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ABSTRACT: Agricultural intensification in India has increased
nitrogen pollution, leading to water quality impairments. The fate of
reactive nitrogen applied to the land is largely unknown, however.
Long-term records of riverine nitrogen fluxes are nonexistent and
drivers of variability remain unexamined, limiting the development of
nitrogen management strategies. Here, we leverage dissolved inorganic
nitrogen (DIN) and discharge data to characterize the seasonal,
annual, and regional variability of DIN fluxes and their drivers for
seven major river basins from 1981 to 2014. We find large seasonal
and interannual variability in nitrogen runoff, with 68% to 94% of DIN
fluxes occurring in June through October and with the coefficient of
variation across years ranging from 44% to 93% for individual basins.
This variability is primarily explained by variability in precipitation,
with year- and basin-specific annual precipitation explaining 52% of the
combined regional and interannual variability. We find little correlation with rising fertilizer application rates in five of the seven
basins, implying that agricultural intensification has thus far primarily impacted groundwater and atmospheric emissions rather than
riverine runoff. These findings suggest that riverine nitrogen runoff in India is highly sensitive to projected future increases in
precipitation and intensification of the seasonal monsoon, while the impact of projected continued land use intensification is highly
uncertain.
KEYWORDS: agricultural intensification, Indian monsoon, dissolved inorganic nitrogen loading, climate variability

1. INTRODUCTION
Nitrogen fertilizer application rates in India rose by over an
order of magnitude from 1970 to 2015.1,2 While this has
significantly increased agricultural productivity, a large fraction
of the applied fertilizer is lost to the environment as reactive
nitrogen. The fate of this reactive nitrogen in India is largely
unknown.3 Globally, more than one-fifth of total reactive
nitrogen resulting from anthropogenic activity is transported to
aquatic ecosystems,4 increasing rates of eutrophication. In
India, eutrophication has resulted in coastal phytoplankton
blooms and hypoxia.5−9 With India poised to become the
world’s most populous country by 202710 and with its
continuing high rate of economic development,11 fertilizer
use rates are expected to rise massively under most
development scenarios over the 21st century.12,13 Concur-
rently, the projected increase in annual and extreme
precipitation over India14−17 may lead to a higher proportion
of reactive nitrogen making its way to aquatic ecosystems.

It is therefore critical to understand nutrient runoff from
India’s major river basins, as well as drivers of its spatial,
seasonal, and interannual variability, in order to characterize
the fate of reactive nitrogen, assess water quality impacts, and
design more effective management strategies in the face of

change. Nitrogen flux from river basins in India is not routinely
monitored, however. DIN flux was measured in July and
August of 2011 for several peninsular rivers of India.18 Nitrate
concentrations measured in August 200119 and extreme nitrate
concentrations measured in 199820 were also combined with
observations of discharge to estimate DIN flux for those
additional two years in some rivers.21 In addition, model-based
estimates are available for some basins for the year 2000.22

DIN flux estimates from these studies differ substantially
(Table S1) and provide little information about seasonal and
interannual variability in fluxes. Climate,23 fertilizer inputs,1,24

and water storage capacities25 vary widely across river basins in
India, likely further contributing to spatial and temporal
variability in nitrogen fluxes.

Here, we quantify DIN fluxes for seven major river basins in
peninsular India (Figure 1A, Tables S2 and S3) for the period
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1981−2014, including its seasonal and interannual variability,
by leveraging a recently developed database of water quality
and discharge measurements by the India Water Resources
Information System (https://www.indiawris.gov.in/wris/). We
then examine the drivers of spatial variability in flux across
basins as well as primary drivers of the interannual variability in
flux within specific basins. We further explore the impact of
increases in fertilizer and other nitrogen inputs on riverine
nitrogen runoff in India and the ways in which seasonality and
year-to-year variability in the monsoon manifests itself in
riverine nitrogen fluxes.

2. MATERIALS AND METHODS
2.1. Quantifying DIN Flux. Estimates of DIN flux were

obtained by applying the Weighted Regressions on Time,
Discharge and Season (WRTDS) method26 to sporadic DIN
concentration measurements and daily discharge measure-
ments. This method estimates long-term variability of water
quality parameters through weighted regressions of concen-
trations on time, discharge, and seasons. Daily nonflow-
normalized DIN loads [kg N] are then obtained by multiplying
WRTDS-derived daily mean concentrations by observed daily
discharge, and monthly or annually averaged DIN flux (QDIN)
[kg N km−2] are estimated by summing daily loads and
dividing by the upstream catchment area.

