# **Supplementary Information**

## **Table of Contents**

# Experimental Procedures

| In silico modeling and structure-based design of Ptpn2 inhibitors             |
|-------------------------------------------------------------------------------|
| Synthetic Methods2-8                                                          |
| General Procedures, Materials & Instrumentation2-4                            |
| Experimental procedures and characterization data of Ptpn2 inhibitors4-8      |
| Tables and Figures                                                            |
| Table S1. Calculated physicochemical properties of Ptpn2 inhibitors9          |
| Table S2. CRISPR target guide sequence to generate stable knockout cell lines |
| Table S3. Primers for RT-PCR                                                  |
| Copies of analytical spectra for Ptpn2 inhibitors                             |
| References                                                                    |

## **Experimental Procedures**

## In silico modeling and structure-based design of Ptpn2 inhibitors

Molecular docking with the Schrödinger software suite was performed in using the X-ray crystal structure of the catalytic PTP domain of Ptpn2 (PDB ID: 1L8K). The structure was prepared using the Protein Preparation Wizard in Prime and docking was performed with Glide XP. The docking grid was defined as a 10x10x10 Å cube centered on the coordinates x = -6.0 y = 11.0 z = -4.0. Docking poses were evaluated for interactions with both the conserved HCX<sub>5</sub>R motif and residues at the periphery of the binding pocket, such as Tyr 48 and Gln 260. Chemical modifications were made to favor cell membrane permeability as determined by Qikprop ( $\geq 500$  nm/s for Caco-2, MDCK models).

## **Synthetic Methods**

General Information. All reactions were performed in flame-dried round-bottomed or modified Schlenk flasks fitted with rubber septa under a positive pressure of argon, unless otherwise noted. Air- and moisture-sensitive liquids and solutions were transferred via syringe or stainless steel cannula. Tetrahydrofuran was purified using a Pure-Solv MD-5 Solvent Purification System (Innovative Technology). All other reagents were used directly from the supplier without further purification unless otherwise noted. Organic solutions were concentrated by rotary evaporation at ~25 mbar in a water bath heated to 40 °C unless otherwise noted. Analytical thin-layer chromatography (TLC) was carried out using 0.2 mm commercial glass-coated silica gel plates (silica gel 60, F254, EMD chemical). Thin layer chromatography plates were visualized by exposure to ultraviolet light and/or exposure to iodine, or to an acidic solution of ceric ammonium molybdate, or a basic solution of potassium permanganate followed by heating on a hot plate. Gas chromatographs were measured using an Agilent 7820 GC. Mass spectra (MS) were obtained on a Karatos MS9, Autospec, or an Agilent 6150 and reported as m/z (relative intensity). Accurate masses are reported for the molecular ion [M+D]<sup>+</sup> or [M+2D]<sup>2+</sup>. Nuclear magnetic resonance spectra (<sup>1</sup>H-NMR and <sup>13</sup>C-NMR) were recorded with a Varian Gemini (400 MHz, <sup>1</sup>H at 400 MHz, <sup>13</sup>C at 100 MHz, 500 MHz, <sup>1</sup>H at 500 MHz, <sup>13</sup>C at 125 MHz, or 600 MHz, <sup>1</sup>H at 600 MHz, <sup>13</sup>C at 150 MHz). For CDCl<sub>3</sub> and CD<sub>3</sub>OD solutions chemical shifts are reported as parts per million (ppm) referenced to residual protium or carbon of the solvent; CDCl<sub>3</sub> δ 77.0 ppm, CD<sub>3</sub>OD δ 3.49 ppm. Coupling constants are reported in Hertz (Hz). Data for <sup>1</sup>H-NMR spectra are reported as follows:

chemical shift (ppm, referenced to protium; (bs = broad singlet, s = singlet, br d = broad doublet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, ddd = doublet of doublet of doublets, m = multiplet, integration, and coupling constants (Hz)). Purity was quantified by HPLC. HPLC was performed on an Agilent 1200 series HPLC with a Supelco Analytical Discovery® C18 (25 cm X 10 mm, 5µm) RP-HPLC.

#### **SCHEME-1**

**Reagents and conditions:** a). LiHMDS, THF, 0  $^{\circ}$ C to RT 12 h b). K<sub>2</sub>CO<sub>3</sub>, NaI, acetone, reflux, 12h c). N<sub>2</sub>H<sub>4</sub>, EtOH, 80  $^{\circ}$ C, 2 h

## Preparation of methyl 4-(3-(furan-2-yl)-3-oxopropanoyl)benzoate (3):

A suspension of compound 1 (200 mg, 0.685 mmol) in dry THF (1.0 mL) was cooled at 0 °C under Ar atmosphere. After cooling, LiHMDS (0.685 mmol) was added dropwise to the reaction mass and stirred for 30 min at 0 °C. The reaction mixture was then treated with 2-furoylchloride 2 (0.685 mmol) dissolved in THF and stirred for 12 h at room temperature. Cold ethyl acetate (150 mL) and ice-water (50 mL) were added the reaction mixture and the organic phase was separated. The aqueous phase was extracted with ethyl acetate (2 x 100 mL) and the combined extracts were

washed with water then brine and dried over MgSO<sub>4</sub>. The solvents were evaporated under reduced pressure and the crude product was purified by column chromatography on silica gel (ethyl acetate:hexane, 1:9), yielding compound **3** as a white solid. (85% yield).

## General procedure for the synthesis of compound (5):

A stirred suspension of methyl 4-(3-(furan-2-yl)-3-oxopropanoyl)benzoate **3** (1.0 g, 4.46 mmol), K<sub>2</sub>CO<sub>3</sub> (0.67 g, 4.82 mmol) and NaI (0.73 g, 4.88 mmol) in dry acetone (15 ml) was treated with the corresponding bromo compound **4** (5.2 mmol) dropwise under N<sub>2</sub> atmosphere. The mixture was stirred at reflux for 12 h. The reaction was monitored by TLC and after completion of the reaction the solution was cooled to room temperature and filtered through a celite pad. The filtrate was evaporated under vacuum and the residue was purified by silica gel column chromatography (95:5, hexane:ethyl acetate) to give the pure product **4** as a colorless solid.

