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Abstract: Healthy sleep is an essential physiological process for every individual to live a healthy life.
Many sleep disorders both destroy the quality and decrease the duration of sleep. Thus, a convenient
and accurate detection or classification method is important for screening and identifying sleep
disorders. In this study, we proposed an AI-enabled algorithm for the automatic classification of sleep
disorders based on a single-lead electrocardiogram (ECG). An AI-enabled algorithm—named a sleep
disorder network (SDN)—was designed for automatic classification of four major sleep disorders,
namely insomnia (INS), periodic leg movement (PLM), REM sleep behavior disorder (RBD), and
nocturnal frontal-lobe epilepsy (NFE). The SDN was constructed using deep convolutional neural
networks that can extract and analyze the complex and cyclic rhythm of sleep disorders that affect
ECG patterns. The SDN consists of five layers, a 1D convolutional layer, and is optimized via dropout
and batch normalization. The single-lead ECG signal was extracted from the 35 subjects with the
control (CNT) and the four sleep disorder groups (seven subjects of each group) in the CAP Sleep
Database. The ECG signal was pre-processed, segmented at 30 s intervals, and divided into the
training, validation, and test sets consisting of 74,135, 18,534, and 23,168 segments, respectively.
The constructed SDN was trained and evaluated using the CAP Sleep Database, which contains
not only data on sleep disorders, but also data of the control group. The proposed SDN algorithm
for the automatic classification of sleep disorders based on a single-lead ECG showed very high
performances. We achieved F1 scores of 99.0%, 97.0%, 97.0%, 95.0%, and 98.0% for the CNT, INS,
PLM, RBD, and NFE groups, respectively. We proposed an AI-enabled method for the automatic
classification of sleep disorders based on a single-lead ECG signal. In addition, it represents the
possibility of the sleep disorder classification using ECG only. The SDN can be a useful tool or an
alternative screening method based on single-lead ECGs for sleep monitoring and screening.

Keywords: sleep disorders; automatic classification; electrocardiogram; deep learning; convolutional
neural network

1. Introduction

Sleep is an essential physiological need for everyone, and it can refresh and restore the
human body. In addition, both the quality and quantity of sleep are very important to live a
healthy life [1,2]. However, many types of sleep disorders such as sleep apnea [3], insomnia
(INS) [4], periodic leg movement (PLM) [5], and REM sleep behavior disorder (RBD) [6],
can destroy sleep quality. Sleep disorders can lead to an increased risk of occurrence of
a number of negative health conditions, including daytime sleepiness [7], headache [8],
cardiovascular disease [9], decreased cognitive function [10], and decreased immunity [11].
The number of people who suffer from sleep disorders (e.g., insomnia, sleep fragmentation,
and sleep apnea) is increasing; thus, it is necessary to diagnose these problems correctly
through systematic sleep monitoring [12].
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Nocturnal polysomnography (PSG) is a gold-standard diagnostic tool for sleep disor-
ders, including INS, PLM, RBD, and nocturnal frontal-lobe epilepsy (NFE). To evaluate
sleep disorders, subjects go to sleep at a sleep center, and sensors are attached to the body
for measuring physiological signals (electroencephalogram (EEG), electrooculography,
electromyography (EMG), etc.) [13]. Based on the physiological signals acquired via PSG
for the patient, expert or licensed sleep technicians can objectively diagnose sleep disorders.
However, the use of PSG has some limitations such as high cost and inconvenience (e.g.,
time consumption for applying multiple sensor attachments). In addition, the annotation
and labeling of PSG recordings (presenting numerous results) by sleep technicians are
laborious tasks.

Electrocardiography (ECG) is a physiological signal that can represent cardiopul-
monary activity [14]. In addition, ECG is regarded as an alternative physiological source
for digital healthcare and digital medicine as it has the most informative signal that con-
tains not only cardiac activity (as beat-to-beat interval, heart rate, and QRS complex) but
also respiratory activity including ECG-derived respiratory activity [15]. There are many
clinical pieces of evidence and studies in which the relation between ECG and sleep dis-
orders has been noticed [16,17]. In the early 2000s, various studies proposed alternative
methods based on ECG analysis for digital healthcare and digital medicine [18]. Some stud-
ies have used ECG to automatically detect sleep disorders including sleep apnea [19,20],
sleep stages [21–27], periodic leg movement [28], and insomnia [29]. These studies used
various machine learning and deep learning methods such as the support vector machine
(SVM), artificial neural network (ANN), and convolutional neural network (CNN). They
proposed alternative detection methods for just one sleep disorder, from one or multiple
input sources, based on machine learning. In addition, these studies used handcrafted
feature sets extracted using canonical machine-learning methods. However, a multiclass
classification-based study should be required that can be automatically classifying sleep
disorders such as INS, PLM, RBD, and NFE from an ECG signal for more convenient digital
healthcare services.

