

Erratum

Alexander J. Hamilton, Anna Casula, Yoav Ben-Shlomo, Fergus J. Caskey, Carol D. Inward

The clinical epidemiology of young adults starting renal replacement therapy in the UK: presentation, management and survival using 15 years of UK Renal Registry data. *Nephrol Dial Transplant* 2017 gfw444. doi: 10.1093/ndt/gfw444

In the published version of this paper the Cox regression model shown in Table 3 erroneously used modality at start, rather than modality as a time dependent variable over the follow-up period as stated. The corrected version of the table is given below:

Table 3. Cox regression model on the effect of age group at RRT start on mortality, adjusting age group by other variables

Variable	Hazard ratio	95% CI	P-value
Age group (years)			
11-<16	1.00		
16-<21	1.87	0.95-3.67	0.07
21-<26	2.12	1.11-4.05	0.02
26–30	2.04	1.07-3.87	0.03
Sex			
Male	1.00		
Female	1.13	0.88-1.46	0.3
Ethnicity			
White	1.00		
Asian	0.59	0.36-0.98	0.04
Black	0.71	0.43-1.15	0.2
Other	0.64	0.30-1.38	0.3
Year of start			
1999-2002	1.35	1.00-1.83	0.05
2003-2005	0.97	0.71-1.33	0.9
2006-2008	1.00		
Modality			
Transplant	1.00		
Dialysis, transplant listed	4.20	2.61-6.75	< 0.0001
Dialysis, not transplant listed	16.6	10.8-25.4	< 0.0001
Primary renal diagnosis			
Glomerular Disease ^a	1.00		
Familial/hereditary nephropathies			
Other familial/hereditary nephropathies	0.59	0.21-1.66	0.3
Polycystic kidney disease	1.07	0.33-3.44	0.9
Miscellaneous renal disorders	1.88	1.28-2.76	0.001
Systemic diseases affecting the kidney			
Diabetes ^b	4.03	2.71-6.01	< 0.0001
Other systemic diseases ^c	1.93	1.08-3.48	0.03
Tubulointerstitial disease			
Obstructive	1.37	0.78-2.40	0.3
Renal dysplasia ± reflux	0.43	0.20-0.97	0.04
Other tubulointerstitial disease ^d	6.49	4.07-10.4	< 0.0001

Data based on 3243 patients and 248 events and excludes those with a missing ethnicity or PRD.

^aGlomerular disease was chosen as a comparator, as it was the most frequent diagnosis.

^bThere was a significant non-proportionality over time between those with and without diabetes, with the effect seen only after 230 days and no effect on other HRs when using a piecewise Cox regression analysis; this model presents the overall HR for the entire follow-up period.

 $^{^{\}circ}$ PRD codes in the $^{\circ}$ other systemic diseases' group include amyloid, haemolytic uraemic syndrome, renovascular diseases and hypertension. Of those with amyloid (n = 15), 33.3% died, while the proportion of death from other conditions was 6.6, 8.6 and 6.5%, respectively.

 $^{^{}m d}$ PRD codes in the 'other tubulointerstitial disease' group include drug-induced tubulopathies and interstitial nephritis; of those with drug-induced tubulopathies (n = 65), 32.3% died and of those with interstitial nephritis (n = 45), 15.6% died.

Information quoted from the table in the abstract and manuscript text has been corrected. The following five sentences should read as follows:

Section 'Abstract'

Overall 8% died, with being on dialysis and not transplant listed versus transplanted {hazard ratio [HR] 17.6 [95% confidence interval (CI) 4.36–70.9], P<0.0001} and diabetes versus glomerulonephritis [HR 4.48 (95% CI 3.05–6.58), P<0.0001] increasing mortality risk.

Should read:

Overall 8% died, with being on dialysis and not transplant listed versus transplanted {hazard ratio [HR] 16.6 [95% confidence interval (CI) 10.8-25.4], P<0.0001} and diabetes versus glomerulonephritis [HR 4.03 (95% CI 2.71-6.01), P<0.0001] increasing mortality risk.

Section 'Survival'

The strongest effect was seen with modality; being on dialysis and not listed for transplant drastically increased the risk of death compared to transplantation (HR 17.6, CI 4.36 – 70.9, p<0.0001). PRD had a major effect on survival; compared to glomerulonephritis, diabetics were nearly 5 times more likely to die (HR 4.48, CI 3.05 – 6.58, p<0.0001). Other tubulointerstitial disorders (HR 6.34, CI 3.99–10.1, p<0.0001), miscellaneous renal conditions (HR 1.81, CI 1.24–2.63, p=0.002), and other systemic diseases (HR 1.92, CI 1.07–3.44, p=0.03) also increased the risk of death.

Should read:

The strongest effect was seen with modality; being on dialysis and not listed for transplant drastically increased the risk of death compared to transplantation (HR 16.6, CI 10.8 – 25.4, p<0.0001). PRD had a major effect on survival; compared to glomerulonephritis, diabetics were nearly 5 times more likely to die (HR 4.03, CI 2.71 – 6.01, p<0.0001). Other tubulointerstitial disorders (HR 6.49, CI 4.07–10.4, p<0.0001), miscellaneous renal conditions (HR 1.88, CI 1.28–2.76, p=0.001), and other systemic diseases (HR 1.93, CI 1.08–3.48, p=0.03) also increased the risk of death.

Section 'Discussion'

Despite the wide CI, the HR we present for those on dialysis and transplant listed (4.12) is similar to that of previous studies in patients <21 years of age receiving a first transplant (4.85) [25].

Should read:

The HR we present for those on dialysis and transplant listed (4.2) is similar to that of previous studies in patients <21 years of age receiving a first transplant (4.85) [25].

The authors apologise for these errors.