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The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role

in generating rhythmic activity by clustering and synchronizing cell firing. Results of our

simulations demonstrate that both the intrinsic cellular properties of neurons and the

degree of network connectivity affect the characteristics of clustered dynamics exhibited

in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular

properties by the neuron’s current-frequency relation (IF curve) and Phase Response

Curve (PRC), a measure of how perturbations given at various phases of a neurons

firing cycle affect subsequent spike timing. We analyze network bursting properties

of networks of neurons with Type I or Type II properties in both excitability and PRC

profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies

arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances

and delays and IF curves that have a non-zero frequency at threshold. Type II neurons

whose properties arise with or without an M-type adaptation current are considered.

We analyze network dynamics under different levels of cellular heterogeneity and as

intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are

varied. Many of the dynamics exhibited by these networks diverge from the predictions

of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all

connected networks. Our results show that randomly connected networks of Type I

neurons synchronize into a single cluster of active neurons while networks of Type II

neurons organize into two mutually exclusive clusters segregated by the cells’ intrinsic

firing frequencies. Networks of Type II neurons containing the adaptation current behave

similarly to networks of either Type I or Type II neurons depending on network parameters;

however, the adaptation current creates differences in the cluster dynamics compared to

those in networks of Type I or Type II neurons. To understand these results, we compute

neuronal PRCs calculated with a perturbation matching the profile of the synaptic current

in our networks. Differences in profiles of these PRCs across the different neuron types

reveal mechanisms underlying the divergent network dynamics.

Keywords: inhibitory networks, interneurons, phase response curve, computational model, clustering, synchrony,

M-current, spike-frequency adaptation
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1. INTRODUCTION

Inhibitory interneurons play a crucial role in the formation
of rhythmic electrical activity throughout the brain. In the
hippocampus, interneurons mediate rhythms that appear to
serve vital roles in memory processing and are affected by sleep-
wake activity (Traub et al., 1998; Kopell et al., 2000; Bartos et al.,
2007; Aton et al., 2013). Interneurons also play a key role in
generating rhythmic activity in the cortex; in the visual cortex
in particular, these rhythms are implicated in the control of
attention in the presence of competing stimuli (Desimone and
Duncan, 1995; Luck et al., 1997; Reynolds et al., 1999; Fries, 2005;
Bosman et al., 2012).

However, interneurons form a very heterogenous population.
For example, the oriens-lacunosum moleculare (OLM) cells of
the hippocampus contain an M-type potassium current which
causes spike-frequency adaptation and is blocked by the action
of acetylcholine (ACh) on muscarinic receptors (Saraga et al.,
2003; Lawrence et al., 2006; Cutsuridis et al., 2010; Cutsuridis and
Hasselmo, 2012). Other hippocampal interneurons, such as the
parvalbumin-containing basket cells (PV cells) (Ferguson et al.,
2013) and cholecystokinin-containing basket cells (CCK cells)
(Cea-del Rio et al., 2011, 2012), have distinct cellular properties:
the PV cells are fast spiking neurons without adaptation, while
the CCK cells exhibit cholinergic modulation. In contrast, in
the cortex, cells exhibiting the PV marker exhibit a wide range
of properties, including the possibility of expressing the M-type
potassium channel, while somatostatin-expressing interneurons
(SOM cells) consistently exhibit spike frequency adaptation
much like the OLM cells (Markram et al., 2004; Perrenoud et al.,
2013).

Many of the properties of these interneurons can be

encapsulated by the neuron’s current-frequency relation (IF
curve) and Phase Response Curve (PRC), the latter being a

measure of how perturbations to a neuron at various phases

of its periodic firing cycle affect the timing of the next action

potential (Hansel et al., 1995; Schemer and Lewis, 2012). The
neuron properties quantified by these two tools are very often

related, leading to the development of the classical Type I and
Type II neuron classifications: neurons classified as Type I exhibit
a steep IF curve with an arbitrarily low firing frequency and
a PRC (calculated with a brief, weak excitatory perturbation)
exhibiting only phase advances; in contrast, neurons classified
as Type II exhibit a more shallow IF curve with a minimum
non-zero firing frequency and a PRC exhibiting regions of phase
delay and advance (Wang, 2010). These classifications arose
historically from the concepts of excitability type (Hodgkin,
1948) and the type of bifurcation that leads to periodic firing
in the corresponding mathematical models. While recent work
has shown that the relationship between the PRC, the IF curve
and the bifurcation type are not definite (Ermentrout et al.,
2012), usually saddle-node (SNIC) bifurcations are associated
with Type I properties and subcritical Hopf bifurcations are
associated with Type II properties (Ermentrout et al., 2001;
Stiefel et al., 2008). Additionally, the presence of an M-type
adaptation current has been shown to change Type I neurons
into Type II neurons through a corresponding change in

the bifurcation type (Ermentrout et al., 2001; Stiefel et al.,
2008).

Computational studies of networks of biophysical neuron
models have played a large role in identifying the mechanisms
by which inhibitory interneurons generate rhythmic firing
amongst themselves and in synaptically connected excitatory
pyramidal cells. Previous studies on the rhythmic properties of
strictly inhibitory networks have primarily focused on networks
consisting of Type I neurons (Wang and Buzsáki, 1996; Chow
et al., 1998; Whittington et al., 2000; Bartos et al., 2002; Brunel
and Hansel, 2006). The PV cells of the hippocampus have been
shown to exhibit a PRC only showing phase advance in response
to a weak excitatory current pulse and thus are typically classified
as Type I; these neurons are also known to exhibit reciprocal
synapses to form an inhibitory network primarily containing only
this type of interneuron (Karson et al., 2009; Ferguson et al.,
2013). The tendency for these networks to synchronize has been
explained by the interneuron network gamma (ING) mechanism
(Whittington et al., 2000; Kopell et al., 2010; Wang, 2010).
Synchrony is initiated by this mechanism when each neuron
in the network receives synaptic inhibitory input at roughly
the same time that suppresses firing and keeps each neuron’s
membrane potential below firing threshold. When the synaptic
inhibition decays, this creates an optimal firing window in which
neurons can fire action potentials. Thus, a major feature of this
mechanism is that inhibitory signals promote synchronization by
gating the timing of neural firing. As a result, synchrony via the
INGmechanism is sensitive to properties of the synaptic currents
present in the network and is most robust when networks
are densely connected and cellular heterogeneity is low (Traub
et al., 1998; Whittington et al., 2000; Tiesinga and Sejnowski,
2009; Kopell et al., 2010; Wang, 2010). In particular, the ING
mechanism predicts that synaptic inhibition that is sufficiently
strong and long lasting should robustly cause synchrony amongst
intrinsically firing cells whose firing frequencies are similar.

Type II neurons have been analytically shown to synchronize
in the case of mutual inhibition in networks of two neurons
(Vreeswijk et al., 1994). Other studies have analyzed larger,
all-to-all coupled inhibitory networks of neurons exhibiting
these properties, showing that they can either exhibit synchrony
or anti-phase clustering (Hansel et al., 1995; Achuthan and
Canavier, 2009; Ladenbauer et al., 2012), while newer studies
have begun to investigate the activity of these types of neurons
in randomly connected networks (Viriyopase et al., 2016).
Oftentimes, the presence of adaptation currents (like the M-type
potassium current) is what imbues a neuron with Type II
properties, as is the case in the neurons studied by Ladenbauer
et al. Hippocampal OLM cells exhibit Type II properties while
also exhibiting spike-frequency adaptation, imparted by the M-
type potassium current (Saraga et al., 2003; Lawrence et al.,
2006; Cutsuridis et al., 2010; Cutsuridis and Hasselmo, 2012),
and the SOM cells and some interneurons expressing the PV
marker exhibit these properties in the cortex (Markram et al.,
2004; Perrenoud et al., 2013). However, neurons may feature
Type II properties without containing adaptation currents, as
is most simply illustrated by the classic Hodgkin-Huxley model
neuron which does not exhibit spike-frequency adaptation but
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does exhibit Type II properties (Hodgkin and Huxley, 1952;
Ermentrout and Terman, 2010). Interneurons exhibiting Type
II properties without strong evidence of an adaptation current
have been found in various brain regions including the rat
somatosensory cortex (Tateno et al., 2004; Tateno and Robinson,
2007a,b), the rat barrel cortex (Mancilla et al., 2007), the rat
cerebellum (Couto et al., 2015) and the mouse spinal cord
(Zhong et al., 2012). There is evidence suggesting that Type
II interneurons in the rat somatosensory cortex synapse onto
each other to form an inhibitory network primarily containing
only this type of interneruon (Tateno and Robinson, 2007b),
and the PV cells in the cortex, which sometimes exhibit Type
II properties, are also known to be connected in this fashion
(Markram et al., 2004; Perrenoud et al., 2013); however, it is
currently unclear whether the OLM interneurons are synaptically
interconnected.

Motivated by the variety of interneurons present in the
hippocampus and cortex, and evidence that they form inhibitory
networks, in this study we investigated spatio-temporal pattern
formation in strongly synaptically coupled, randomly connected
inhibitory networks of Type I neurons, Type II neurons and Type
II neurons containing an M-type potassium current (hereafter
referred to as Type II neurons with adaptation). We focus on this
coupling regime because networks of this type are not amenable
to analytical treatment. Utilizing simulations, we show that these
networks exhibit different types of synchronous or clustering
behavior through multiple mechanisms, which arise from the
differing intrinsic cellular properties of these neuron models.