Rapidly advancing technologies, including big data, artificial intelligence (AI), the
Internet of Things, and cloud computing, are changing the medical trend from conventional
healthcare to digital medicine and health. Currently, there are approximately thirty AI-
based medical devices approved by the FDA as software as a device services for digital
healthcare and digital medicine [30]. A few of them were related to the analysis of cardiac
activity studies, including the echocardiogram [31], ECG analysis [32], and cardiac monitor
system [33], to support the clinical decisions of physicians. The AI-based sleep-scoring
solution is called EnsoSleep [34], but it is targeted at sleep centers or hospitals to support
the automatic annotation for sleep technicians. Therefore, a convenient, accurate, and
automatic method to the classification of sleep disorders for everyone in daily life is
important not only clinically but economically and socially.

The proposed AI-enabled algorithm was designed by a sleep disorder network (SDN)
based on deep learning for multiclass classification of sleep disorders using a single-lead
ECG signal. The designed SDN was used to achieve multiclass classification for different
sleep disorders, including INS, PLM, RBD, and NFE, and the control (CNT) group. We
aimed to demonstrate novel features or specific patterns for each sleep disorder in the
ECG signal in this study. Thus, the single-lead ECG signal was used without extracting
any intermediate vital signs, including peak-to-peak interval, heart rate, and heart rate
variability, and any other hand-crafted features.

2. Materials and Methods

This paper proposes an AI-enabled algorithm for automatic classification of sleep
disorders, including INS, PLM, RBD, and NFE, based on a deep learning SDN model using
a single-lead ECG signal. The proposed method consists of four main parts: The CAP
sleep database (Figure 1A), ECG dataset (Figure 1B), deep learning model (Figure 1C), and
outputs (Figure 1D). Each part is detailed in the following subsections.
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Figure 1. Schematic diagram of this study. (A) CAP sleep database, (B) ECG dataset, (C) deep learning model, and
(D) Outputs.

2.1. The CAP Sleep Database

In this study, we used the cyclic alternative pattern (CAP) sleep database, including
108 PSG recordings, measured at the sleep disorders center of the Ospedale Maggiore of
Parma, Italy [35]. It is a PSG study for the CAP in EEG activity occurring during non-rapid
eye movement (NREM) sleep. The CAP sleep database covers not only the healthy (16)
subjects but also the diverse sleep disorders, including NFE (40 subjects), RBD (22 subjects),
PLM (10 subjects), INS (9 subjects), narcoleptic (5 subjects), sleep-disordered breathing
(4 subjects), and bruxism (2 subjects). In addition, certified sleep experts at the sleep center
annotated the scoring of the sleep structure according to the rules of Rechtschaffen and
Kales [36].

A total of 35 subjects were enrolled from five different groups including the CNT, NFE,
RBD, PLM, and INS for this study. A total of 7 subjects were randomly selected from each
subject group to design the proposed SDN model for the automatic classification of sleep
disorders (Table 1).

Table 1. Demographics of the study population.

Groups Number (N) Sex (M:F) Age (Mean ± Std.)

CNT 7 3:4 32.6 ± 3.7
INS 7 2:5 58.9 ± 10.2
PLM 7 5:2 54.7 ± 7.0
RBD 7 6:1 72.3 ± 6.7
NFE 7 3:4 26.3 ± 8.0
Total 35 19:16 48.9 ± 2.1

Note: CNT—control, INS—insomnia, PLM—periodic leg movement, RBD—REM sleep behavior disorder,
NFE—nocturnal frontal lobe epilepsy.

2.2. ECG Dataset

The ECG signal was extracted from the PSG recordings of the CAP Sleep Database.
It has a sampling frequency of 512 Hz. Every recording is segmented at 10-s intervals,
and each segment has 5120 samples. A total of 115,837 segments were obtained after
combining the 35 subjects from the five different groups to create the entire ECG dataset.
For the training and testing of the constructed SDN model, datasets were built from
randomly selected subjects from each subject group (Table 2). The training set comprised
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74,135 episodes from 28 subjects, whereas the test set comprised 23,168 episodes from
7 subjects (Figure 1B).

