/xt autosampler (CTC Analytics AG). Peptides were eluted with

a linear gradient of 5%–30% B for 45 min, 30%–95% B for 46 min (where A is 0.1% formic acid and B is aceto-

nitrile) at a flow rate of 200 nL/min. Parameters were set as follows: spray voltage, 2,000 V; curtain gas

setting, 10; collision gas setting, high; ion-source gas-1 setting, 30 and interface-heater temperature,

150�C. Collision energy (CE) was calculated with the following formulae: CE = (0.044 3 m/z1) + 5.5 and

CE = (0.051 3 m/z1) + 0.5 (where m/z1 is the m/z of the precursor ion) for doubly and triply charged pre-

cursor ions, respectively. Collision-cell exit potential (CXP) was calculated according to the formula: CXP =

(0.0391 3 m/z2) � 2.2334 (where m/z2 is the m/z of the fragment ion). The declustering potential (DP) was

set to 50, and the entrance potential (EP) was set to 10. Resolution for Q1 and Q3 was set to ‘unit’ (half-

maximal peak width of 0.7 m/z). The scheduled MRM option was used for all data acquisition, with a target

scan time of 2.0 s and MRM detection windows of 300s. More than three technical repeats were performed

per sample. Raw data were analyzed by iMPAQT-Quant (Matsumoto et al., 2017) with the corresponding

spectra library. Peak groups were scored on the basis of cosine similarity with the MS/MS spectra obtained

in DDA, a peak co-elution of at least three fragment ions for each peptide, the presence or absence of inter-

fering ions, and the intensity. Finally, all traces were manually checked to eliminate inadequate transitions.

All quantified transitions were normalized across samples and converted into protein abundance by

SRMstats software on R (Surinova et al., 2013).
Transcriptomic analysis

Transcriptomic measurements were performed as previously described (Egami et al., 2021; Kokaji et al.,

2020). Briefly, total RNA was extracted from the liver using RNeasy Mini Kit (QIAGEN) and QIAshredder

(QIAGEN) and assessed for quantity using Nanodrop (Thermo Fisher Scientific) and for quality using the

2100 Bioanalyzer (Agilent Technologies). cDNA libraries were prepared using SureSelect strand-specific

RNA library preparation kit (Agilent Technologies). The resulting cDNAs were subjected to 100-bp

paired-end sequencing on an Illumina HiSeq2500 Platform (Illumina) (Matsumoto et al., 2007). Sequences

were aligned to the mouse reference genome obtained from Ensembl database (Cunningham et al., 2015;

Flicek et al., 2014) (GRCm38/mm10, Ensembl release 70) using the software package TopHat (Trapnell

et al., 2009, 2012) (v.2.0.9), software in the Tuxedo tool. Cufflinks (v.2.2.1), software in the Tuxedo tool,

was used to assemble transcript models from aligned sequences and to estimate the number of transcripts

as an indicator of gene expression. The number of transcripts was shown as fragments per kilo base of exon

per million mapped fragments.
Blood glucose and insulin

The blood and insulin data at 0, 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, 180, 240 minutes after oral glucose

administration were previously reported (Kokaji et al., 2020).
QUANTIFICATION AND STATISTICAL ANALYSIS

For the metabolites, enzymes, and transcripts, we defined increased and decreased molecules between

the conditions using the following procedure (Figure 2; Table S2). For each molecule, we calculated the

fold change of the mean amount of WTmice in the fasting state, WTmice after oral glucose administration,

ob/obmice in the fasting state, and ob/obmice after oral glucose administration over the mean amount of

WT mice in the fasting state. The significance of changes was tested by two-tailed Welch’s t-test for each

molecule. The q values were calculated by Benjamini-Hochberg procedure. Molecules that showed an q

value less than 0.05 are defined as significantly changed molecules. Among them, molecules with a fold

change larger than 1.5 were defined as increased molecules between the conditions, whereas molecules
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with a fold change smaller than 0.67 were defined as decreased molecules. The Pearson correlation coef-

ficient was calculated between the medians of fold changes of metabolic fluxes of mutants over those of

WT inferred by OMELET and the means of those simulated by the kinetic models across all the reactions

(Figures S2D and S2E). The Pearson correlation coefficient was calculated between the medians of meta-

bolic fluxes inferred by OMELET and the means of metabolic fluxes in the previous studies across all the

reactions in all the conditions (Figures S6B and S6D). The p-value was computed by transforming the

correlation to create a t statistic having N-2 degree of freedom, where N is the number of samples.
iScience 25, 103787, February 18, 2022 35


	ISCI103787_proof_v25i2.pdf
	Multi-omics-based label-free metabolic flux inference reveals obesity-associated dysregulatory mechanisms in liver glucose  ...
	Introduction
	Results
	Overview of the application of OMELET to study glucose metabolism
	Metabolomic, proteomic, and transcriptomic analysis of glucose metabolism in livers from WT and ob/ob mice in the fasting s ...
	Inference of metabolic fluxes by OMELET
	Inference of metabolic fluxes in the glucose metabolism in liver of WT and ob/ob mice in the fasting state and after oral g ...
	Contributions of regulators to changes in metabolic flux between fasting WT and ob/ob mice
	Quantitative trans-omic networks for changes in metabolic flux between WT and ob/ob mice in the fasting state
	Contributions of regulators to changes in metabolic flux induced by oral glucose administration within WT or ob/ob mice

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Animals

	Method details
	Metabolic network for glucose metabolism in mice
	Algorithm of OMELET
	Application of OMELET to mouse data
	Parameter estimation
	Simulation using hepatocyte kinetic model
	Simulation using yeast kinetic model
	Contributions of regulators to flux changes
	Metabolomic analysis
	Proteomic analysis
	Sample preparation of proteomic analysis
	DDA of peptides for multiple reaction monitoring (MRM) method development
	MRM analysis

	Transcriptomic analysis
	Blood glucose and insulin

	Quantification and statistical analysis