The method is most accurate when continuous daily
discharge measurements are available for a minimum of 20
years and when 200 or more concentration measurements are
available over that same period.26 However, reliable flux
estimates have been obtained from model application to as few
as 60 measurements over a 10-year period.27 In addition, we
eliminated years with fewer than six DIN concentration
measurements in order to avoid using years with few
observations that may lead to highly uncertain estimates.

2.2. Identifying Dominant Drivers of DIN Flux
Variability. We used multiple linear regression to identify
the principal drivers of interannual DIN flux variability within
individual basins and of both spatial and interannual variability
of DIN flux across basins. Candidate predictor variables
included variables based on fertilizer application rates, NOx
deposition, precipitation, and temperature (Table S5). We use
precipitation rather than runoff or discharge because this
provides a more direct link to the variability and change in the
physical climate.28 A statistical model selection approach based
on the Bayesian information criterion (BIC)29 was used to
identify a parsimonious subset of predictor variables that
explained a large fraction of the observed variability in DIN
flux. The BIC approach considers all possible subsets of
predictor variables and favors models with a low residual sum
of squares while penalizing models with more predictor
variables. The (in this case, linear) model with the lowest
BIC value optimizes this trade-off. Here we used a BIC
difference of two as a threshold for selecting a smaller model
with a slightly higher BIC over a larger model with the lowest
BIC.30

Four candidate variables were used to represent nitrogen
inputs to the river basins. These included total nitrogen
fertilizer application rate, the sum of fertilizer application rate
and NOx deposition, and the natural log of these two variables.
The model selection was set up such that fertilizer application
rate and NOx deposition could each only be selected at most
once either alone or in combination.

Forty-two candidate variables were based on precipitation,
with variables defined based on climate change indices
developed by the Expert Team on Climate Change Detection
and Indices (ETCCDI, http://etccdi.pacificclimate.org/list_
27_indices.shtml). These variables included total annual
precipitation; four variables capturing seasonal precipitation

Figure 1. Locations of water quality stations used in this study. Water quality stations used in this study are denoted with red dots and text. The
blue polygons represent the Central Water Commission (CWC) basins, with orange borders and text denoting the seven basins used in this study.
(A) The shade of blue represents the average annual precipitation. (B) The shade of orange represents the coefficient of variation (i.e., the ratio of
the standard deviation to the mean) of total annual precipitation in each CWC basin over the period 1980−2015. The major rivers falling within
each of these seven basins are outlined in white (A) and in blue (B).
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during subsets of the months of June, July, August, September,
and October; and 37 candidate variables capturing extreme
precipitation. The extreme precipitation variables included the
number of days with extreme precipitation and the amount of
extreme precipitation annually and during the months of June,
July, August, September, and October. These months were
selected because the majority of rainfall over peninsular India
occurs during these monsoon months.31 The final model was
restricted to at most one seasonal and one extreme
precipitation variable, and only precipitation variables with
positive regression coefficients were considered.

Five candidate variables were based on temperature,
including mean annual temperature and four variables based
on average seasonal temperature during subsets of the months
of June, July, August, and September. The linear model was
restricted to selecting at most one temperature variable.

Finally, calendar year was included as a candidate variable to
capture any otherwise unexplained long-term trend in DIN
fluxes, such as a potential long-term increase in flux not
attributable to the other variables in the model.

Spatially and temporally explicit data on wastewater effluent
discharged to agricultural lands, agricultural nitrogen fixation
and food and feed import are not available for India and could
therefore not be included.

2.3. Data Sets Used. We used water quality and discharge
observations collected at seven Central Water Commission
(CWC) observation stations (Table S2, Figure 1A) released by
the India Water Resources Information System (India-WRIS)
to quantify upstream DIN fluxes. CWC stations located closest
to the mouth of six river basins met the criterion of more than
200 measurements of DIN concentration and more than 20
years of daily discharge measurements. For the seventh basin,
the Tikarapara station had only 167 observations of DIN
concentrations and 17 years of daily discharge measurements,
but these are likely still sufficient for reliable DIN flux
estimation.27 The catchment areas associated with the seven
stations were obtained from the USGS Hydro1k data set
(https://www.usgs.gov/centers/eros/science/usgs-eros-
archive-digital-elevation-hydro1k).