## General procedure for the synthesis of the final compound (PTP-01 to 10):

A stirred solution of the corresponding starting material **5** (1 eq) in EtOH and was treated by the addition of N<sub>2</sub>H<sub>4</sub> (1 eq)). The reaction mixture was stirred for 2 h at 80 °C. After completion of the reaction as monitored by TLC, the excess of EtOH was removed under vacuum and the crude product was resuspended in water and extracted with ethyl acetate. The organic layers were combined and dried by MgSO<sub>4</sub> and filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (ethyl acetate:hexane, 1:1) yielded compound as a white solid. (65% yield).

methyl 4-(4-benzyl-5-(furan-2-yl)-1*H*-pyrazol-3-yl)benzoate (1):  ${}^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>) δ 8.01 (d, J = 8.1 Hz, 2H), 7.58 (d, J = 8.1 Hz, 2H), 7.44 (s, 1H), 7.32 (d, J = 7.4 Hz, 1H), 7.29 (d, J = 8.5 Hz, 1H), 7.23 (t, J = 7.3 Hz, 1H), 7.19 (d, J = 7.5 Hz, 2H), 6.43 – 6.36 (m, 2H), 4.18 (s, 2H), 3.93 (s, 3H).  ${}^{13}$ C-NMR (151 MHz, CDCl<sub>3</sub>) δ 166.9, 154.7, 142.3, 142.3, 139.7, 139.7, 130.0, 130.0, 129.5, 129.5, 128.9, 128.9, 128.0, 128.0, 127.5, 127.5, 126.4, 112.8, 111.6, 107.7, 52.2, 29.6. HRMS (ESI): m/z calculated for C<sub>22</sub>H<sub>18</sub>N<sub>2</sub>O<sub>3</sub> 358.1317, found 359.1388 (M+ H<sup>+</sup>). Purity >98%.

methyl 4-(5-(furan-2-yl)-4-(4-(trifluoromethyl)benzyl)-1*H*-pyrazol-3-yl)benzoate (2):  ${}^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.3 Hz, 2H), 7.55 (dd, J = 11.5, 8.4 Hz, 4H), 7.47 (s, 1H), 7.29 (d, J = 8.5 Hz, 2H), 6.45 (dd, J = 3.3, 1.7 Hz, 1H), 6.38 (d, J = 3.3 Hz, 1H), 4.24 (s, 2H), 3.94 (s, 3H).  ${}^{13}$ C-NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.7, 158.0, 144.1, 142.5, 130.2, 130.2, 129.8, 129.8, 128.8, 128.6, 128.3, 127.6, 127.6, 125.7, 125.7, 111.9, 111.9, 107.6, 52.3, 29.4. HRMS (ESI): m/z calculated for C<sub>23</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O<sub>3</sub> 426.1191, found 427.1263 (M+ H<sup>+</sup>). Purity >96%.

methyl **4-(5-(furan-2-yl)-4-(3-phenylpropyl)-1***H*-pyrazol-3-yl)benzoate (3): <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 8.1 Hz, 2H), 7.48 (s, 1H), 7.30 (t, J = 5.5 Hz, 2H), 7.23 (d, J = 6.7 Hz, 1H), 7.15 (d, J = 7.3 Hz, 2H), 6.49 (s, 1H), 6.44 (s, 1H), 3.98 (s, 3H), 2.82 – 2.78 (m, 2H), 2.68 (t, J = 7.1 Hz, 2H), 1.94 – 1.89 (m, 2H). <sup>13</sup>C-NMR (151 MHz, MeOD)  $\delta$  166.9, 157.4, 153.7, 149.9, 142.1, 130.1, 130.1, 129.5, 128.4, 128.4, 127.6, 127.6, 126.0, 124.9,

124.2, 120.2, 115.9, 111.2, 107.0, 91.7, 52.3, 35.7, 31.8, 24.1. HRMS (ESI): m/z calculated for  $C_{24}H_{22}N_2O_3$  386.1630, found 387.1701 (M+ H<sup>+</sup>). Purity >98%.

methyl 4-(5-(furan-2-yl)-4-(4-nitrobenzyl)-1*H*-pyrazol-3-yl)benzoate (4): <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) δ 8.15 (d, J = 8.4 Hz, 2H), 8.02 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 7.9 Hz, 2H), 7.43 (s, 1H), 7.32 (d, J = 8.3 Hz, 2H), 6.42 (d, J = 21.0 Hz, 2H), 4.29 (s, 2H), 3.94 (s, 3H). <sup>13</sup>C-NMR (151 MHz, CDCl<sub>3</sub>) δ 166.6, 158.1, 147.8, 146.7, 142.6, 142.6, 136.5, 130.2, 130.2, 129.9, 129.9, 128.7, 128.7, 127.6, 127.6, 124.0, 124.0, 111.6, 111.4, 107.7, 52.6, 30.0. HRMS (ESI): m/z calculated for C<sub>22</sub>H<sub>17</sub>N<sub>3</sub>O<sub>5</sub> 403.1168, found 404.1238 (M+ H<sup>+</sup>). Purity >95%.

methyl 4-(5-(furan-2-yl)-4-(3-(trifluoromethyl)benzyl)-1*H*-pyrazol-3-yl)benzoate (5):  ${}^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.2 Hz, 2H), 7.54 (d, J = 8.2 Hz, 2H), 7.49 (d, J = 7.7 Hz, 1H), 7.45 (d, J = 5.5 Hz, 2H), 7.40 (t, J = 7.7 Hz, 1H), 7.33 (d, J = 7.7 Hz, 1H), 6.45 (dd, J = 3.1, 1.7 Hz, 1H), 6.40 (d, J = 3.3 Hz, 1H), 4.24 (s, 2H), 3.94 (s, 3H).  ${}^{13}$ C-NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.7, 142.5, 140.8, 136.3, 131.1, 131.1, 131.1, 130.9, 130.1, 130.1, 129.8, 129.8, 129.2, 129.2, 127.6, 127.6, 124.7, 123.3, 111.9, 111.7, 107.3, 52.3, 29.6. HRMS (ESI): m/z calculated for  $C_{23}H_{17}F_{3}N_{2}O_{3}$  426.1191, found 427.1261 (M+ H<sup>+</sup>). Purity >96%.