Table 2. ECG datasets for the training, validation, and test sets in this study.

Groups Training Set Validation Set Test Set Total

CNT 11,087 2713 3444 17,244
INS 17,475 4309 5439 27,223
PLM 14,439 3675 4478 22,592
RBD 17,490 4458 5543 27,491
NFE 13,644 3379 4264 21,287
Total 74,135 18,534 23,168 115,837

Note: CNT—control, INS—insomnia, PLM—periodic leg movement, RBD—REM sleep behavior disorder,
NFE—nocturnal frontal lobe epilepsy.

2.3. Deep Learning Algorithm

The proposed SDN model is a deep learning algorithm (Figure 1C) that was designed
to discriminate the morphological characteristics and temporal patterns for each sleep
disorders from a single-lead ECG signal. The SDN was implemented by CNN that can
extract high-dimensional feature maps and patterns from the input ECG signal. Because
the input ECG signal is a one-dimensional (Figure 1D) time series, 1D convolution, gated
recurrent unit (GRU) [37], and 1D max pooling were used to construct the SDN for sleep
disorder classification. In addition, the SDN was optimized to enable its application in
clinical fields and sleep screening. For the optimization of the SDN, batch normaliza-
tion [38], dropout [39], and a rectified linear unit (ReLU) [40] were appropriately set and
used through trial and error. These techniques are detailed as follows.

Convolution layer: It is appropriate for application to physiological signals, such
as an ECG, because it is simpler and faster than two-dimensional convolutions. The 1D
convolution can be represented as

xk = bk +
N

∑
i=1

wk × yi (1)

where xk is the k-th feature map, bk is the bias of the k-th feature map, wk is the k-th
convolutional kernel from all features of the k-th feature map, and yi represents the i-th
feature map.

Pooling layer: Pooling can reduce the dimensions of the intermediate feature maps. If
the 1D kernel is used in the pooling operation, it can be called 1D pooling. All the pooling
layers use max pooling.

Gated recurrent unit: GRU is one of the improved architectures of the recurrent neural
network that invented by K. Cho [37]. It has only two gates: an update gate, z, and a reset
gate, r. The reset gates can capture short-term dependencies, whereas update gates help to
capture long-term dependencies in the input ECG signals.

Batch normalization: Before training, the generated SDN model, batch normalization
is applied to the input ECG signal, as presented in Equation (2).

xb = α×
(

xi − µ√
σ2 + ε

)
+ β (2)

where ε is a small random noise, µ is the mini-batch mean, σ is the mini-batch variance, α
is a scale parameter, and β is a shift parameter. Both α and β are trainable and updated in
an epochwise manner.

Dropout: In this technique, random nodes in a network are dropped out to reduce
overfitting in the network model by preventing complex adaptations on training data.
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ReLU: It was used as the activation function of each layer of the SDN, and it can be
represented as

f (x) = max(0, wx + b) (3)

where x is the feature map, w is the weight, and b is the bias. ReLU delivered robust training
performance and consistent gradients, thereby facilitating gradient-based learning [40].

Table 3 presents the detailed structure and characteristics of the final architecture of
the constructed SDN; the algorithm consists of five-layer 1D convolution with 1D max
pooling and dropout. In each convolutional layers (100, 80, 60, and 40), the kernel sizes
were 50 × 1, 40 × 1, 30 × 1, and 20 × 1 for the 1D convolution operation (stride = 1,
padding = 0); next, for the 1D pooling operation, the size was 2 × 1. After convolution
layer, two gated recurrent units were applied with 40 nodes in each layer. Finally, we used
a fully connected multilayer perceptron with softmax activation for the final discrimination
of sleep disorders.

Table 3. Detailed structure of the proposed SDN algorithm.