Because the neuron models used in this study exhibit the
classical associations between the PRC, IF curve and bifurcation
type (shown below) (Ermentrout et al., 2001; Stiefel et al., 2008),
we will refer to Type I and Type II neurons and PRCs following
the classical definitions described above. While we use PRCs
generated with a weak excitatory current pulse to classify our
model neurons as either Type I or Type II, we use a PRC
calculated with a perturbation matching the synaptic current
profile, which we term the sPRC and define in more detail below,
to more accurately illustrate neural response properties in our
networks which contain stronger synaptic connections. Neurons
that exhibit distinct properties in their PRCs exhibit analagously
distinct properties in their sPRCs as illustrated in Figure 1, and
these sPRC properties are used to articulate the mechanisms
underlying the dynamics found in these networks.

We classify network activity patterns into four major
behaviors: asynchrony; full synchrony, in which every neuron in
the network fires roughly simultaneously in a stable fashion; one-
cluster dynamics, in which some of the neurons in the network
fire synchronously in bursts of network activity, but others are
silenced; and two-cluster dynamics, in which some, but not all,
of the neurons in the network fire synchronously in bursts,
but subsequent bursts contain mutually exclusive populations of
neurons, providing informational specificity to the burst. While
a number of these dynamical patterns have previously been
found in computational studies of neural networks (Talathi et al.,
2008; Ermentrout and Wechselberger, 2009; Talathi et al., 2010;
Kilpatrick and Ermentrout, 2011; Dipoppa et al., 2012; Moon
et al., 2015), we focus on directly comparing network activity in

large-scale, synaptically coupled inhibitory networks consisting
of neurons with differentmembrane properties andwith differing
cellular heterogeneity and connectivity density.

Our results show that the ING mechanism drives one-cluster
dynamics via cell suppression (Chow et al., 1998) and full
synchrony in networks of Type I neurons, as has been previously
shown (Whittington et al., 2000; Kopell et al., 2010; Wang,
2010). However, we also show that the properties of the sPRC
of the neuron, specifically those associated with Type II neurons,
can interfere with the ING mechanism and produce two-cluster
dynamics. The fact that such networks do not necessarily evolve
into one-cluster dynamics as the synaptic decay time constant
increases violates the predictions of the ING mechanism and
our results indicate that clustering in these networks occurs in a
fashion largely independent of synaptic properties. In fact, ING-
driven synchrony only appears in networks of Type II neurons
when heterogeneity in the intrinsic firing frequency of cells in
the network is minimal. Previous studies have shown that the
PRC is a useful tool to explain divergent network dynamics,
including the differences between one-cluster and two-cluster
firing, although such analysis has not been performed in detail on
strongly and randomly connected, strictly inhibitory networks,
and has not utilized the features of the PRC focused on in
this study (Ermentrout et al., 2001; Goel and Ermentrout, 2002;
Talathi et al., 2008; Ermentrout and Wechselberger, 2009; Zahid
and Skinner, 2009; Kilpatrick and Ermentrout, 2011; Ladenbauer
et al., 2012; Canavier et al., 2013; Viriyopase et al., 2016).

Furthermore, we illustrate that networks of Type II neurons
with adaptation exhibit activity patterns similar to either Type
I or Type II networks dependent upon the average intrinsic cell
firing frequency of neurons in the network and the synaptic
decay constant of synapses in the network. The values of
these parameters and their interaction with the properties of
the adaptation current lead to a change in network dynamics
that is associated with a change in properties of sPRC. These
results show the importance of the adaptation current in driving
network dynamics in strictly inhibitory, randomly-connected
networks, further emphasizing the influence of spike-frequency
adaptation on network dynamics as shown in other network
types (Ermentrout et al., 2001; van Vreeswijk and Hansel,
2001; Ermentrout and Wechselberger, 2009; Ladenbauer et al.,
2012; Viriyopase et al., 2016). Together, our results detail
the important role played by intrinsic cellular properties of
neurons, as well as the degree of connectivity in the network,
in driving rhythmic behavior in randomly-connected inhibitory
networks.

2. METHODS

2.1. Neuron Models
We constructed networks composed of three different model
neurons in the Hodgkin-Huxley formalism that displayed
different properties in their IF curves and PRCs. All model
neurons contained Na+, K+-delayed rectifier and leak currents.
The Type II neuron with adaptation additionally contained a
slow, M-type K+ current (Stiefel et al., 2008; Ermentrout and
Terman, 2010; Fink et al., 2011).
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FIGURE 1 | Properties of neuron models. (A) Current-frequency curves (IF curves) of Type I (red), Type II (blue) and Type II with adaptation (black) neuron models.

(B) Phase response curves (PRCs) calculated with a brief excitatory current pulse for each model neuron firing at 65Hz. (C) PRCs calculated with a brief inhibitory

pulse for each model neuron neuron firing at 65Hz. (D–F) sPRCs calculated with a perturbation matching the double exponential synaptic current model with various

synaptic decay constants for a Type I neuron firing at 44Hz (D), for a Type II neuron firing at 70Hz (E) and for a Type II neuron with adaptation firing at 30 Hz (F).

To model an interneuron exhibiting Type II properties
without spike-frequency adaptation, the classic Hodgkin-Huxley
equations were used (Hodgkin and Huxley, 1952; Ermentrout
and Terman, 2010):

dV

dt
= −gNam

3h(V − ENa)− gKn
4(V − EK)− gL(V − EL)

+ Iapp − Isyn (1)

dX

dt
= αX(V)(1− X)− βX(V)X, forX = m, h, n (2)

αm(V) = −0.1

(

V + 40

e−(V + 40)/10 − 1

)

(3)

βm(V) = 4e−(V + 65)/18 (4)

αh(V) = 0.07e−(V + 65)/20 (5)

βh(V) =
1.0

e−(V + 35)/10 + 1
(6)

αn(V) = −0.01

(

V + 55

e−(V + 55)/10 − 1

)

(7)

βn(V) = 1.25e−(V + 65)/80 (8)

V represents the membrane voltage in [mV], while m, n and
h represent the unitless gating variables of the ionic current
conductances. Iapp signifies the external applied current to the
neuron (described below), in [µA/cm2], while Isyn describes the
synaptic current input to the cell from the network (described
below), also with units of [µA/cm2]. ENa,EK and EL are the
reversal potentials, with Na symbolizing sodium, K symbolizing
potassium, and L symbolizing the leak current. In this model
these constants are set at ENa = 50 mV, EK = −77 mV and
EL = −54.4 mV. The corresponding maximum conductances
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gNa, gK and gL are set at gNa = 120 mS/cm2, gK = 36 mS/cm2

and gL = 0.3 mS/cm2.
The Type II properties of this model neuron are reflected in

its IF curve (Figure 1A) and PRC (Figure 1B) (Wang, 2010).
At current threshold, firing frequency is a discrete, non-zero
value and the slope of the IF curve is shallow for all applied
current values. The discontinuity between a zero firing frequency
and a non-zero firing frequency arises from the subcritical
Hopf bifurcation that leads to periodic firing in this model
neuron, and this bifurcation is also historically associated with
the classification of this neuron model as Type II (Ermentrout
et al., 2001; Stiefel et al., 2008). The PRC displays an initial delay
region and phase advance when the brief depolarizing current
pulse is delivered at later phases. The PRC calculated with a brief
hyperpolarizing current pulse is simply a reflection over the line
of zero phase difference, showing an initial phase advance region
and phase delay when the perturbation is delivered at later phases
(Figure 1C).

Type I neurons and Type II neurons with adaptation were
simulated utilizing a model in which different values for the
conductance associated with the M-type potassium current
switch the behavior of the neuron between Type I and Type
II with adaptation (Stiefel et al., 2008; Fink et al., 2011). The
equations are

dV

dt
= −gNam

3
∞h(V − ENa)− gKd

n4(V − EK)

− gKsz(V − EK)− gL(V − EL)+ Iapp − Isyn (9)

dX

dt
=

X∞(V)− X

τX(V)
forX = h, n, z (10)

m∞(V) =
1

1+ e(−V − 30/9.5)
(11)

h∞(V) =
1

1+ e(V + 53/7.0)
(12)

n∞(V) =
1

1+ e(−V − 30/10)
(13)

z∞(V) =
1

1+ e(−V − 39/5)
(14)

τh(V) = 0.37+
2.78

1+ e(V + 40.5)/6
(15)

τn(V) = 0.37+
1.85

1+ e(V + 27)/15
(16)

τz(V) = 75 (17)

Variables and constants have identical meanings as in the Type II
model, with the new terms gKd

and gKs representing the maximal
conductances associated with the delayed rectifier and slow M-
type potassium currents, respectively, and z representing the
gating variable governing the M-type potassium current. The
constants for this model are as follows: ENa = 55 mV, EK = −90
mV, EL = −60 mV, gNa = 24 mS/cm2, gKd

= 3 mS/cm2 and
gL = 0.02 mS/cm2.