methyl 4-(4-(4-bromobenzyl)-5-(furan-2-yl)-1*H*-pyrazol-3-yl)benzoate (6):  ${}^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>) δ 8.04 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 7.46 (d, J = 1.1 Hz, 1H), 7.43 (d, J = 8.3 Hz, 2H), 7.06 (d, J = 8.3 Hz, 2H), 6.44 (dd, J = 3.2, 1.7 Hz, 1H), 6.38 (d, J = 3.3 Hz, 1H), 4.12 (s, 2H), 3.94 (s, 3H).  ${}^{13}$ C-NMR (151 MHz, CDCl<sub>3</sub>) δ 166.7, 144.3, 142.5, 138.8, 135.8, 131.8, 131.8, 130.1, 130.1, 130.1, 129.7, 129.7, 129.7, 129.7, 127.6, 127.6, 120.2, 112.2, 111.6, 107.8, 52.0, 29.1. HRMS (ESI): m/z calculated for C<sub>22</sub>H<sub>17</sub>BrN<sub>2</sub>O<sub>3</sub> 436.0423, found 437.0491 (M+H<sup>+</sup>). Purity >96%.

methyl 4-(4-(4-(tert-butyl)benzyl)-5-(furan-2-yl)-1*H*-pyrazol-3-yl)benzoate (7):  ${}^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.2 Hz, 2H), 7.61 (d, J = 8.2 Hz, 2H), 7.47 (s, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.11 (d, J = 8.1 Hz, 2H), 6.46 – 6.40 (m, 2H), 4.14 (s, 2H), 3.94 (s, 3H), 1.32 (s, 9H).  ${}^{13}$ C-NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.9, 149.0, 142.3, 136.5, 130.1, 130.1, 130.1, 129.5, 129.5, 127.6, 127.6, 127.6, 127.5, 127.5, 125.6, 125.6, 113.2, 111.7, 107.8, 52.1, 34.3, 31.3, 31.4, 31.4, 29.1. HRMS (ESI): m/z calculated for  $C_{26}H_{26}N_2O_3$  414.1943, found 415.2012 (M+ H<sup>+</sup>). Purity >98%.

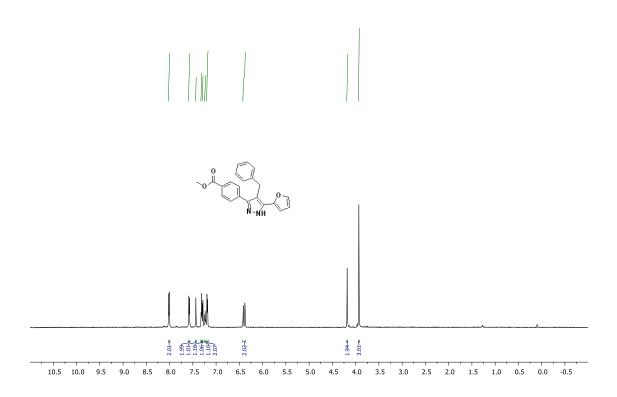
methyl 4-(5-(furan-2-yl)-4-(4-(trifluoromethoxy)benzyl)-1*H*-pyrazol-3-yl)benzoate (8):  ${}^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.04 (d, J = 8.1 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.46 (s, 1H), 7.19 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 6.47 – 6.38 (m, 2H), 4.18 (s, 2H), 3.94 (s, 3H).  ${}^{13}$ C-NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  166.7, 147.7, 145.4, 142.5, 138.5, 138.5, 130.1, 130.1, 130.1, 129.8, 129.8, 129.2, 129.2, 129.2, 127.6, 127.6, 127.6, 121.3, 121.3, 111.7, 107.7, 52.3, 29.1. HRMS (ESI): m/z calculated for C<sub>23</sub>H<sub>17</sub>F<sub>3</sub>N<sub>2</sub>O<sub>4</sub> 442.1140, found 443.1210 (M+ H<sup>+</sup>). Purity >99%.

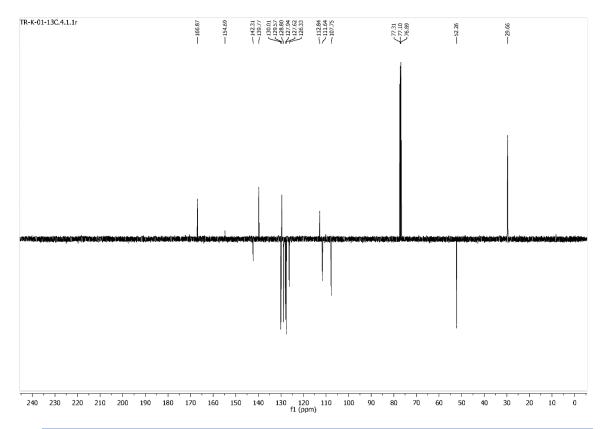
methyl 4-((5-(furan-2-yl)-3-(4-(methoxycarbonyl)phenyl)-1*H*-pyrazol-4-yl)methyl)benzoate (9):  ${}^{1}$ H-NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.97 (d, J = 8.1 Hz, 2H), 7.89 (d, J = 5.9 Hz, 1 H), 7.82 (d, J = 5.9 Hz, 1H), 7.53 (d, J = 8.1 Hz, 1H), 7.47 – 7.42 (m, 1H), 7.27 – 7.23 (m, 2H), 7.05 (d, J = 6.0 Hz, 1H), 6.39 (s, 1H), 6.35 – 6.31 (m, 1H), 4.77 (s, 1H), 4.23 (s, 2H), 3.92 (s, 3H), 3.89 (s, 3H).  ${}^{13}$ C NMR (151 MHz, MeOD)  $\delta$  167.1, 156.0, 152.3, 146.1, 145.4, 141.1, 139.9, 133.5, 130.8, 130.1, 129.8, 129.5, 128.9, 128.6, 128.4, 128.0, 127.6, 126.5, 112.0, 111.6, 107.7, 52.3, 52.2, 29.8. HRMS (ESI): m/z calculated for  $C_{24}H_{20}N_{2}O_{5}$  416.1372, found 417.1445 (M+ H<sup>+</sup>). Purity >96%.