Fertilizer application rates for the seven Indian River basins
were estimated based on annual fertilizer application rates at
state and national levels. Fertilizer application rate data are
available from the Directorate of Economics and Statistics,
Department of Agriculture, Cooperation, and Farmers Welfare,
Ministry of Agriculture and Farmers Welfare, Government of
India (https://eands.dacnet.nic.in/) for 1950−2016 at the
national level and for 2004−2016 at the state level. The
statewide fertilizer application rate data was converted to basin
scale usage based on the fraction of various states falling within
the river basins as reported by the India-WRIS Web site
(https://www.indiawris.gov.in/wris/) (Table S7). The basin-
scale fertilizer application rates for 1980−2003 were estimated
based on basin area as a fraction of the national fertilizer
application rate. Actual interannual variability in fertilizer usage
at the basin scale may be even higher because the state-level
estimates may not capture additional interannual variability at
the basin scale. There are three main planting seasons in India;
seasonal variability in fertilizer application was not considered,
however, because data on the timing of fertilizer application is
not available.

Atmospheric deposition was estimated based on global NOx
deposition estimates developed by Lamarque et al.32 We
performed an additional sensitivity analysis using NOx

deposition estimates for 1996−2014 as developed by Geddes
and Martin.33

Nitrogen input from other sources such as sewage, animal
manure, and agricultural nitrogen fixation could not be
considered in this study due to a lack of available data.

Water storage capacities for the seven river basins were
obtained from the India-WRIS river basin reports (https://
www.indiawris.gov.in/wris/#/Basin).

Daily precipitation and temperature data for each basin were
obtained from the India Meteorological Department (IMD),34

which provides gridded precipitation at 0.25° × 0.25°
resolution and gridded temperature at 1.0° × 1.0° resolution
for India. We performed additional sensitivity tests using daily
precipitation data at 0.5° × 0.5° from the Climate Prediction
Center (CPC) Global Unified Precipitation data provided by
NOAA/OAR/ESRL PSD (https://psl.noaa.gov/data/
gridded/data.cpc.globalprecip.html) and using monthly tem-
perature data at 0.5° × 0.5° from the Climatic Research Unit
(CRU) data set.35

3. RESULTS AND DISCUSSION
3.1. Seasonal and Interannual Variability. We find that

substantial DIN fluxes only occur during monsoon months,
with 68% (Cauvery basin) to 94% (Godavari basin) of the
DIN fluxes occurring in June through October (Figure 2 and
Table S2) across the examined basins. This large seasonality is
attributable to the fact that over 80% of annual rainfall in India
occurs from June to September.31 In addition, the rainfall that
occurs during nonmonsoonal months is largely retained by
dams for irrigation purposes.18 The June to October average
DIN flux (average across years and across months) for the
seven basins ranges from 8 (Krishna basin) to 111
(Subernarekha basin) kg N km−2 month−1 (Table S2). The
highest average DIN flux occurs in August for six of the basins,
while it occurs in October for the Cauvery basin.

For specific years and basins, the month with the highest
DIN flux coincides with the month with the highest discharge
in 94% of cases, while the month of maximum discharge
coincides with the month of highest precipitation in 43% of
cases and lags it by one month in 31% of cases due to water
capture and release in reservoirs. Taken together, the month of
highest DIN flux coincides with the month of highest
precipitation in 47% of cases and lags it by one month in
31% of cases. Record high monthly DIN fluxes range from 70
(Krishna basin; October 1998) to 952 (Narmada basin;
August 2013) kg N km−2 month−1.

We also find that annual DIN fluxes exhibit a large
interannual variability, with the coefficient of variation ranging
from 44% for the Mahanadi basin to 93% for the Krishna basin
(Figure 3). The actual interannual variability in DIN flux may
be even higher because the Weighted Regressions on Time,
Discharge and Season (WRTDS) approach used here to
estimate DIN concentrations (and therefore fluxes) at
unsampled times underrepresents the observed variability in
DIN concentrations in some cases (see the Supporting
Information). This observed interannual variability highlights
some of the limitations of previous estimates (Table S1, Figure
3). For example, DIN flux estimated by Swaney et al.21 based
on concentration and discharge measurements by Subrama-
nian et al.20 are unrealistically high due to their focus on only
extreme observed concentration values. In addition, the large
interannual variability in DIN flux shown here indicates that
estimates based on individual years cannot be used to
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represent long-term average conditions and even less so
conditions during other individual years.

3.2. Role of Annual Precipitation. The spatial variability
in DIN fluxes is strongly related to variability in annual total
precipitation (Figure 4A). Basins with higher precipitation,
based on data from the India Meteorological Department
(IMD),34 exhibit larger DIN fluxes. The high average annual
DIN fluxes from the Brahmani and Baitarni basin and the
Subernarekha basin (679 and 645 kg N km−2 yr−1,
respectively) correspond to large average annual precipitation
in these basins (1429 and 1374 mm yr−1, respectively), while
the low average annual DIN fluxes from the Krishna basin (43
kg N km−2 yr−1) are consistent with the low average annual
precipitation in this basin (753 mm yr −1). Overall, average
annual precipitation explains 73% of the spatial variability in
average annual DIN fluxes across the seven basins (diamonds
in Figure 4A).