When gKs = 0 mS/cm2 the model neuron is designated
Type I because of the properties of its IF curve (Figure 1A)
and PRC (Figure 1B) (Wang, 2010). The neuron exhibits firing
frequencies arbitrarily close to zero at current threshold and

the slope of the IF curve is initially very steep while becoming
more shallow as applied current increases. The PRC exhibits
phase advance for a brief depolarizing current pulse delivered at
essentially every phase. When the PRC is calculated with a brief
hyperpolarizing current pulse the curve is reflected over the line
of zero phase difference, showing phase delay at essentially every
phase (Figure 1C). This model neuron achieves repetitive firing
via a SNIC bifurcation, which is historically associated with the
Type I classification (Ermentrout et al., 2001; Stiefel et al., 2008).

When gKs = 1.5 mS/cm2 the model neuron is designated
Type II with adaptation because the properties of its IF curve
(Figure 1A) and PRC (Figure 1B) match the basic properties
of a Type II neuron as described previously (Wang, 2010).
This neuron model achieves periodic firing with a subcritical
Hopf bifurcation, a known feature of neuron models with an
M-type adaptation current that is associated with the Type II
classification (Ermentrout et al., 2001).

We note that both neuron models contain sodium, delayed-
rectifier potassium, and leak currents, while the Type II neuron
with adaptation contains the additional slow potassium current.
The difference between the Type I and Type II neuron
models arises due to the different parameter values for the
conductances and the differences in the functions governing the
gating variables, primarily a depolarizing shift in the steady-
state activation function associated with the delayed rectifier
potassium channel. The difference between the Type I and Type
II with adaptation neuron arises due to the activity of the slow
potassium channel.

While the equations for the Type I neuron and the Type
II neuron with adaptation were initially developed to model
a cortical pyramidal neuron modulated by acetylcholine, the
properties of this neuron when gKs = 0 closely mirror
those of fast-spiking Type I interneurons (for instance, the PV
interneurons modeled by Ferguson et al., 2013). Additionally, the
presence of an activeM-current when gKs = 1.5 causes thismodel
to act similarly to interneurons with such a current, such as the
OLM neurons.

For our network simulations, a constant, though
heterogeneous between neurons, external input current is
applied to all neurons, inducing continuous periodic firing which
allows the PRC to be a useful tool for analyzing neural response
properties. However, the PRC computed in response to a brief,
weak input (as in Figures 1B,C) does not accurately describe the
cell’s response to the inhibitory synaptic input received within
the network, because the synaptic transmission as modeled is
not brief and weak. To understand how differences in intrinsic
cellular properties affect responses to perturbations received by
neurons within our model networks, we computed PRCs with
an inhibitory signal approximating the magnitude and profile of
the synaptic current received by a single cell following a burst
of network activity. To differentiate PRCs calculated with this
type of perturbation from those used to classify neuron type,
we refer to the PRCs calculated with synaptic currents as sPRCs
(as opposed to PRCs calculated with brief, excitatory current
pulses which are referred to simply as PRCs). The sPRCs are
shown in Figures 1D–F for Type I neurons, Type II neurons
and Type II neurons with adaptation, respectively. For brief
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synaptic currents, sPRCs show similar properties to their PRC
counterparts in Figure 1C, but as the duration of the synaptic
current increases, the sPRCs for different cell types become more
similar.

The sPRCs for the Type I neuron show a large delay response
to perturbations delivered at early phases and exhibit linear
properties, with a slope of approximately −1, as the phase of the
perturbation increases. Themagnitude of the delay depends upon
the duration of the synaptic current. The linear properties of
these sPRCs indicate that, regardless of timing, all perturbations
serve to “reset” the neuron to the beginning of its firing cycle,
where the neuron is held until the inhibition decays sufficiently.
Furthermore, the neuron is held at the beginning of its firing
cycle for the same duration regardless of when the perturbation
occurred. The only factor that changes the magnitude of the
phase delay, then, is the time elapsed between the initial action
potential firing and the delivery of the perturbation. This evolves
linearly with the timing of the perturbation. Since the scales of
both the timing and the phase delay are normalized to 1, the
sPRCs display linear properties with an approximate slope of−1.
For these reasons, we classify sPRCs with linear characteristics as
having “phase-resetting” properties.

The sPRCs for both the Type II neuron and the Type II
neuron with adaptation exhibit a distinctly concave down shape
for brief synaptic currents. As the duration of the synaptic current
increases, the sPRCs for both of these neurons become more
linear and start to resemble the phase-resetting shape. However,
even for the longest lasting synaptic currents the sPRCs for the
Type II neuron and the Type II neuronwith adaptation still retain
some concave down characteristics, never achieving the degree of
linearity shown by the sPRCs for Type I neurons.

Another relevant property of the Type II neuron with
adaptation is spike-frequency adaptation. When this neuron is
quiescent for a sufficient period of time, the gating variable
governing the slow potassium current, z, falls below its typical
value achieved during repetitive firing. When the neuron begins
firing again, the slow time dynamics of z cause its value to rise
slowly, allowing faster than normal firing until it fully recovers.
These dynamics are displayed in Figure 2: in response to an
applied current step initiated at t = 100 ms from resting
membrane potential, action potential firing occurs at higher
frequency until the value of z rises to a steady oscillation. Removal
of the current step for a moderate period of time allows sufficient
decay of z so that frequency is again high when the current step
is reintroduced.

2.2. Network Structure
We performed all simulations on networks of 1000 neurons. Each
neuron received synaptic input from the same number (unless
otherwise specified, 300) of randomly selected pre-synaptic cells.

Cell heterogeneity was implemented by varying the external
input current, Iapp, to each neuron. The input currents were
selected from a uniform distribution centered on the current (IA)
that would impart an average intrinsic cell firing frequency to
an isolated neuron. Here we studied networks with two levels
of heterogeneity. For high heterogeneity simulations we chose
the input currents uniformly from the distribution [0.9IA, 1.1IA],

FIGURE 2 | Type II neurons with adaptation exhibit spike-frequency

adaptation. Voltage trace (blue) and value of the slow potassium gating

variable z (green) shown for a single neuron that begins with no input current

and equilibrium values of the voltage and all gating variables. The current step

is shown above the voltage trace in black. The frequency of action potential

firing depends upon the rate of previous action potential firing, which is

reflected by the value of the gating variable of the slow potassium current.

while for low heterogeneity simulations we chose the input
currents uniformly from the distribution [0.99IA, 1.01IA].

We modeled synapses using a double exponential profile of
the form

Isyn(t) = gsyn(V − Esyn)

(

∑

si

e−(t− si)/τd − e−(t− si)/τr

)

(18)

where gsyn is the maximum conductance, V is the membrane
voltage of the post-synaptic neuron, Esyn is the reversal potential
of the synapse, si are the times of all pre-synaptic spikes occuring
before the current time t in ms, and τd and τr are the synaptic
decay and the synaptic rise time constants, respectively (in ms).
Esyn is set at −75 mV for inhibitory synapses. τr is set at 0.2 ms
while τd is varied in the simulations. In all simulations, gsyn is set
at 0.010 mS/cm2.

2.3. Measures
We used two measures to quantify the synchrony and clustering
behavior of these networks. The Synchrony Measure is an
adaptation of a measure created by Golomb et al. (Golomb
and Rinzel, 1993, 1994) that quantifies the degree of spiking
coincidence in the network. Briefly, the measure involves
convolving a gaussian function with the time of each action
potential for every cell to generate functions Vi(t). The
population averaged voltage V(t) is then defined as V(t) =

1

N

N
∑

i= 1

Vi(t), where N is the number of cells in the network,

which for our simulations was 1000.We further define the overall
variance of the population averaged voltage σ and the variance of
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an individual neuron’s voltage σi as

σ =< V(t)2 > − < V(t) >2 (19)

and

σi =< Vi(t)
2 > − < Vi(t) >2 (20)

where < · > indicates time averaging over the interval for which
the measure is taken. The SynchronyMeasure S is then defined as

S =
σ

1

N

∑N
i=1 σi

(21)

The value S = 0 indicates completely asynchronous firing,
while S = 1 corresponds to fully synchronous pattern of network
activity.

To quantify relative overlap in cell participation in subsequent
network bursts we constructed a new measure, entitled the Burst
Similarity Measure. It quantifies the fraction of active neurons
that participate in consecutive bursts of network activity. This
measure is calculated in two steps. First, to detect timing and
duration of each burst, the spike times of each neuron in the
network are convolved with a gaussian function and a cumulative
network activity trace is formed. This trace is subsequently
thresholded to determine the on and off times for every burst (bj
and ej, respectively).

For each burst j we construct a binary vector that quantifies
which neurons spiked during the burst, vj. If neuron i spiked
during burst j, meaning it fires at a time tj such that bj ≤ tj ≤ ej,
we set vj(i) = 1, otherwise vj(i) = 0. The Burst Similarity
Measure B is then determined via

B =
1

n − 1

n− 1
∑

j= 1

vj · vj+ 1

|vj||vj+ 1|
(22)

where · indicates the vector dot product, |x| indicates the vector
norm, and n is the total number of bursts.

A Burst SimilarityMeasure of B = 0 indicates that consecutive
bursts contain mutually exclusive populations of neurons, while
B = 1 indicates that consecutive bursts contain an identical
population of neurons.

The measure allows for differentiation of multiple types of
behavior reflected by an intermediate value of the Synchrony
Measure. For example, one-cluster dynamics consisting of half
the cells in the network being active, with the other half
completely suppressed, exhibits an intermediate value of S and
B = 1. In contrast, two-cluster dynamics consisting of bursts of
network activity in which consecutive bursts contain mutually
exclusive populations of neurons, each containing half of the
neurons in the network, also has an intermediate value of S but
B = 0.