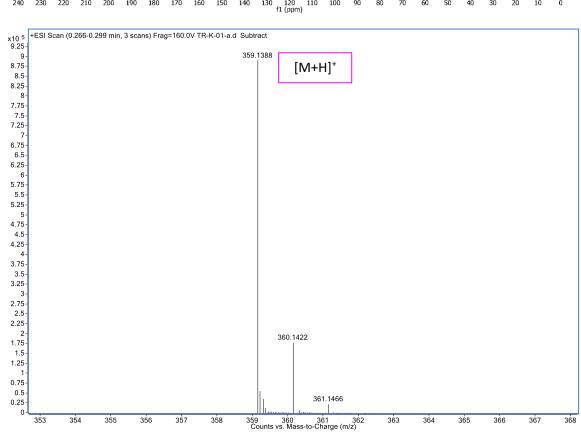
methyl 4-(5-(furan-2-yl)-4-phenethyl-1*H*-pyrazol-3-yl)benzoate (10): <sup>1</sup>H-NMR (600 MHz, CDCl<sub>3</sub>) δ 8.12 (d, J = 8.4 Hz, 2H), 8.10 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.2 Hz, 2H), 7.55 (d, J = 7.4 Hz, 2H), 7.50 (s, 1H), 6.87 (s, 1H), 7.12, (d J = 5.9 Hz, 1H), 6.70 (dd, J = 9.4, 3.2 Hz, 1H), 6.54 (s, 1H), 3.96 (s, 3H), 3.15 – 3.07 (m, 2H), 2.91 – 2.87 (m, 2H). <sup>13</sup>C-NMR (151 MHz, MeOD) δ 166.9, 160.6, 143.5, 136.9, 132.7, 130.3, 130.0, 130.0, 129.8, 129.8, 129.6, 129.6, 128.5, 128.5, 128.4, 127.8, 125.3, 125.3, 111.7, 107.0, 52.3, 36.4, 25.9. HRMS (ESI): m/z calculated for C<sub>23</sub>H<sub>20</sub>N<sub>2</sub>O<sub>3</sub> 372.1474, found 373.1545 (M+ H<sup>+</sup>). Purity >96%.

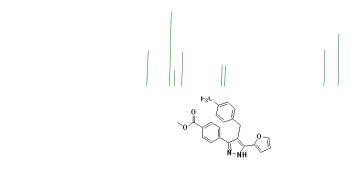
 Table S1. Calculated physicochemical properties of Ptpn2 inhibitors.

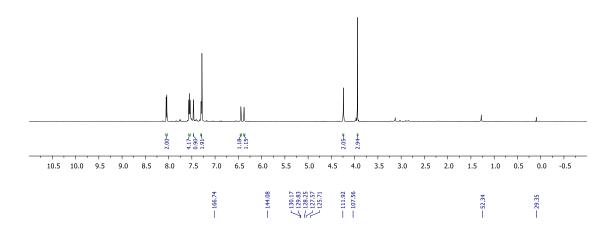
|          |            | Rotatable | Hydrogen<br>Bond | Hydrogen<br>Bond | logP<br>(octanol/ | Permeability  | Permeability | Solvent<br>Accessible<br>Surface | Volume            | Polar<br>Surface |
|----------|------------|-----------|------------------|------------------|-------------------|---------------|--------------|----------------------------------|-------------------|------------------|
| Compound | MW (g/mol) | Bonds     | Donors           | Acceptors        | water)            | (nm/s) Caco-2 | (nm/s) MDCK  | Area (Ų)                         | (Å <sup>3</sup> ) | Area (Ų)         |
| ID_1     | 358.396    | 3         | 1                | 3                | 4.827             | 970.219       | 478.804      | 653.54                           | 1155.719          | 71.522           |
| ID_2     | 426.394    | 3         | 1                | 3                | 5.803             | 979.429       | 2085.459     | 699.48                           | 1252.034          | 71.686           |
| ID_3     | 386.449    | 5         | 1                | 3                | 5.703             | 981.599       | 484.877      | 726.458                          | 1286.737          | 71.313           |
| ID_4     | 403.393    | 4         | 1                | 4                | 4.115             | 115.35        | 47.918       | 688.842                          | 1227.846          | 116.593          |
| ID_5     | 426.394    | 3         | 1                | 3                | 5.434             | 1065.51       | 1561.954     | 659.748                          | 1207.019          | 73.534           |
| ID_6     | 437.292    | 3         | 1                | 3                | 5.39              | 969.877       | 1268.106     | 679.206                          | 1207.538          | 71.631           |
| ID_7     | 414.503    | 4         | 1                | 3                | 5.921             | 1078.143      | 536.623      | 711.392                          | 1340.901          | 73.485           |
| ID_8     | 442.394    | 4         | 1                | 3                | 5.545             | 1255.987      | 2010.768     | 642.38                           | 1213.509          | 80.961           |
| ID_9     | 416.432    | 4         | 1                | 5                | 4.398             | 257.152       | 113.982      | 726.581                          | 1303.58           | 109.802          |
| ID_10    | 372.423    | 4         | 1                | 3                | 5.28              | 962.737       | 474.814      | 692.922                          | 1223.293          | 70.657           |

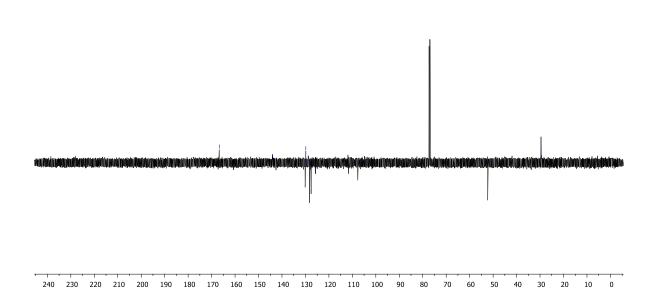

**Table S2.** CRISPR target guide sequence to generate stable cell lines.


| CRISPR sgRNA sequences |                      |  |  |  |  |  |
|------------------------|----------------------|--|--|--|--|--|
| NTC – sg1              | GCGAGGTATTCGGCTCCGCG |  |  |  |  |  |
| NTC – sg2              | GCTTTCACGGAGGTTCGACG |  |  |  |  |  |
| NTC – sg3              | ATGTTGCAGTTCGGCTCGAT |  |  |  |  |  |
| NTC – sg4              | ACGTGTAAGGCGAACGCCTT |  |  |  |  |  |
| Ptpn2 – sg1            | CCATGACTATCCTCATAGAG |  |  |  |  |  |
| Ptpn2 – sg2            | TCATTCACAGAACAGAGTGA |  |  |  |  |  |
| Ptpn2 – sg3            | ATGTGCACAGTACTGGCCAA |  |  |  |  |  |