Year- and basin-specific annual precipitation also explains
52% of the combined spatial and interannual variability across
years and basins (dots in Figure 4A, Table S4). Even when
considering the superset of possible predictor variables
described earlier (Table S5), the best linear model for
representing variability across years and across the seven
basins consists of annual precipitation combined only with a
linear trend with time, which together explain 57% of the
observed variability (Table S6). Within specific basins, annual
precipitation explains 20% (Krishna basin) to 81% (Godavari
basin) of the interannual variability in DIN fluxes. We also
conducted a sensitivity analysis using precipitation from the
Climate Prediction Center (see Materials and Methods) and
found a similar explanatory power of annual precipitation
within specific basins (22% to 59%) and combined spatial and
interannual variability across basins (57%) (Table S4).

Figure 2. Monthly dissolved inorganic nitrogen fluxes for the seven
examined basins for years with sufficient available data (see Figure 3)
in the period 1981−2014. Here and in subsequent figures, basins are
ordered from largest to smallest mean annual flux (QDIN). Note that
the range of the vertical axes varies between basins. The center line of
the box plots represents the median, the lower and upper hinges
correspond to the first and third quartiles, the upper and lower
whiskers extend from the box hinges to the largest and smallest value
within the 1.5·interquartile range (distance between the first and third
quartiles), and data beyond the whiskers represents outliers.

Figure 3. Annual dissolved inorganic nitrogen fluxes (QDIN) for the
seven examined basins for the period 1981−2014. Light gray bars
represent years for which QDIN was not estimated because there were
fewer than six available observations of DIN concentration. The
coefficient of determination (CV) is a measure of the interannual
variability in fluxes and is defined as the ratio of the standard deviation
of the annual fluxes to their mean. Available flux estimates from earlier
studies (Table S1) are presented as symbols, with empty symbols
representing fluxes above the range of the axes, with the value listed
under the symbol. Note that the range of the vertical axes varies
between basins.
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Looking beyond the seven basins examined here, we find
that precipitation exhibits large interannual variability for all
river basins in India (Figure 1B), such that high interannual
variability in DIN fluxes is expected across the whole country.
This is consistent with research showing large interannual
variability but no clear long-term trend in coastal anoxic events
in India over the last 50 years,36,37 which is in contrast to
observed decreasing trends in dissolved oxygen concentrations
along the United States and European coasts since 1950s.38

The high sensitivity of DIN fluxes to annual precipitation
suggests that projected climate-changed-driven increases in
precipitation in India14−17,31 will lead to increased riverine
nitrogen loading, presenting additional challenges to sustain-
able management in the region. As has been observed for the
Baltic Sea,39 this could contribute to exacerbated hypoxic or
anoxic conditions in Indian waters. Therefore, the impact of
future changes in precipitation patterns must be considered in
developing resilient management strategies for reducing
nutrient pollution in India.

3.3. Role of Fertilizer Use. We find that historical
increases in fertilizer application rates over the period
considered here have not resulted in higher DIN flux for
most river basins in southern India. It is likely, however, that
fertilizer application would play a larger role on longer time
scales. We find that within specific basins fertilizer application
rate is only correlated with annual DIN fluxes for the Narmada
and Cauvery basins (Figure 4B). Furthermore, contrary to
findings for watersheds in the United States,40,41 Indian basins
with higher average fertilizer application rates (e.g., Krishna
and Cauvery basins) actually have lower DIN fluxes relative to
basins with lower fertilizer application rate (e.g., Brahmani and
Baitarni basin and Subernarekha basin) (Figure 4B). This
discrepancy is caused by the large spatial variability in
precipitation (Figure 1A, 4A), with basins with the highest
fertilizer application rates experiencing some of the lowest
precipitation rates, and vice versa.

Prior literature has also alluded to the fact that a large
fraction of the nitrogen input in India is lost to the atmosphere
as ammonia and nitrous oxide emissions, converted back to

nitrogen gas via denitrification, or retained in groundwater as
nitrate.42,43 Our results support these findings, suggesting that
agricultural intensification in India is likely impacting ground-
water quality and atmospheric emissions more so than riverine
fluxes. This hypothesis is also supported by observations of
high nitrate concentrations in groundwater in various states
across India44,45 and by increasing ammonia and nitrous oxide
emissions that have been attributed to agricultural intensifica-
tion.46−49 Quantifying nitrogen losses to groundwater and the
atmosphere as well as nitrogen export via agricultural products
at a basin scale would make it possible to attribute the increase
in fertilizer application to each of these four end points but is
beyond the scope of the current study.