Numerous validation studies were done to confirm that this
measurement satisfies the above properties in practice. Toy cases
easily confirm the extreme cases of B = 0 and B = 1 described
above; additionally, for a variety of simulations of our networks
we confirmed that the dynamics predicted by B matched the
dynamics exhibited by the network by visually inspecting the
corresponding raster plots.

2.4. Simulations
The code underlying these simulations was written in the C
programming language and run on the University of Michigan’s
Flux cluster, a Linux-based high-performance computing cluster.

All simulations were run for 2500 ms from random initial
conditions for voltage and gating variables for each neuron.
Possible initial conditions for V ranged between −62 and −22
mv, while the possible initial conditions for each gating variable
ranged between 0.2 and 0.8. In order to investigate the stability of
the network’s behavior, at a time of 1400 ms a large amplitude,
brief current pulse was delivered to each cell in the network
to cause all neurons to fire at the same time. As inhibitory
synaptic currents do not directly promote synchronized firing
and the ING mechanism achieves synchrony by organizing time
windows that allow synchronized firing, this applied current
pulse acts to impose an instance of synchrony on the network
(analagous to imposing homogeneous initial conditions causing
instantaneous spiking of all neurons in the network, as opposed
to the randomized initial conditions that begin the simulations).
To distinguish global convergence vs. local stability (relative to
the entire state space of the model system) of synchronous and
clustered solutions we applied the synchronizing pulse during the
simulation and compared network dynamics established from
random initial conditions (Pre Pulse) to that established after the
current pulse (Post Pulse). An illustrative example of a clustered
solution that is not globally convergent from random initial
conditions but stable locally after the pulse is shown in Figure 3.

Model equations are integrated using a fourth order Runge-
Kutta technique. Spikes do not trigger synaptic current until 100
ms into the simulation to allow initial transients to decay.

Color plots of the SynchronyMeasure and the Burst Similarity
Measure display the average of these scores over 10 independent
simulations. The Pre Pulse scores (left panels) are calculated
based on the network activity from 300 to 1300ms, and the Post
Pulse scores (right panels) are calculated based on the network
activity from 1500 to 2500 s. Simulations (not shown here) were

FIGURE 3 | Effect of a synchronizing current pulse in network

simulations. In an example network consisting of Type I neurons with high

heterogeneity, a large, brief current pulse delivered at 1400 ms causes every

cell in the network to fire synchronously. In response, this network changes

behavior and exhibits one-cluster dynamics following the pulse despite firing

asynchronously previously.
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run to ensure that the behaviors indicated by the Synchrony
Measure and Burst Similarity Measure taken over the given
interval were indicative of stable behaviors that would persist
long past the time interval measured here.

Color plots display measures for the same range of values for
the synaptic decay time constant τd, while the average intrinsic
cell firing frequencies are chosen to sample a majority of the
range of frequencies of repetitive cell firing that a given model
can attain.

3. RESULTS

We investigated global pattern formation in randomly connected
inhibitory networks composed of neurons with three cellular
excitability types and different levels of cellular heterogeneity,
finding that the clustering dynamics were dependent upon cell
type, heterogeneity level and the degree of connectivity. This
diversity in network activity patterns provides evidence for the
importance of intrinsic cell properties in dictating network
patterns in randomly connected inhibitory networks, while also
allowing for the identification of the mechanisms underlying
these dynamics that depend upon these properties.

3.1. Effect of Connectivity Density
The computational study of neural networks includes a plethora
of studies focusing on all-to-all connected networks. This
literature includes many of the papers cited here as relevant to the
study of interneuron networks, inhibitory networks, or the role
of spike-frequency adaptation in network dynamics (Vreeswijk
et al., 1994; Ermentrout et al., 2001; Goel and Ermentrout,
2002; Ermentrout and Wechselberger, 2009; Zahid and Skinner,
2009; Kilpatrick and Ermentrout, 2011; Dipoppa et al., 2012;
Ladenbauer et al., 2012; Moon et al., 2015). One of the benefits
of the study of all-to-all connected networks is the ability
to use techniques, including weakly coupled oscillator theory
and the phase-reduction technique, in order to mathematically
analyze the network dynamics and in turn prove the generality
of dynamical results. However, these techniques rely upon the
assumption that the networks have all-to-all network topology
(Schemer and Lewis, 2012).

In our networks with high heterogeneity in intrinsic cell firing
frequency, the level of connectivity density caused significant
changes in the patterns of network dynamics. These changes
are shown by the changing network dynamics illustrated in
Figure 4 for networks of Type I (first column), Type II (second
column) and Type II with adaptation (third column) neurons, for
networks with a connectivity density of 10, 30, and 100%, from
top to bottom, respectively.

The values of the Synchrony Measure (S) and Burst Similarity
Measure (B), when analyzed jointly, indicate the type of activity
in these networks and inform the classification of network
dynamics in Figure 4. We describe the manner in which S and
B are analyzed to yield the classification of network dynamics
below. For simplicity, in Figure 4 we only illustrate the changes
in overall network dynamics.

Regardless of the connectivity density, synchronous activity
in networks of Type I neurons was restricted to one-cluster

dynamics. The parameter space in which one-cluster firing
occurred, as opposed to asynchronous dynamics, moved to
include lower intrinsic cell firing frequencies as the connectivity
density increased. While networks with 30% connectivity density
do not evolve to one-cluster dynamics from randomized initial
conditions at low intrinsic firing frequencies, as shown here,
we will show below that these networks can achieve one-cluster
dynamics following the synchronizing current pulse.

When connectivity density was less than 30%, networks
of Type II neurons with adaptation exhibited one-cluster
dynamics for high average intrinsic cell firing frequencies,
but displayed two-cluster dynamics or asynchronous activity
as cell firing frequency decreased or the synaptic decay time
constant increased. As the connectivity density increased,
parameter regimes which supported two-cluster dynamics at
lower connectivity densities exhibited one-cluster dynamics at
the higher connectivity densities. At full connectivity density,
two-cluster dynamics were only found for networks with the
slowest average cell firing frequencies or shortest synaptic decay
constants. Thus, in these networks, lower connectivity density
allows cellular and synaptic properties to influence network
activity and determine whether two-cluster dynamics or one-
cluster dynamics are exhibited. In fully connected networks,
cellular and synaptic properties are less influential and network
dynamics converge to similar patterns of one-cluster dynamics.

Connectivity density had minimal effect on the type of
synchronous dynamics exhibited in networks of Type II neurons.
For all densities, networks displayed two-cluster dynamics with
little effect due to variations in intrinsic cell firing frequency and
synaptic decay time constant.

In summary, increasing connectivity density limited the
contributions of cellular and synaptic properties to network
dynamics in our simulations. Not surprisingly, full connectivity
promoted one-cluster synchronous dynamics, except in the
Type II networks. We note, though, that when heterogeneity in
intrinsic cell firing frequency was reduced in Type II networks,
one-cluster dynamics were exhibited (see further results
below).

For the remainder of this study, we consider networks with
30% connectivity density. There exists biological evidence for
30% connectivity density among inhibitory neurons based on
data from the CA1 region of the rat hippocampus (Ascoli and
Atkeson, 2005; Viriyopase et al., 2016). Additionally, from the
above results, networks with this connectivity showed distinct
dynamical patterns from both extremely sparsely and extremely
densely connected networks, thus making generalizations from
the study of these networks to other randomly connected
networks reasonable.

3.2. Networks of Type I Neurons
Inhibitory networks of Type I neuronsmanifested full synchrony,
one-cluster dynamics, or asynchrony with 30% connectivity
density. The particular type of behavior exhibited by the network
was determined by the two parameters varied across simulations,
the average intrinsic cell firing frequency of neurons in the
network and the synaptic decay time constant, as well as the
level of heterogeneity. Full synchrony was exhibited only when

Frontiers in Neural Circuits | www.frontiersin.org 8 October 2016 | Volume 10 | Article 82

http://www.frontiersin.org/Neural_Circuits
http://www.frontiersin.org
http://www.frontiersin.org/Neural_Circuits/archive


Rich et al. Clustering in Inhibitory Neural Networks

FIGURE 4 | Network activity patterns are dependent upon connectivity density. Diagrams illustrating the changing network dynamics in our simulations as a

function of connectivity density and neuron type, with simulations run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic decay

constants (vertical axis). The connectivity densities shown here are 10, 30, and 100%, from top to bottom. Simulations for Type I neurons are shown in the first

column, simulations for Type II neurons are shown in the second column, and simulations for Type II neurons with adaptation are shown in the third column.

the level of heterogeneity was low (Figure 5); in this case the
network exhibited bursts of network activity containing every
neuron in the network. In the high heterogeneity case (Figure 6),
one-cluster dynamics were observed in which bursts contained
largely the same group of neurons but not all neurons in the
network, which is indicative of cell suppression (Chow et al.,
1998).

The dynamics exhibited by the network were determined
by the values of S and B. High values of both measures
indicate that the network exhibited one-cluster dynamics: high
values of S indicate that some clustering occurred in the
network, and high values of B indicate that subsequent bursts
of network activity contained similar populations of neurons.
After inspecting the values of both S and B corresponding with
various network behaviors and visually classifying dynamics in
the corresponding raster plots, we determined that clustering
occurs when S > 0.4, and when B > 0.2 subsequent bursts
are sufficiently similar for the behavior to be deemed one-
cluster dynamics (although the values of B observed for one-
cluster dynamics were typically much higher than this level).
Both measures approaching their maximal value of 1 indicated
that the network exhibits full synchrony. Two-cluster dynamics
are indicated by a moderate value of S (typically S ≈ 0.6),
but B = 0.