**Table S3.** The primers used for quantitative RT-PCR.

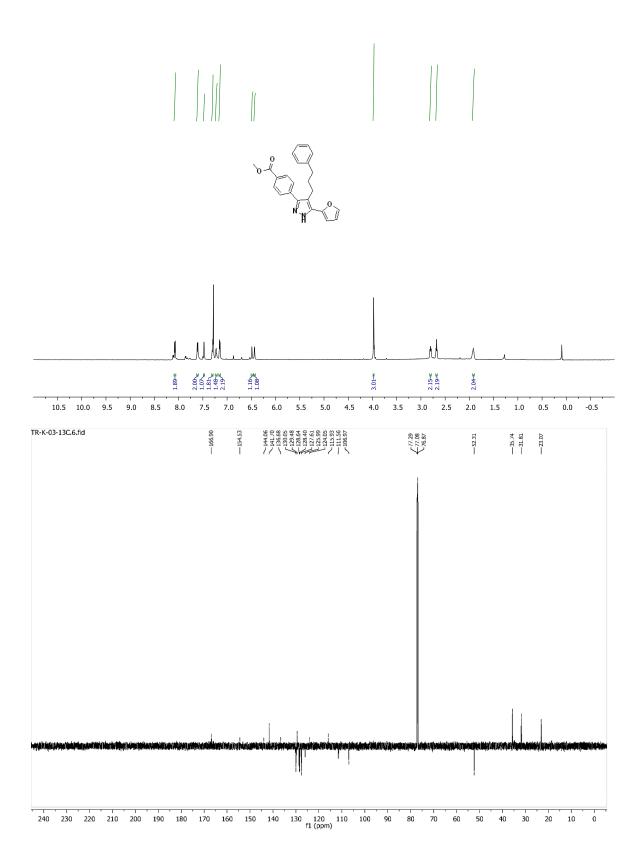

| Primers used for quantitative RT-PCR |                       |                       |         |  |  |  |  |
|--------------------------------------|-----------------------|-----------------------|---------|--|--|--|--|
| Gene                                 | Upper primer (5'-3')  | Lower primer (5'-3')  | Species |  |  |  |  |
| name                                 |                       |                       |         |  |  |  |  |
| Cxcl 11                              | GGCTGCGACAAAGTTGAAGT  | CGAGCTTGCTTGGATCTGGG  | Mouse   |  |  |  |  |
| Ccl 5                                | GTTCCATCTCGCCATTCATGC | TAAGCAAACACAACGCAGCTC | Mouse   |  |  |  |  |
| Tap 1                                | TTCACCCGCAACATATGGCT  | ATGTGATGGAACCTGCTGGG  | Mouse   |  |  |  |  |
| Stat 1                               | GGCCTCTCATTGTCACCGAA  | TACCACAGGATAGACGCCCA  | Mouse   |  |  |  |  |
| Stat 2                               | GTCGTCTTCAGACCCCCATC  | GCCAACCAGTCCTTTGGAGA  | Mouse   |  |  |  |  |
| Stat 3                               | GGAACAGATGCTCACAGCCC  | AGTCAGTGTCTTCTGCACGTA | Mouse   |  |  |  |  |
| P21                                  | TGGACAGTGAGCAGTTGCG   | CGTCTCCGTGACGAAGTCAA  | Mouse   |  |  |  |  |
| Casp 8                               | TAGAAGGCTACCAAAGCGCA  | CCCTTGTCACCGTGGGATAG  | Mouse   |  |  |  |  |
| Pd-I1                                | TGGTGGAGTATGGCAGCAAC  | CCCAGTACACCACTAACGCA  | Mouse   |  |  |  |  |
| Irf 1                                | GGAGATGTTAGCCCGGACAC  | AGGTAGCCCTGAGTGGTGTA  | Mouse   |  |  |  |  |
| Irf 9                                | CCCGAGAGAGGTCGTATGGA  | TGGTTCCGTGGTTGGTTAGG  | Mouse   |  |  |  |  |
| Ptpn2                                | GGCCAACGGATGACAGAGAA  | GGTCAGGGGTCAAACAACCA  | Mouse   |  |  |  |  |
| Gapdh                                | AAGGTCATCCCAGAGCTGAA  | CTGCTTCACCACCTTCTTGA  | Mouse   |  |  |  |  |