No. Layers Filters, Kernel Size Output Shape Parameters

1 batchnorm_1 = 5120 × 1 4

2
conv1d_1

maxpool1d_1
dropout_1

100, 50 × 1
2 × 1

p = 0.25

5071 × 100
2535 × 100 5100

3
conv1d_2

maxpool1d_2
dropout_2

80, 40 × 1
2 × 1

p = 0.25

2496 × 80
1248 × 80 320,080

4
conv1d_3

maxpool1d_3
dropout_3

60, 30 × 1
2 × 1

p = 0.25

1219 × 60
609 × 60 144,060

5
conv1d_4

maxpool1d_4
droput_4

40, 20 × 1
2 × 1

p = 0.25

590 × 40
295 × 40 48,040

6 gru_1
droput_5

40
p = 0.25 295 × 40 9840

7 gru_2
droput_6

40
p = 0.25 295 × 40 9840

8 dense_1 5 40 205
Total 4 conv1d layers (280 filters), 2 gru (80 units) 537,165

2.4. Implementation

To implement the constructed SDN model, the software and hardware specifications
are as follows. The deep learning environment consisted of the Keras [41] library with a
TensorFlow backend [42] and a workstation with an Intel CPU (i9-9900X @3.5GHz) and
NVIDIA GPU (GeForce RTX 3080) for the SDN. Data processing of the ECG was performed
using MATLAB (R2020b ver.).

2.5. Evaluation Index

The constructed SDN uses the F-measure to evaluate the correct classification accord-
ing to class equality. We can obtain the F-measure by combining two evaluation measures,
precision and recall. These are defined as follows:

precision = TP/(TP + FP) (4)

recall = TP/(TP + FN) (5)

where TP, FP, and FN denote true positives, false positives, and false negatives, respectively;
they represent the numbers of the respective events.
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The F1 score, better known as the unbalanced data set, is computed based on the
sample proportion of precision and recall and is given by

F1 = 2 × (precision × recall)/precision + recall (6)

3. Results

The proposed SDN can be utilized to achieve multiclass classification for four dif-
ferent sleep disorders, namely INS, PLM, RBD, and NFE, and the CNT group. The main
contribution of this study is that it shows the possibility of sleep disorders classification
based on ECG signal and represents the ECG feature maps that are automatically extracted
by the proposed SDN model. Furthermore, we have noticed that ECG feature maps are
shaped or contained the specific patterns for each sleep disorder.

The results of the proposed SDN model based on a single-lead ECG signal are pre-
sented in Table 4. The performance of the proposed SDN model was evaluated using the
evaluation matrix with precision, recall, and F1 score. We obtained robust performances
for the automatic classification of multiclass sleep disorders using a single-lead ECG signal
without any hand-crafted features. The results of the test set present F1 scores of 99.0%,
97.0%, 97.0%, 95.0%, and 98.0% for the CNT, INS, PLM, RBD, and NFE groups, respectively.

Table 4. Performance of the proposed SDN model for the automatic classification of sleep disorders
based on a single-lead ECG signal.

Groups
Precision Recall F1-Score

Train Valid Test Train Valid Test Train Valid Test

CNT 1.00 1.00 0.99 1.00 0.99 0.99 1.00 1.00 0.99
INS 1.00 1.00 0.99 0.95 0.95 0.95 0.98 0.97 0.97
PLM 1.00 1.00 0.99 0.96 0.96 0.95 0.98 0.98 0.97
RBD 0.90 0.91 0.91 1.00 1.00 1.00 0.95 0.95 0.95
NLF 1.00 1.00 1.00 0.97 0.97 0.96 0.98 0.98 0.98

The confusion matrix of the proposed SDN model for the automatic classification of
sleep disorders based on deep learning is presented in Figure 2. The sleep disorder events
are equally distributed in each dataset (the training, validation, and test sets).
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Figure 2. Confusion matrix of the proposed SDN model for the automatic classification of sleep disorders based on a
single-lead ECG signal. The performances of the training set (A), validation set (B), and test set (C), respectively.
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4. Discussion

In this study, we analyzed the single-lead ECG signals of subjects with four important
sleep disorders such as INS, PLM, RBD, and NLF through the proposed SDN model. To the
best of our knowledge, there were no similar previous studies in which the single-lead ECG
signals were analyzed in accordance with the patients who suffered from sleep disorders.
Therefore, it is hard to compare the performances with the previous studies that used
ECG signals for the classification of sleep staging and detection of sleep apnea, due to the
different outcomes. The proposed SDN model was used as not only automatic classifier
for sleep disorders, but also an automatic feature extractor from the input single-lead ECG
signal at each layer. We illustrated the intermediate processing phase of the proposed
SDN model for each subject group in Figure 3. As a result, we can deduce the difference
between outputs in the subject groups and in each layer, such as convolutional, activation,
and pooling. It is difficult to find a certain pattern for each group, but we can notice some
morphological differences in each group. The irregularity pattern was demonstrated in the
ECG signal of subjects with CAP diseases as RBD (Figure 3D), NFE (Figure 3E), and with
the control group (Figure 3C). It means that ECG-based classification for the discriminating
sleep disorders is a very hard task. However, the proposed SDN model can classifying the
type of sleep disorders with outstanding performances using only a single-lead ECG signal.