The stability of the solutions observed from randomized
initial conditions were investigated by applying a synchronizing

current pulse to all neurons approximately midway through
the simulation. The current pulse caused all neurons to
fire simultaneously which produced a subsequent uniform
suppression of all neurons via the synaptic inhibition. The
left and right panels of Figures 5, 6 display the measures and
example raster plots of pre- and post-pulse network activity,
respectively.

Networks with low average intrinsic cell firing frequencies
exhibited asynchronous activity patterns, regardless of
heterogeneity and synaptic decay time constant, when simulated
from random initial conditions. However, stable full synchrony
or one-cluster dynamics could be induced by the synchronizing
current pulse in some of these networks: in nearly all networks
with low heterogeneity, the current pulse induced full synchrony,
while in networks with high heterogeneity the pulse induced
one-cluster dynamics within a range of synaptic decay time
constant values. Thus, the current pulse revealed bistable
dynamics in these networks characterized by evolution to
either asynchronous or clustered dynamics depending on initial
conditions. Full synchrony developed following the current pulse
in networks with high heterogeneity and an average intrinsic
cell firing frequency of 15 because IA for these networks was
0, resulting in networks with homogeneous external input
current to the neurons. Examples of these bistabilities between
asynchronous and fully synchronous or one-cluster firing are
shown in the raster plots in Figures 5C, 6C.
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FIGURE 5 | Dynamics of networks of Type I neurons with low cellular heterogeneity. (A,B) Synchrony Measure (A) and Burst Similarity Measure (B) for

simulations run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic decay constants (vertical axis), averaged over 10 independent

simulations before (left panel) and after (right panel) the synchronizing current pulse. (C) Example raster plot for a simulation with an average intrinsic cell firing

frequency of 98.8 Hz and a synaptic decay constant of 3.5 ms (whose position in the heatmaps is illustrated by the overlayed C) shows asynchrony occuring from

initial conditions but full synchrony following the pulse. (D) Example raster plot for a simulation with an average intrinsic cell firing frequency of 171.2 Hz and a synaptic

decay constant of 3.5 ms (whose position in the heatmaps is illustrated by the overlayed D) exhibits full synchrony before and after the pulse.

This bistability is reflective of properties of the ING
mechanism. Asynchrony occurred due to the combination of the
low firing frequency of neurons and the presence of synaptic
inhibition preventing enough cells from firing in close enough
temporal proximity to generate sufficient synaptic inhibition to
suppress spiking activity in the entire network for a sufficient
period. However, the current pulse instantiated a state in which
every neuron in the network fired synchronously; following this,

every neuron in the network received identically strong synaptic
inhibition, initiating ING-driven activity. Following the pulse,
this synchronous activity was fully maintained in most of the low
heterogeneity networks, and partially preserved via one-cluster
dynamics in many high heterogeneity networks.

Networks with higher average intrinsic cell firing frequencies
showed no significant changes in either S or B after the
current pulse, indicating that ING-driven dynamics are globally
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FIGURE 6 | Dynamics of networks of Type I neurons with high cellular heterogeneity. (A,B) Synchrony Measure (A) and Burst Similarity Measure (B) for

simulations run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic decay constants (vertical axis), averaged over 10 independent

simulations before (left panel) and after (right panel) the synchronizing current pulse. (C) Example raster plot for a simulation with an average intrinsic cell firing

frequency of 98.8 Hz and a synaptic decay constant of 3.5 ms (whose position in the heatmaps is illustrated by the overlayed C) shows asynchrony occuring from

initial conditions but one-cluster dynamics following the pulse. (D) Example raster plot for a simulation with an average intrinsic cell firing frequency of 171.2 Hz and

and a synaptic decay constant of 3.5 ms (whose position in the heatmaps is illustrated by the overlayed D) exhibits one-cluster dynamics before and after the pulse.

stable solutions that do not depend on initial conditions. These
networks exhibited full synchrony in the low heterogeneity
case and one-cluster dynamics in the high heterogeneity case.
Example raster plots in this domain, illustrating the similarity in
network activity before and after the current pulse, are shown
in Figures 5D, 6D. In the high heterogeneity case, the range of
computed S values reflect the proportion of cells in the network
that participate in the one-cluster dynamics, with lower values of

S indicating that fewer cells participated in each burst of network
activity. In networks with a lower S, neurons that have smaller
input currents either participated in very few bursts or were
completely suppressed. This is illustrated by Figure 7C, which
shows the relationship between input current and average firing
frequency for each individual neuron in an example network
illustrating cell suppression. These results match previous results
studying analagous networks with heterogeneity (Wang and
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FIGURE 7 | Comparison of relationships between input current and average neuron firing frequencies in one-cluster and two-cluster network

dynamics. (A) Average firing frequencies of individual neurons in a network of Type II neurons with adaptation exhibiting one-cluster dynamics plotted against the

input current to the corresponding neuron. (B) Same as (A) but for a network of Type II neurons with adaptation exhibiting two-cluster dynamics. (C) Same as (A) but

for a network of Type I neurons with similar values of S and B as in (A). (D) Same as (B) but for a network of Type II neurons with similar values of S and B as in (B).

Buzsáki, 1996; Chow et al., 1998; Bartos et al., 2002; Tiesinga and
Sejnowski, 2009; Ferguson et al., 2013).

The sPRCs shown in Figure 1D help to explain these
networks’ tendency to exhibit dynamics driven by the
ING mechanism. Regardless of the duration of the synaptic
current, the sPRCs for Type I neurons showed strong phase-
resetting characteristics. As discussed above, phase-resetting
characteristics arise in an sPRC when the synaptic inhibition
holds a cell at the beginning of its firing cycle for the duration
of the synapse, irregardless of the signal’s timing. When all
the cells in the network receive this type of perturbation, they
become suppressed until the synaptic signal decays, eliciting a
“window” in which cell firing can occur before the next round
of action potential firing and the resulting synaptic inhibition
suppresses the neurons once again. This is exactly the underlying
mechanism of ING, indicating that the tendency for the ING-
driven dynamics in these networks can be explained by the
phase-resetting characteristics of the sPRC.

Thus, our results in this case agreed with the theory of
the ING mechanism, as our networks exhibited full synchrony
or one-cluster dynamics with the degree of synchrony within
these clusters dependent upon heterogeneity, the synaptic
decay constant, and the average intrinsic cell firing frequency
of neurons in the network. Further evidence for the ING
mechanism driving the synchronous activity was in the response
of these networks to the current pulse that artificially instantiated
synchronous dynamics into these networks.

3.3. Networks of Type II Neurons
The networks of Type II neurons typically exhibited either
full synchrony or two-cluster dynamics. The type of behavior
displayed depended upon the synaptic decay time constant and
level of cellular heterogeneity. Interestingly, for the range of
synaptic decay time constants and average intrinsic cell firing
frequencies studied here, networks of Type II neurons only
exhibited ING-driven full synchrony in the low heterogeneity
case. This provides strong evidence that intrinsic cellular
properties are important in determining clustering dynamics in
networks with non-trivial levels of heterogeneity, which are more
biologically plausible than homogeneous networks.

For low values of the synaptic decay time constant,
networks with low heterogeneity (Figure 8) exhibited two-cluster
dynamics. When the decay constant was large, the network
evolved to full synchrony from random initial conditions, but
for moderate values of the decay constant the synchronizing
current pulse was necessary to induce full synchrony. Thus, in
this regime the network displayed bistability between a two-
cluster solution and full synchrony. Networks of Type II neurons
with high heterogeneity (Figure 9) almost exclusively exhibited
two-cluster dynamics. The current pulse did not induce full
synchrony or one-cluster dynamics, but instead the synchronous
firing instantiated by the pulse was not maintained and firing
evolved back into two distinct clusters.

The fact that low heterogeneity networks showed a response
to the current pulse, while high heterogeneity networks did not,
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FIGURE 8 | Dynamics of networks of Type II neurons with low cellular heterogeneity. (A,B) Synchrony Measure (A) and Burst Similarity Measure (B) for

simulations run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic decay constants (vertical axis), averaged over 10 independent

simulations before (left panel) and after (right panel) the synchronizing current pulse. (C) Example raster plot for a simulation with an average intrinsic cell firing

frequency of 91.7Hz and a synaptic decay constant of 1.5ms (whose position in the heatmaps is illustrated by the overlayed C) exhibits two-cluster dynamics before

and after the synchronizing current pulse. (D) Example raster plot for a simulation with an average intrinsic cell firing frequency of 91.7Hz and and a synaptic decay

constant of 5.5ms (whose position in the heatmaps is illustrated by the overlayed D) exhibits two-cluster dynamics before the pulse but full synchrony after the pulse.

implies that ING-driven synchrony plays a role in networks of
Type II neurons when the heterogeneity is sufficiently low, but a
different mechanism controls behavior in the high heterogeneity
case.