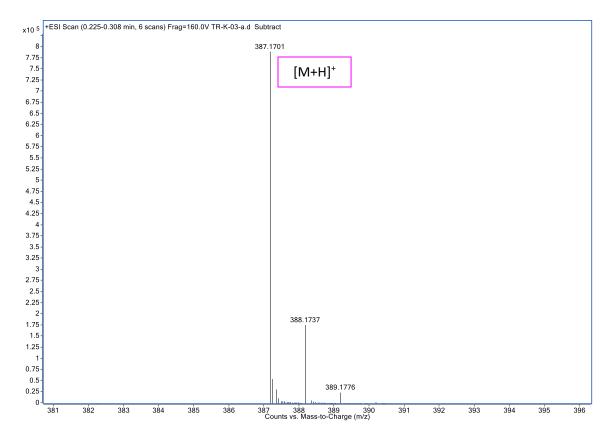


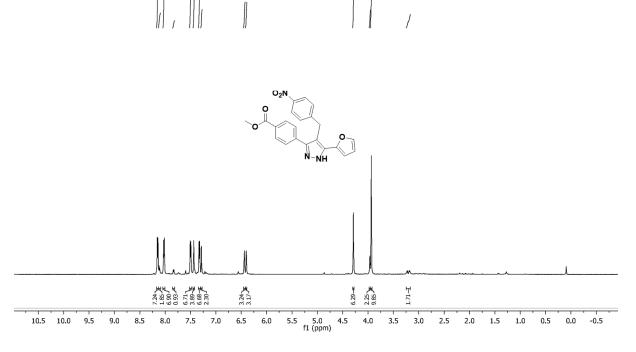


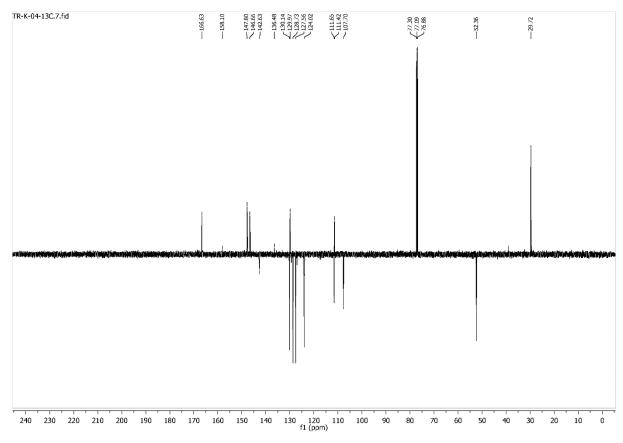


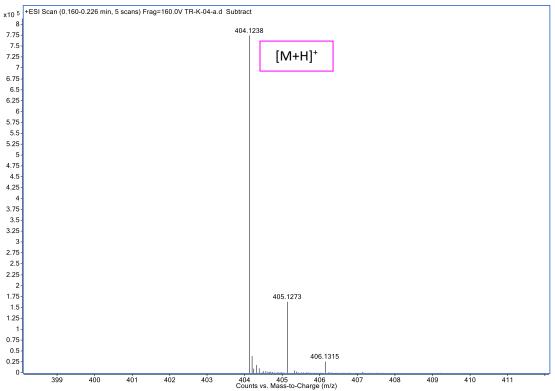


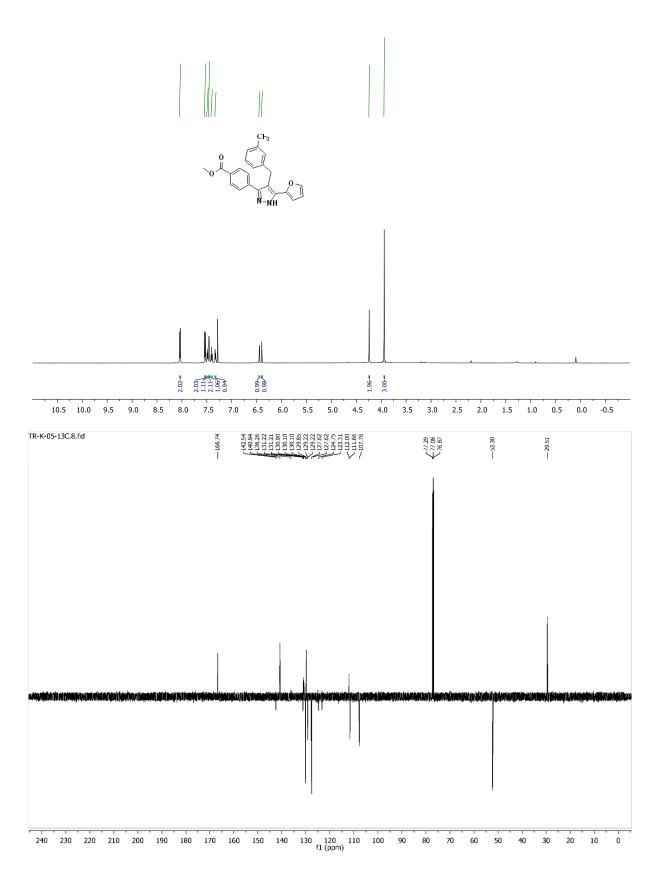



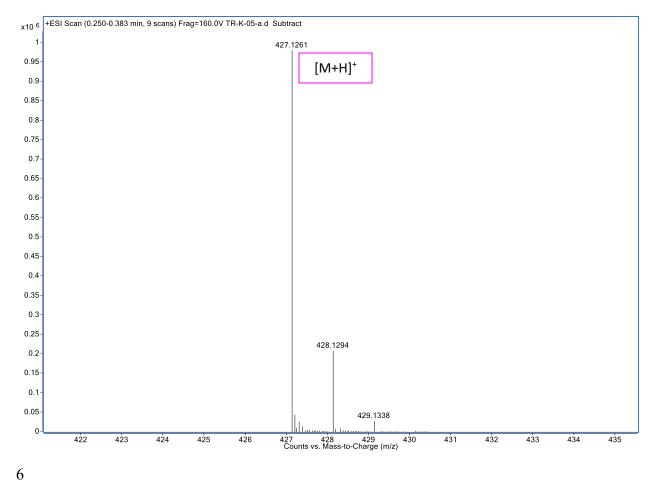


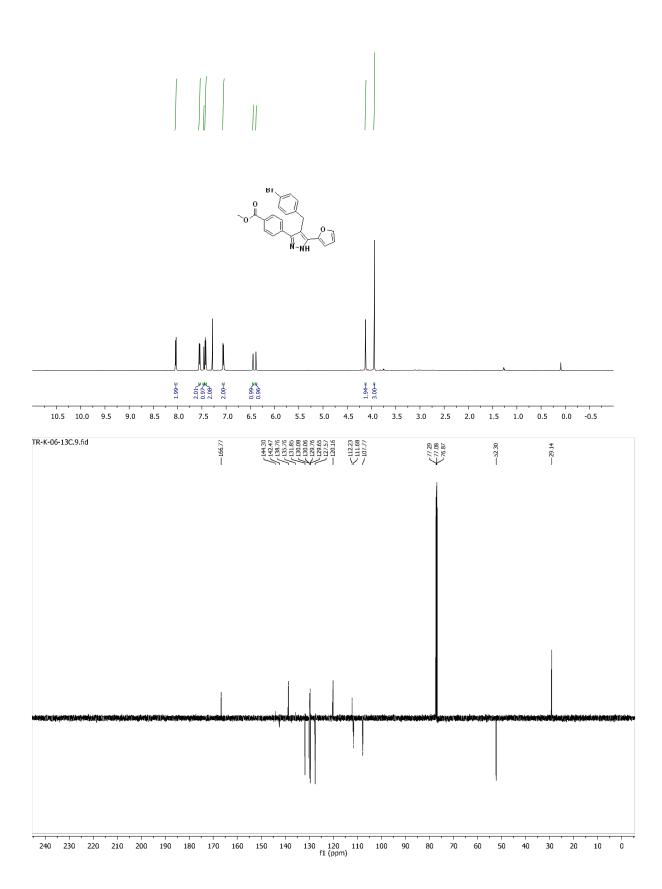



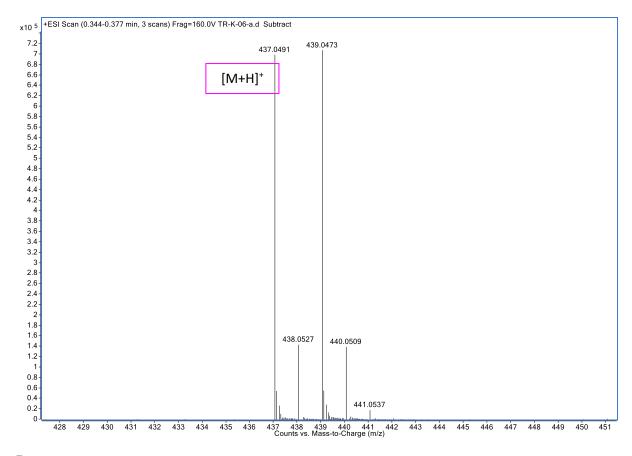



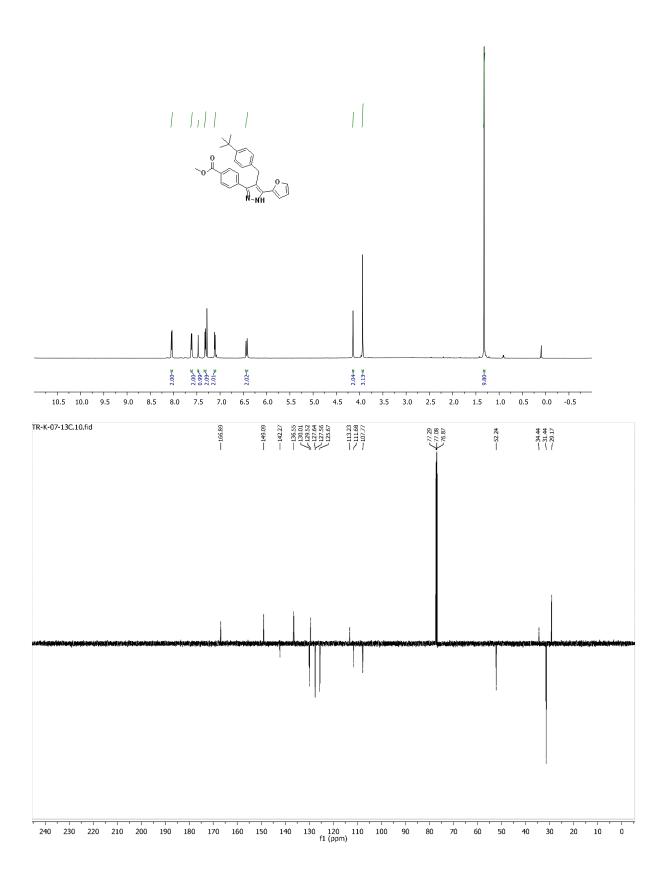



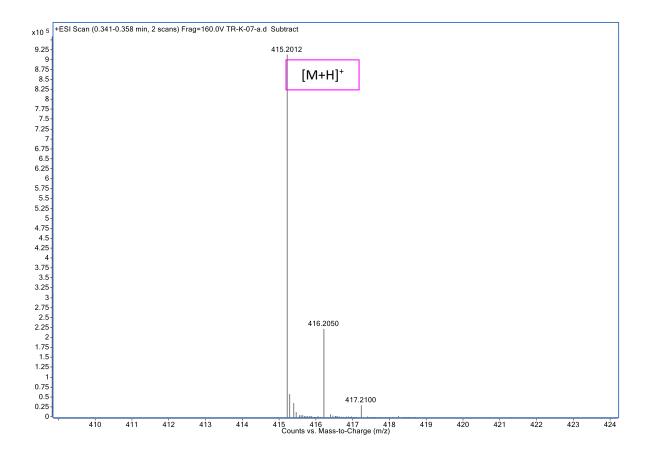



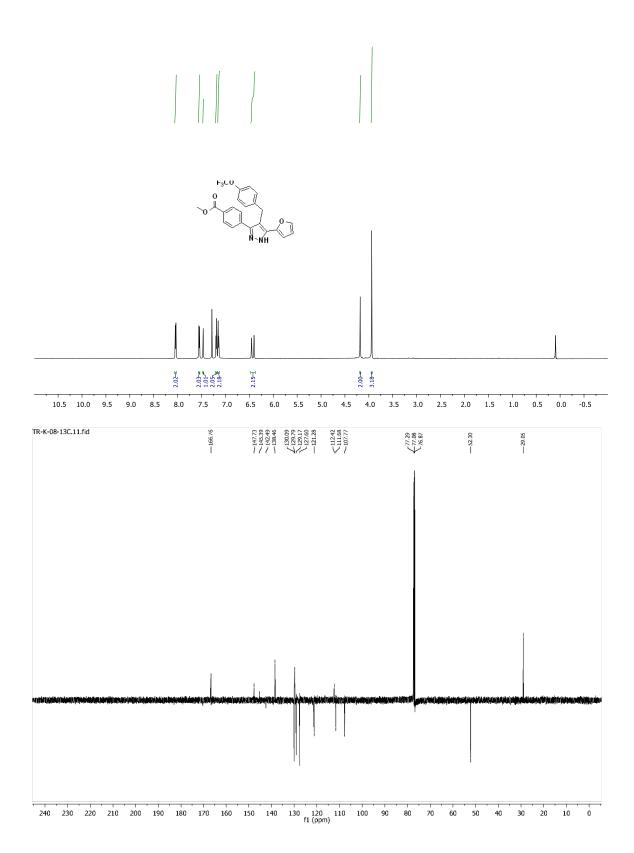



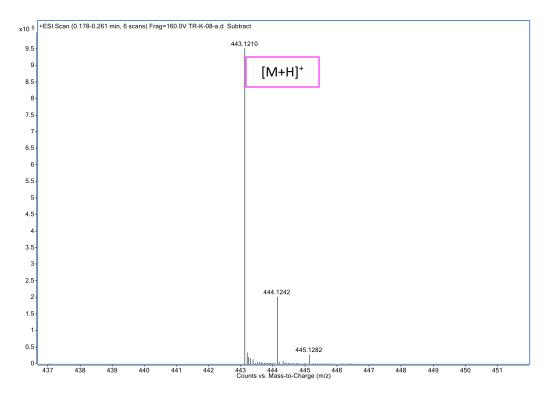



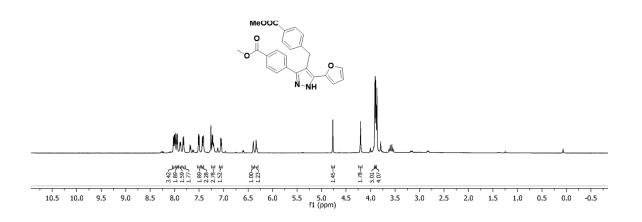