Figure 3. Example of the intermediate feature map of the designed deep learning SDN model for
automatic classification of sleep disorders using a single-lead ECG signal. Intermediate feature maps
of (A) INS, (B) PLM, (C) CNT, (D) RBD, and (E) NFE groups.
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The single-lead ECG signals have been used in various studies to detect or screen
certain sleep disorders based on signal processing and machine-learning techniques. Most
of these studies have focused on sleep stages and quality [21–27], followed by sleep-
disordered breathing (e.g., sleep apnea and hypopnea events) [19,20]. In studies related
to sleep stage classification and sleep quality based on electrocardiogram, Adnan et al.
proposed a method of predicting sleep efficiency through sleep–wake classification from a
single-lead ECG signal. Xiao et al. classified sleep stages based on a random forest using the
heart rate variability from the ECG signal. In addition, Yucelbas et al. studied a method of
classifying sleep stages by applying the morphological features of a single-lead ECG signal
to several machine learning algorithms such as SVM, variational mode decomposition,
Hilbert Huang transform, and morphological method.

Wei et al. proposed a new method for classifying sleep stages by applying ECG
signals to a deep neural network model to determine the sleep stages. For a study on
the ECG-based detection of sleep apnea, Mendez et al. [17] proposed a method based
on an autoregressive model for automatic screening of obstructive sleep apnea from a
single-lead ECG signal, and Chen et al. [18] proposed an automated algorithm for sleep
apnea screening. Since the effects of sleep staging and sleep apnea related to ECG signals
were proved clinically, many studies had presented a variety of methods for detection
or classification of sleep apnea based on single-lead ECG signal. However, to the best
of our knowledge, there are few studies on the automatic screening or detection of sleep
disorders including INS, PLM, RBD, and NFE using an ECG signal. The proposed deep
learning-based SDN model is a potentially alternative method for automatic screening or
detecting sleep disorders conveniently and accurately. Since, the proposed SDN model
has some advantages over previous studies in terms of technology and cost. At first, the
SDN model is consisted of CNN and RNN architecture to consider the morphological and
sequential characteristics of ECG signal. This combined architecture may lead to robust
performances for the detection of sleep disorders. Finally, the SDN model with the simple
architecture is expected to reduce computational and economic costs.

There are some limitations of this study. Firstly, the dataset that the CAP sleep dataset
was derived from is a small population; a further study is required to cover larger and
diverse datasets. Secondly, we used only a single-lead ECG signal extracted from the
PSG recordings that were measured during sleep; more physiological signals, such as
photoplethysmogram, EEG, and EMG, which are suitable for healthcare measurement,
should be considered in future studies. Thirdly, we used nocturnal ECG when employing
PSG in this study; however, the study should be continued for the ECG signal measured
during general activity in daily life. Finally, we used a very simple and well-known CNN
model to design the SDN model for the automatic classification of sleep disorders; recent
and advanced deep learning models, such as an attention network and a reinforcement-
learning method, should be applied and compared in further studies.

5. Conclusions

The proposed AI-enabled SDN model can be applied in digital healthcare services
and used for the screening and monitoring of sleep disorders in home and hospitals. In
addition, this study can be an experimental study on the automatic classification of sleep
disorders using a single-lead ECG signal based on deep learning. The proposed SDN model
can classify subjects with or without sleep disorders using a single-lead ECG signal. It can
extract the sleep disorder features and patterns from the morphology of the input ECG
signal. We attempted to explain how sleep disorders affect the morphology of ECG signals.
The SDN delivered a very high-performance level with F1 scores of 99.0%, 97.0%, 97.0%,
95.0%, and 98.0% for the CNT, INS, PLM, RBD, and NFE groups, respectively. Therefore, the
proposed SDN model can be an appropriate and simple tool for sleep disorders detection,
sleep monitoring, and screening. Further, a validation study should be conducted in the
future for the SDN that covers larger and more diverse subject groups.
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