Closer analysis of networks of Type II neurons exhibiting
two-cluster dynamics showed that the two clusters were easily
differentiated: one cluster consisted of neurons with smaller
external input currents (Iapp) and thus lower intrinsic firing

frequencies, while the other cluster consisted of neurons with
higher input currents and associated intrinsic firing frequencies.
Furthermore, the timing of cluster firings was asymmetric. The
cluster containing neurons with lower Iapp values typically fired
later in the cycle between firings of the cluster containing neurons
with higher Iapp values, while the cluster containing neurons
with higher Iapp values typically fired earlier in the cycle between
firings of the low Iapp cluster (Figure 10).
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FIGURE 9 | Dynamics of networks of Type II neurons with high cellular heterogeneity. (A,B) Synchrony Measure (A) and Burst Similarity Measure (B) for

simulations run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic decay constants (vertical axis), averaged over 10 independent

simulations before (left panel) and after (right panel) the synchronizing current pulse. (C) Example raster plot for a simulation with an average intrinsic cell firing

frequency of 91.7Hz and a synaptic decay constant of 1.5ms (whose position in the heatmaps is illustrated by the overlayed C) exhibits two-cluster dynamics before

and after the synchronizing current pulse. (D) Example raster plot for a simulation with an average intrinsic cell firing frequency of 91.7Hz and a synaptic decay

constant of 5.5ms (whose position in the heatmaps is illustrated by the overlayed D) exhibits two-cluster dynamics before and after the synchronizing current pulse.

Properties of the sPRC for Type II neurons explain this
phenomenon. When calculated using an inhibitory perturbation
matching the synaptic current, the sPRC (red curve in Figure 10)
is approximately flat for perturbations arriving early in a neuron’s
firing cycle, but the response begins to change rapidly as the
timing of the perturbation occurs later in the neuron’s period. As
the perturbation to the cells in the high Iapp cluster from the firing
of the low Iapp cluster occurred at later phases in their firing cycle,

these faster firing cells responded with a larger phase delay (top
panel). In contrast, since the perturbation to the cells in the low
Iapp cluster from the firing of the high Iapp cluster occurred at
earlier phases, the induced phase delay to these slower firing cells
was smaller (bottom panel). This difference in the magnitude of
phase delays induced in the two clusters served to balance the
frequency differences among their constituent cells, and in turn
organized network activity into stable two-cluster dynamics. The
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FIGURE 10 | Clusters in networks of Type II neurons are segregated based upon neurons’ intrinsic firing frequency. Raster plot of a high heterogeneity

Type II network with an average intrinsic cell firing frequency of 72.9Hz and a synaptic decay constant of 3.5 ms, with neurons organized based upon their external

input current. Overlaid with this plot is a sPRC, generated from analogous synaptic parameters for the neuron firing at a similar frequency to those in the network,

showing the timing of firings of the clusters relative to each other (dashed lines added at the beginning of bursts to emphasize these timings). While the raster plots in

the bottom and top panels are identical, the overlaid sPRC begins with the black burst in each panel in order to emphasize the timing differences in the cluster firings

relative to the effect articulated by the sPRC.

properties of the sPRC that underlie this mechanism are distinct
from the phase-resetting properties displayed by Type I neuron
sPRCs.

This hypothesis was further supported by the timing of firing
of cells within each cluster. Within the burst firing of the high
Iapp cluster (the larger cluster in Figure 10), the neurons with the
highest Iapp values fired earliest, thus responding with a greater
phase delay than the neurons firing later within the cluster. This
pattern of cell firing within the cluster balances the effect of the
heterogeneity in external input current. This feature holds true
for the timing of cell firing within the low Iapp cluster as well.

The general shape and skew properties of the sPRC shown
in Figure 10 are present for Type II neuron sPRCs with all but
the largest synaptic decay time constants, as shown in Figure 1E.
Only for the longest lasting synaptic currents do these properties
diminish and phase-resetting properties appear. This helps to
explain why for longer lasting synaptic currents, networks with
low heterogeneity displayed full synchrony analagous to that
seen in similar networks of Type I neurons. The diminished
phase-resetting characteristics of the sPRCs calculated for Type
II neurons imply that cellular properties play a more important
role in determining the dynamics of networks of these neurons
as opposed to networks of Type I neurons.

3.4. Networks of Type II Neurons with an
M-Type Adaptation Current
We found that networks of Type II neurons with adaptation
exhibited all considered types of dynamics: asynchrony, full
synchrony, one-cluster and two-cluster dynamics. The exhibited
spatio-temporal pattern depended upon the average intrinsic
cell firing frequency and synaptic decay time constant. In the

low heterogeneity case (Figure 11), for higher intrinsic cell
firing frequencies there was a bounded range of synaptic decay
constant values that led to full synchrony. Outside of this regime,
two-cluster dynamics were primarily observed, with a small
region of asynchronous behavior for very brief synaptic currents.
Networks primarily evolved to these dynamics from random
initial conditions and the synchronizing current pulse revealed
minimal regions of bistability.

In these networks, dynamics were robust to cellular
heterogeneity. The high heterogeneity case (Figure 12) showed
very similar results as those observed in the low heterogeneity
case, although the region of full synchrony was replaced by
a region of one-cluster dynamics in which not every cell
participated in each burst. No bistability between two-cluster and
one-cluster firing was observed in response to the synchronizing
current pulse for high heterogeneity networks.

For both high and low heterogeneity simulations, in
the regime in which two-cluster dynamics was observed the
synchronizing current pulse had minimal effect. Because the
effect of the current pulse is to induce ING-driven full synchrony
or one-cluster dynamics where possible, this led us to conclude
that ING-driven synchrony is not achievable in a large majority
of the networks that exhibited two-cluster dynamics.

The transition from two-cluster dynamics to one-cluster
dynamics in the high heterogeneity case, or to full synchrony
in the low heterogeneity case, as average intrinsic cell firing
frequency increased can be explained by changes in the shape of
the sPRC. In networks exhibiting two-cluster firing, the average
firing frequency of a cell within this network activity pattern
was significantly lower than the average firing frequency of a
cell in a network exhibiting either one-cluster firing or full
synchrony (Figure 13A). The sPRC for these neurons firing
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FIGURE 11 | Dynamics of networks of Type II neurons with adaptation with low cellular heterogeneity. (A,B) Synchrony Measure (A) and Burst Similarity

Measure (B) for simulations run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic decay constants (vertical axis), averaged over 10

independent simulations before (left panel) and after (right panel) the synchronizing current pulse. (C) Example raster plot for a simulation with an average intrinsic cell

firing frequency of 54.7Hz and a synaptic decay constant of 5.5ms (whose position in the heatmaps is illustrated by the overlayed C) exhibits two-cluster dynamics

prior to the pulse but full synchrony following the pulse. (D) Example raster plot for a simulation with an average intrinsic cell firing frequency of 66.2Hz and and a

synaptic decay constant of 5.5ms (whose position in the heatmaps is illustrated by the overlayed D) exhibits full synchrony both before and after the pulse.

at a frequency observed during two-cluster firing (the 12.4Hz
sPRC in Figure 13B) exhibited slope and skew typical of a
sPRC calculated for a Type II neuron. In contrast, the sPRC for
these neurons firing at a frequency observed during one-cluster
firing (the 55Hz PRC in Figure 13B) showed a strong phase-
resetting shape. Thus, both types of network dynamics exhibited
in networks of Type II neurons with adaptation are predicted by
variations in the shapes of their sPRCs with increasing intrinsic

cell firing frequency. The sPRCs for Type I neurons and Type II
neurons, on the other hand, do not show significant variation
to their overall shapes and skews in response to changes in the
cell’s firing frequency that correspond with the range of average
network cell firing frequencies exhibited in our simulations
(Figures 13C–F), thus predicting the robustness of one-cluster
or two-cluster dynamics in these networks, respectively. This
frequency-dependence of PRC shape for Type II neurons with
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FIGURE 12 | Dynamics of networks of Type II neurons with adaptation with high cellular heterogeneity. (A,B) Synchrony Measure (A) and Burst Similarity

Measure (B) for simulations run with a range of average intrinsic cell firing frequencies (horizontal axis) and synaptic decay constants (vertical axis), averaged over 10

independent simulations before (left panel) and after (right panel) the synchronizing current pulse. (C) Example raster plot for a simulation with an average intrinsic cell

firing frequency of 43.3Hz and a synaptic decay constant of 5.5ms (whose position in the heatmaps is illustrated by the overlayed C) exhibits two-cluster dynamics

both before and after the synchronizing current pulse. (D) Example raster plot for a simulation with an average intrinsic cell firing frequency of 54.7 Hz and and a

synaptic decay constant of 5.5 ms (whose position in the heatmaps is illustrated by the overlayed D) exhibits one-cluster dynamics both before and after the

synchronizing current pulse.

adaptation has previously been discussed in relation to the
effects of the M-current (Ermentrout et al., 2001; Ermentrout
and Wechselberger, 2009; Fink et al., 2011; Ladenbauer et al.,
2012), although the specific effects on the dynamics of inhibitory
networks of the type studied here have not.

The behavior of both the one-cluster and two-cluster
dynamics exhibited by networks of Type II neurons with

adaptation differed in important ways from analagous behavior
in networks of Type I or Type II neurons, respectively. The
adaptation current in the cells of these networks generated
unique characteristics of clustered firing. Specifically, networks of
Type II neurons with adaptation that displayed one-cluster firing
exhibited, on average, clusters containing more neurons than the
single clusters in Type I networks in the high heterogeneity case,
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FIGURE 13 | Relationship between average network cell firing frequency and network dynamics is explained by properties of corresponding sPRCs.