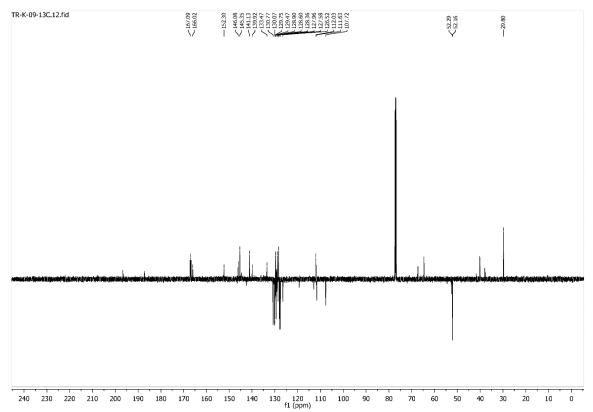



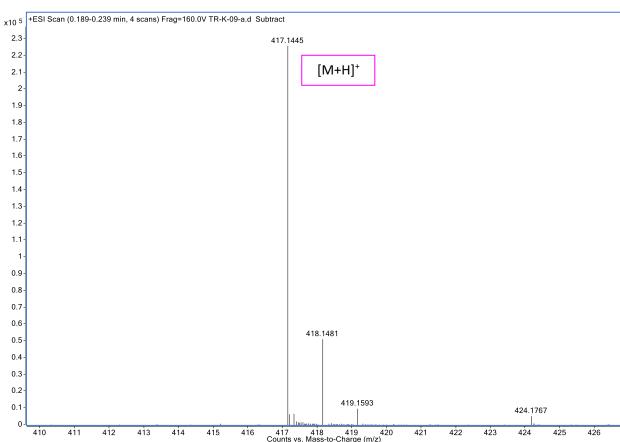



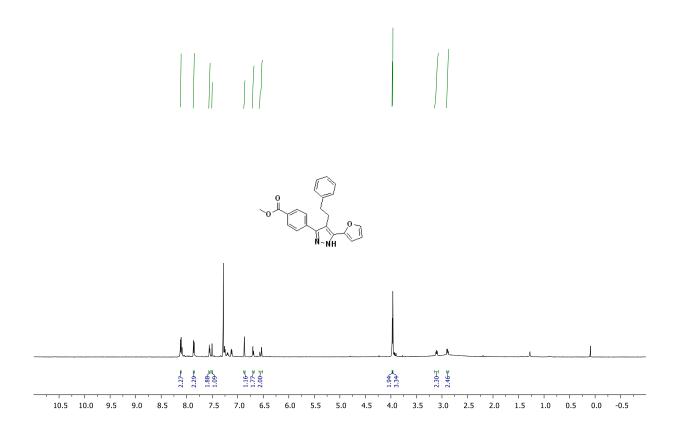



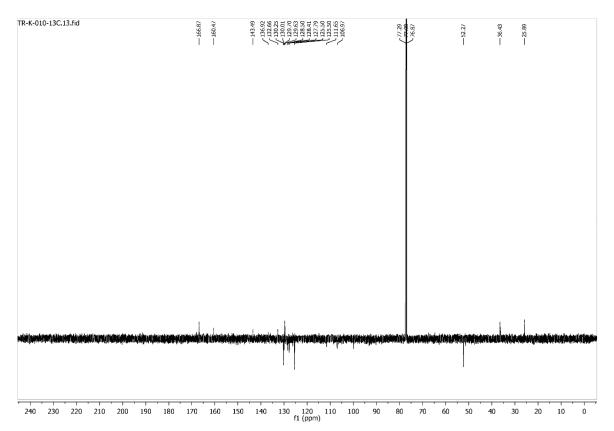


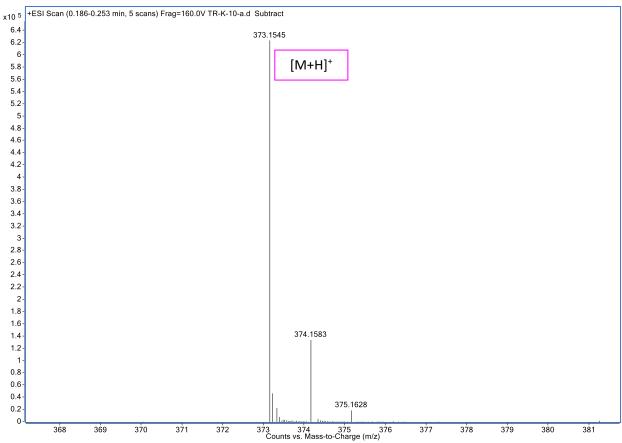














### References

- Iversen, L. F. *et al.* Structure determination of T cell protein-tyrosine phosphatase. *J Biol Chem* **277**, 19982-19990, doi:10.1074/jbc.M200567200 (2002).
- Jacobson, M. P., Friesner, R. A., Xiang, Z. & Honig, B. On the role of the crystal environment in determining protein side-chain conformations. *J Mol Biol* **320**, 597-608, doi:10.1016/s0022-2836(02)00470-9 (2002).
- Jacobson, M. P. *et al.* A hierarchical approach to all-atom protein loop prediction. *Proteins* **55**, 351-367, doi:10.1002/prot.10613 (2004).
- Friesner, R. A. *et al.* Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. *J Med Chem* **47**, 1739-1749, doi:10.1021/jm0306430 (2004).
- Halgren, T. A. *et al.* Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. *J Med Chem* **47**, 1750-1759, doi:10.1021/jm030644s (2004).
- Friesner, R. A. *et al.* Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. *J Med Chem* **49**, 6177-6196, doi:10.1021/jm0512560 (2006).