Fertilizer application rates in India are projected to increase
further over the next several decades across five of the six
shared socioeconomic pathways13 developed in support of the
Coupled Model Intercomparison Project Phase 6 (CMIP6)
climate simulations,50 and these continuing increases in
fertilizer application rates may change how agricultural
intensification impacts riverine DIN fluxes.

3.4. Explanatory Factors for Specific Basins. We find
that the degree to which climatic variables (here, precipitation
and temperature) and nitrogen inputs (here, fertilizer
application and NOX deposition) explain interannual varia-
bility in DIN fluxes varies substantially across the seven
examined basins (Figure S1, Table S6). These factors explain
much of the variability for the Godavari, Subernarekha,
Mahanadi, and Narmada basins (64−91%). For the Godavari
basin, annual precipitation and seasonal temperature explain a
large fraction of the interannual variability, while for the
Subernarekha basin seasonal precipitation for the months of
June, July, August, and September (JJAS) alone explains the
vast majority of the interannual variability. For the Mahanadi
and Narmada basins, seasonal precipitation in JJAS in
conjunction with nitrogen inputs explains more than 75% of
the interannual variability. Both fertilizer application rates and
NOX deposition have increased over time (Figures S2 and S3),
and we found them to be important factors for explaining
interannual variability for the Narmada and Mahanadi basins.

Figure 4. Annual dissolved inorganic nitrogen fluxes (QDIN) for the seven examined basins presented as a function of (A) total annual precipitation
(PAnnual) and (B) fertilizer application rate (NFert) for the corresponding basin and year. Ellipses represent one standard deviation of the variability
across years for a given basin, dots mark the annual values for a given basin, and diamonds represent the mean value across years for a given basin.
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This increasing trend is also reflected in the flow-normalized
DIN concentrations and load for these basins (Figure S4).

Conversely, the examined climatic factors and nitrogen
inputs (Table S5) explain less than half of the interannual
variability in DIN fluxes for the Brahmani and Baitarni,
Cauvery, and Krishna basins (38−40%) (Figure S1, Table S6).
These results imply that, for these three basins, other variables
such as population changes, wastewater effluent, agricultural
nitrogen fixation, food and feed import, soil characteristics, or
water resource management likely explain the remaining
interannual variability. In addition to precipitation, seasonal
temperature is also found to be important for the Godavari and
Krishna basins. The temperature variables are associated with
negative drift coefficients, indicating a decrease in DIN fluxes
with increasing temperatures. This is likely attributable to
increased evapotranspiration leading to lower river discharge as
well as an increase in loss of reactive nitrogen via
denitrification.51

3.5. Study Limitations. Relative to regions such as the
United States, where nitrogen runoff has been the subject of
long-term monitoring and study, available concentration
measurements for the Indian river basins are relatively sparse
(see Supporting Information S1). In addition, the lack of
available data on related quantities or processes, such as
wastewater effluent discharged to agricultural lands, agricul-
tural nitrogen fixation and food and feed import limits the
degree to which total anthropogenic nitrogen inputs can be
quantified. A full accounting of the fate of applied nitrogen is
therefore beyond the scope of the current work. The dominant
role of precipitation in explaining the spatial and temporal
variability in nitrogen fluxes is clear, however, as is the lack of a
large increase in riverine runoff in response to historical
increases in fertilizer application.

4. IMPLICATIONS FOR WATER QUALITY
MANAGEMENT UNDER CHANGING CLIMATE AND
LAND USE

We find that large seasonal and interannual variability exists in
DIN fluxes across Indian rivers basins and that a large fraction
of this variability can be explained by seasonal or extreme
seasonal precipitation. These findings imply that strategies for
reducing DIN loading must explicitly consider the role of
interannual variability in meteorological conditions. In
addition, the strong influence of climatic factors means that
water quality management strategies aimed at reducing the
occurrence of impairments such as harmful algal blooms and
coastal hypoxia must be resilient to climatic variability and
change.

Our results suggest that in highly managed river basins in
southern India, fertilizer application rates have had only a
secondary effect on riverine nitrogen fluxes since the 1980s,
although this may change in the future as fertilizer application
rates continue to rise. We speculate that historical increases in
fertilizer application rates have likely negatively impacted
groundwater quality and atmospheric nitrogen emissions more
so than riverine fluxes; additional research is needed to
substantiate the scale of this impact. The results also point to
the differential impact of fertilizer application on DIN fluxes
for various river basins and, therefore, reinforce the need for
basin-specific management strategies.
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