(A) Average firing frequency of neurons in networks of Type II neurons with adaptation in the high heterogeneity case, both before and after the current pulse and

averaged over ten independent simulations. (B) sPRCs for a Type II neuron with adaptation naturally firing at various frequencies, calculated with a double exponential

synaptic current perturbation with a synaptic decay constant of 3.5 ms. (C–F) Same as (A,B) but for Type I neurons (C,D) and Type II neurons (E,F).

which is reflected in the higher value of S seen in these networks.
Additionally, all neurons fired in a majority of the clusters if
the network contained Type II neurons with adaptation, while
in networks of Type I neurons many cells fired in every cluster
while many others were completely suppressed. This difference
is illustrated by comparing the average firing frequencies of
individual neurons as a function of the input current to those
neurons in similar example networks shown in Figures 7A,C.

In Type I networks, since the time interval between cluster
firings was primarily determined by the duration of synaptic
inhibition, slower firing cells were not able to escape inhibition
and fire before the faster firing cells initiated the next cluster
firing. As a result, the slower firing cells did not fire in every
cluster burst and were often completely suppressed. However,

in networks of Type II neurons with adaptation exhibiting one-
cluster dynamics, no cells were completely suppressed because
deactivation of the slow potassium current makes cells more
excitable following extended periods of quiescence. In these
networks, cells with lower Iapp values did not participate in every
cluster firing, so the slow potassium gating variable z decayed
to lower values between spike firings, as evidenced by their
lower average z value compared to cells with higher Iapp values
(Figure 14A). Consequently, at the time of subsequent bursts,
these cells were more excitable and were able to escape inhibition
and fire with the faster firing cells that initiate cluster firing.
Thus, the adaptation current serves to minimize the “effective
heterogeneity” of these networks by minimizing the variability in
the firing frequencies of individual neurons within the network.
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FIGURE 14 | Dynamics of adaptation current explains cell firing activity in networks of Type II neurons with adaptation exhibiting one or two-cluster

dynamics. (A) Average value of the slow potassium gating variable z plotted against the input current to each neuron in a network of Type II neurons with adaptation

exhibiting one-cluster dynamics. (B) Histogram of average z values of neurons leading up to a particular burst of activity in a network of Type II neurons with

adaptation exhibiting two-cluster dynamics, differentiating neurons participating in the burst (red) and those that are quiescent during that burst (blue).

The adaptation current also influenced the pattern of cell
firing in two-cluster dynamics. In particular, the clusters in
networks of Type II neurons with adaptation were not identical
over time, as shown by the fact that neurons in such a network
exhibited a range of average firing frequencies dependent upon
their input currents, as shown in Figure 7B. In contrast, neurons
in networks of Type II neurons that displayed two-cluster
dynamics exhibited identical individual neuron firing frequencies
irregardless of the neuron’s input current (Figure 7D),
which indicates that the clusters in these networks were
stable.

Furthermore, such networks of Type II neurons with
adaptation did not segregate into clusters based upon the
neurons’ Iapp, unlike those formed by networks of Type II
neurons. Again, effects of the adaptation current on neuron
frequency were responsible: frequency of these cells is variable
over time, dependent upon the amount of firing that has occurred
in the recent past. Cells that participated in a burst had a lower
value of the slow-potassium gating variable z leading up to the
beginning of a burst compared to cells that were quiescent during
that burst. Furthermore, cells with the highest z values did not
participate in the burst. This is illustrated by the histograms in
Figure 14B: the red histogram shows the average z values of cells
participating in a particular burst in the moments before the
burst occurred, while the blue histogram shows the average z
values of cells not participating in the burst. The offset between
these histograms implies that whether a cell fires in a given
cluster depends strongly on spike-frequency adaptation and not
just a cell’s external input current. The large overlap between
the two histograms may be due to the randomness in total
synaptic inhibitory input arriving at each cell given the random
connectivity.

In summary, the presence of the adaptation current allowed
for effective switching between the dynamics exhibited by Type
I and Type II networks. Furthermore, the adaptation current
minimized the effective heterogeneity present in one-cluster
dynamics while preventing neurons from segregating into unique
clusters when exhibiting two-cluster dynamics, distinguishing

the dynamics in these networks from similar dynamics in
networks of Type I neurons or Type II neurons.

4. DISCUSSION

We have shown that intrinsic cellular properties, especially
properties of the PRC and the presence of an adaptation current,
are of paramount importance in the synchrony and clustering
dynamics of a randomly connected network of inhibitory
neurons. Furthermore, these intrinsic cellular properties can be
the driving force behind potential mechanisms causing these
dynamics.

These effects were highly dependent on the degree of
connectivity within these networks. Increasing connectivity
density limited the contribution of the intrinsic cell firing
frequency and synaptic decay constant in determining network
dynamics. Additionally, increasing connectivity density changed
the type of clustering dynamics the networks exhibited. Most
crucially, networks of Type II neurons with adaptation exhibited
two-cluster firing for networks with low intrinsic cell firing
frequencies and lower connectivity densities, but one-cluster
dynamics when the network had higher connectivity density.
Furthermore, in networks of Type I neurons, lower connectivity
density allowed for bistability between asynchronous and one-
cluster dynamics when intrinsic cell firing frequencies were
low. When the connectivity density was high, networks evolved
directly into one-cluster firing.

In this study, we focused on networks with 30% connectivity
density since there is evidence for this level of connectivity among
interneurons in the hippocampus (Ascoli and Atkeson, 2005;
Viriyopase et al., 2016) and this level displayed dynamics distinct
from both very sparsely connected and fully connected networks,
as shown in Figure 4. Our focus on this connectivity regime
necessitated a numerical study. Previous studies have applied
analytical techniques, such as reduction to phase oscillator
models, to the investigation of interneuron network dynamics
(Vreeswijk et al., 1994; Hansel et al., 1995; Achuthan and
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Canavier, 2009; Ermentrout and Wechselberger, 2009; Zahid
and Skinner, 2009; Ladenbauer et al., 2012); however, these
techniques rely on assumptions of all-to-all connectivity and
weak coupling among neurons. Our results clearly violate
these assumptions: the network regimes we focus on exhibit
different dynamics from those observed with 100% connectivity
density and the suppression of cell firing observed in the
one-cluster dynamics of networks of Type I neurons (see
Figure 7B) contradicts the hypotheses of the weak coupling
regime.

Furthermore, much of the existing literature analyzing
networks of interneurons has focused on gap-junctional
coupling as opposed to synaptic inhibition (Ermentrout and
Wechselberger, 2009; Zahid and Skinner, 2009). Gap-junctional
coupling is instantaneous and can be both excitatory and
inhibitory, while synaptic inhibition is purely inhibitory
and possesses an intrinsic timescale. These studies also
investigate all-to-all coupled networks with weak coupling
between neurons, which can be analyzed using techniques such
as the phase-reduction method and weakly-coupled oscillator
theory (Schemer and Lewis, 2012).

We have illustrated that while networks of Type I neurons
exhibit full synchrony or one-cluster dynamics driven by the
classical ING mechanism, which relies upon properties of the
synaptic current, networks of Type II neurons exhibit two-cluster
dynamics driven by neuronal excitability properties (namely, the
concave down shape of these neurons’ sPRCs). Additionally,
networks of Type II neurons with adaptation displayed either
one-cluster or two-cluster dynamics dependent upon the average
firing frequency of neurons in the network and the effect this
frequency had on the properties of the sPRCs of these cells.

While low heterogeneity networks of Type II neurons fully
synchronized via the ING mechanism, these networks exhibited
two-cluster dynamics for short lasting inhibitory synapses in low
heterogeneity networks and for nearly all values of the synaptic
decay time constant with high heterogeneity. Neurons forming
these clusters were segregated based upon their natural firing
frequencies. The network stabilized two-cluster dynamics by
forming asymmetric timing of cluster firings that, due to the skew
of the sPRC, led to a different magnitude of delay experienced
by each respective cluster. This asymmetry acted to balance
the differences in natural firing frequencies of neurons in each
cluster.

The tendency for inhibitory networks containing Type II
neurons to display the two-cluster dynamics observed here has
been previously seen in studies looking at small networks, all-to-
all connected networks, and networks containing other methods
of signal propagation than synaptic inhibition (Vreeswijk et al.,
1994; Hansel et al., 1995; Achuthan and Canavier, 2009;
Ladenbauer et al., 2012; Viriyopase et al., 2016). However,
given the importance of the degree of network connectivity
in determining clustering dynamics shown in this study, it
can not merely be assumed that these dynamics extend to a
larger, randomly coupled network. Our simulations justify this
extension. Furthermore, our analysis revealed that heterogeneity
in intrinsic firing frequencies can be compensated for by
differences in firing times of each cluster and of individual

neurons within in each cluster in order to promote two-cluster
dynamics in these networks.

Networks of Type II neurons with adaptation exhibited
behavior similar to the one-cluster dynamics of networks of Type
I neurons or the two-cluster dynamics of networks of Type II
neurons, dependent upon how the average intrinsic cell firing
frequency and synaptic decay constant dictated the average firing
frequency of cells in the network. When neurons in the network
fired sufficiently fast, the network behaved similarly to networks
of Type I neurons, because the sPRC of Type II neurons with
adaptation computed at such frequencies mirrored the phase-
resetting properties of a Type I neuron. However, the one cluster
formed in such a network of Type II neurons with adaptation
contained more active neurons, on average, then similar clusters
formed in networks of Type I neurons. This difference was caused
by the influence of the adaptation current in increasing the
excitability of neurons following a period of quiescence.

When cells in a network of Type II neurons with adaptation
fired more slowly, the network exhibited behavior similar to the
two-cluster dynamics shown by networks of Type II neurons,
because the sPRCs calculated for Type II neurons with adaptation
firing at this slower frequency matched the shape and skew
properties, in particular the concave down nature, of sPRCs
of Type II neurons. Here the adaptation current also played a
pivotal role in differentiating the dynamics in networks of Type
II neurons with adaptation from those of networks of Type II
neurons. In particular, the changing cellular excitability of Type II
neurons with adaptation brought about by the adaptation current
prevented the segregation of neurons into unique clusters based
upon their Iapp values, as was the case in networks of Type II
neurons.

We note that care should be taken when interpreting PRCs
for neuron models that contain active currents with slowly
evolving gating variables, like the M-current in our Type II
neuron with adaptation model. Specifically, perturbations can
have effects on firing cycles subsequent to the cycle in which the
perturbation occurred. To account for such longer-lasting effects
of the perturbation, previous studies have employed higher-order
PRCs (Oprisan et al., 2004; Talathi et al., 2009) and functional
PRCs (Cui et al., 2009). Indeed, for our Type II neuron with
adaptation, the perturbation used to compute the sPRC did result
in slightly shorter periods for several firing cycles subsequent to
the perturbation cycle due to the influence of spike-frequency
adaptation. For our Type I and Type II model neurons, on the
other hand, firing cycles subsequent to the perturbation cycle
showed no effects of the perturbation.

Thus, for our networks of Type II neurons with adaptation we
have focused on applying the sPRC to explain the transition from
one-cluster dynamics to two-cluster dynamics by considering the
change in its overall shape as the firing frequency increases: from
a more concave down shape to the more linear phase resetting
shape as firing frequency increases. As shown in Figures 13A,B,
the correspondence of the change in sPRC shape with the change
in network frequency and thus cluster dynamics is remarkably
tight: the low network frequency parameter regimes (blue in
Figure 13A) correspond to concave down sPRCs (blue curves
in Figure 13B) and display two-cluster dynamics, while the high
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network frequency parameter regimes (green and warmer colors
in Figure 13A) correspond to phase resetting sPRCs (green and
warmer color curves in Figure 13B) and exhibit one-cluster
dynamics. We then highlight features of the time dynamics of
the M-current gating variable to explain how cell participation
in the one-cluster and two-cluster dynamics differs from the
Type I and Type II networks, respectively, in Figures 7, 14. For
our networks of Type II neurons, since the sPRC is the same
for all cycles, we are able to expand its use to understand the
segregation of neurons between the two-clusters and to explain
the asymmetric timing pattern of the firing of the two-clusters, as
shown in Figure 10.

Our results for networks of Type I neurons paralleled
those of previous works in the field, including the work of
Wang and Buzsáki (1996) and Whittington et al. (2000), as
well as more recent, biologically driven simulations of Type
I neurons by Ferguson et al. (2013). In simulating similar
networks of Type I neurons with heterogeneity, Wang and
Buzsaki identified a length of synaptic decay that leads to
optimal network synchronization. In similar simulations with
a model of the PV interneuron (which exhibits distinctly Type
I properties), Ferguson et al. showed that synchrony of these
networks improves with faster firing neurons. In our results,
the application of the synchronizing current pulse revealed
that synchrony and one-cluster dynamics are possible in these
networks when intrinsic cell firing frequencies are low, but
the network may not evolve to those dynamics from random
initial conditions. In particular, if only network dynamics as
evolved from random initial conditions are considered, it would
appear that there is a strict threshold in intrinsic firing frequency
for synchronous or one-cluster firing to occur (left panels of
Figures 6A,B, 8A,B). The effect of the synchronizing current
pulse mimics the conditions for synchronization by the ING
mechanism. Specifically, as Whittington states, ING synchrony
will occur if enough neural firing occurs in close temporal
proximity in order to send a sufficiently strong inhibitory signal
throughout the network, which prevents any neuron from firing
until this synaptic signal decays (Whittington et al., 2000). While
an instance of enough neurons firing in close temporal proximity
is likely to happen when intrinsic neuron firing frequencies are
high, it is less likely in networks of slower firing cells. For such
networks a single, brief stimulation can be enough to induce
stable synchronous dynamics.

A brief synchronizing stimulus may provide a mechanism,
both experimentally and computationally, by which the presence
of ING can be directly assessed. Indeed, the ING theory predicts
that if ING-driven dynamics are at all possible for a given
network, the instance of synchronous firing caused by the current
pulse should always induce ING-driven clustering or synchrony.
The fact that the current pulse had minimal effect on networks
exhibiting two-cluster dynamics, and never induced two-cluster
dynamics from a previously asynchronous network, thus suggests
that the ING mechanism does not drive two-cluster dynamics in
the networks studied here.

Bistability between asynchronous and synchronous solutions
in small networks of two mutually coupled inhibitory neurons,
where the initial conditions of the network determine the

dynamics of the system, has been previously reported (Terman
et al., 1997). Our results serve as a generalization of this
phenomena to a larger network with a more complicated
connectivity structure.

Our results for networks of Type II neurons are similar to
those found for pairs of Type II neurons coupled by mutual
inhibition studied by Vreeswijk et al. (1994). They analytically
showed that for sufficiently long lasting synapses, anti-synchrony
is the stable state of these neurons. Anti-synchrony of two
neurons corresponds with the two-cluster dynamics seen in our
simulations. The work of Achuthan and Canavier on all-to-all
coupled inhibitory networks with four Type II neurons also
showed the tendency of these networks to exhibit two-cluster
dynamics predicted by properties of the PRC (Achuthan and
Canavier, 2009). The tendency for larger networks to exhibit
these properties has been shown in work by Ladenbauer et al. and
Viriyopase et al., albeit in networks with different connectivity
and heterogeneities than those studied here (Ladenbauer et al.,
2012; Viriyopase et al., 2016). Our work shows that the results
found in these studies can be extended to randomly connected
inhibitory networks with heterogeneity in the external input
currents to the neurons in the network. We additionally
explain intricacies of the two-cluster dynamics, such as the
segregation of neurons into unique clusters based upon their
intrinsic firing frequency and the asymmetric timing of the
cluster firing.

Our results indicate that the clustering properties of Type II
neurons, when subjected to high heterogeneity in their external
input currents, do not show significant change in response to
a change in average intrinsic cell firing frequency or synaptic
decay constant. Given that biologically plausible inhibitory
networks typically receive a heterogeneous driving current based
upon the drive from a network of excitatory neurons, these
results imply that the two-clustering properties of a network of
Type II interneurons might prove especially robust to changes
in the excitatory drive from the network. We found that
networks of Type II neurons synchronize fully only when cellular
heterogeneity was low and for sufficiently long lasting synapses.
This result contradicts previous research that suggested that
neurons with Type II properties could not exhibit synchronous
behavior in an inhibitory network (Hansel et al., 1995; Achuthan
and Canavier, 2009). Recently, work by Tikidji-Hamburyan et
al. analyzed a randomly connected network of Type II neurons
that exhibit post-inhibitory rebound firing (which neither our
Type II or Type II with adaptation models exhibit). Their results
illustrated that such networks can form synchronous gamma
rhythms in a fashion more robust to heterogeneity than similar
networks of Type I neurons, driven primarily by the properties
of the post-inhibitory rebound firing (Tikidji-Hamburyan et al.,
2015).

The results for networks of Type II neurons with adaptation
are of particular biological relevance, considering that the OLM
interneurons of the hippocampus exhibit the M-type adaptation
current (Saraga et al., 2003; Lawrence et al., 2006; Cutsuridis et al.,
2010; Cutsuridis and Hasselmo, 2012), as do some interneurons
in the cortex (Markram et al., 2004; Perrenoud et al., 2013). We
have shown that the presence of the adaptation current imbues
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these neurons with clustering properties and a mechanism
driving these dynamics that is distinct from that of Type II
neurons without adaptation.

The concentration of ACh in the brain is strongly correlated
with sleep state, with the concentrations at their highest during
wake and REM sleep. Additionally, the important role of ACh
in the hippocampus and its effect on M-type potassium channels
has been well studied (Aton et al., 2013; Teles-Grilo Ruivo
and Mellor, 2013). Our results provide a potential mechanistic
explanation for how ACh can affect pattern generation amongst
networks of interneurons; in particular, we have shown that
inhibitory networks comprised of neurons containing an M-
current will exhibit only one-cluster dynamics when the ACh
concentration is high, blocking the M-current and making the
neuron Type I, while these networks may exhibit two-cluster
dynamics when the ACh concentration is low and the M-
current is active. Additionally, the ability for these networks

to exhibit either two-cluster or one-cluster dynamics, largely
dependent upon how much applied current drives the network,
could provide a “gate” by which inhibitory tone to downstream
neurons is modulated. These effects on pattern generation might
potentially be propagated to pyramidal cells and affect the overall
oscillatory behavior of the hippocampus and cortex.
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